-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
executable file
·240 lines (194 loc) · 7.66 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
import scipy as sci
import numpy as np
import pylab as pl
import time
MAX_HIT = 0
##############################################################
# simulation parameters (most are adjustable via command-line)
##############################################################
# size of the field over which to simulate. 1km seems to work okay,
# probaly could be smaller
GRID_WIDTH = 1000 # m
##################
# helper functions
##################
'''
return an array of random (x,y) pairs to represent
the detector positions.
detector density in N/km^2
width in m
'''
def make_detector_array(density, width=GRID_WIDTH):
Nphones = density * (width/1e3)**2
return np.random.uniform(-width/2.0, width/2.0, (Nphones,2))
'''
eta function, see EAS eqns. (8.14), (8.15)
'''
def eta_fn(th, N):
return 3.88 - 0.64*(1.0/np.cos(th) - 1) + 0.07*np.log(N/1e8)
'''
construct and return a function that give a shower LDS
as a function of x and y.
See EAS eqns. (8.13) and others mentioned inline
arguments:
energy - primary energy in eV
theta - zenith angle in rad
phi - azimuthal angle in rad
s - shower age parameter
'''
def make_shower_ldf(energy, theta=0, phi=0, s=1):
from scipy.special import gamma as gamma_fn
# critical energy in air, see EAS (4.17) and discussion
# on p.154.
E_critical = 84e6 # eV
# shower size is proportial to energy,
# see EAS (4.88)
N = energy/E_critical
# HACK:
# for muons, the normalization is about 3 orders lower
# than for photons. would be better to get a muon-specific
# LDF.
N *= 1e-3
eta = eta_fn(theta, N)
alpha = 2-s
# molliere radius, EAS p. 388
rM = 100 # m
# calculate the yucky gamma function term up front:
gamma_factor = gamma_fn(eta-alpha) / (gamma_fn(2-alpha)*gamma_fn(eta-2))
# unit vector pointing in the direction of the shower core:
n_hat = np.array([np.cos(phi)*np.sin(theta), np.sin(phi)*np.sin(theta), np.cos(theta)])
def ldf(points):
# promote the 2D vector points to 3d vector points
pts = np.hstack([points, np.zeros((len(points),1))])
# vector distance from point p to line
d = np.outer((n_hat.dot(pts.T)), n_hat) - pts
r = np.sqrt(np.sum(d**2, axis=1))
return N / (2*np.pi*rM**2) * (r/rM)**(-alpha) * (1 + r/rM)**(-(eta-alpha)) * gamma_factor
return ldf
'''
draw from a poisson distribution to calculate the number of
particles that hit each detector, given their positions and the LDF.
returns a list of (x,y) pairs for phones that had at least one hit.
'''
def get_hits(pdf, grid, eff):
global MAX_HIT
device_hits = []
for x,y in grid:
# get flux at sample point (particles / m^2)
flux = pdf(x, y)
# get expected hits (lambda, in the paper)
exp_hits = flux * eff
# now sample the actual hits from poisson distribution
actual_hits = sci.random.poisson(exp_hits)
if actual_hits >= 1:
device_hits.append((x,y))
if actual_hits>MAX_HIT:
MAX_HIT = actual_hits
return np.array(device_hits)
'''
make a plot showing the location of phones; phones
with hits are highlighted in red.
If the overlay (X,Y,Z) grid is provided, also draw
a contour of the LDF.
'''
def pretty_plot(grid, hits, overlay=None):
pl.clf()
pl.scatter(grid[:,0],grid[:,1], color='skyblue')
if len(hits):
pl.scatter(device_hits[:,0], device_hits[:,1], color='red')
# overlay the pdf contour
if overlay:
X, Y, Z = overlay
pl.contour(Z, extent=[np.min(X), np.max(X), np.min(Y), np.max(Y)], linewidths=2.0)
# label the axes
pl.xlabel('meters')
pl.ylabel('meters')
'''
Generate the an X,Y mesh grid, and sample the pdf
over it; used to make contour plots
'''
def make_overlay(pdf):
X = np.linspace(-GRID_WIDTH/2.0, GRID_WIDTH/2.0, 100)
Y = np.linspace(-GRID_WIDTH/2.0, GRID_WIDTH/2.0, 100)
X,Y = np.meshgrid(X,Y)
Z = np.log(pdf(X, Y))
return (X,Y,Z)
###########################
# main command line program
###########################
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Generate pseudo-experiments of phone hits from LDF")
parser.add_argument('--out', help='output filename')
parser.add_argument('-s', '--seed', type=int, help='Use a specific seed')
parser.add_argument('-i', '--interactive', action='store_true', help='Plot in interactive mode.')
parser.add_argument('--nhits', type=int, default=10, help='minimum number of coincident detector hits required for events')
parser.add_argument('--nevents', type=int, default=10000, help='number of events to generate')
parser.add_argument('--eff', type=float, default=1e-4, help='the effective area (efficiency*A) of the individual phones [in m^2]')
parser.add_argument('-N', '--ndetectors', type=int, default=1000, help='the number of detectors per km^2')
parser.add_argument('--age', type=float, default=1.8, help='shower age parameter')
parser.add_argument('--theta', type=float, default=0, help='zenith angle of incident particle')
parser.add_argument('--phi', type=float, default=0, help='azimutal angle of incident particle')
parser.add_argument('--energy', default=1e19, type=float, help='the energy (in eV) of the primary particle')
args = parser.parse_args()
# set the seed if the user wants to specify one
if args.seed == None:
seed = int(time.time())
else:
seed = args.seed
if args.interactive:
pl.ion()
# set up the initial detector grid
np.random.seed(seed)
# construct the LDF for the given shower parameters
ldf = make_shower_ldf(energy=args.energy, theta=args.theta, phi=args.phi, s=args.age)
if args.interactive:
# sample the LDF on a grid so we can
# make a pretty contour overlay
overlay = make_overlay(ldf)
# keep track of the number of samples generated,
# and the number kept for "reco" (i.e. those which
# have at least the minimum number of detector hits)
total_samples = 0
reco_samples = 0
if args.out:
from output import reco_output
output = reco_output(args.out, args.nhits)
output.eff = args.eff
output.density = args.ndetectors
output.energy = args.energy
output.theta = args.theta
output.phi = args.phi
update_interval = args.nevents/10
start_time = time.time()
while True:
if not args.interactive and args.nevents>0 and total_samples >= args.nevents:
# we're done here!
break
if total_samples%update_interval==0:
print "Generating %d / %d" % (total_samples, args.nevents)
# regenerate the random phone grid
grid = make_detector_array(args.ndetectors)
device_hits = get_hits(ldf, grid, args.eff)
total_samples += 1
if args.out:
output.write_result(device_hits)
if len(device_hits) < args.nhits:
# cut this event, and start over
continue
reco_samples += 1
print "%d / %d shower hits (%.2f%% eff)" % (reco_samples, total_samples, 100.*reco_samples/total_samples)
if args.interactive:
pretty_plot(grid, device_hits, overlay)
action = None
while not action in ('','c','q',):
print "[C]ontinue, [q]uit? ",
action = raw_input().lower()
if action == 'q':
# we're done here.
break
if args.out:
output.close()
print "Done. Generated %d events in %ds" % (reco_samples, time.time()-start_time)
print "Generator efficiency: %.2f%%" % (100.*reco_samples/total_samples)