-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
68 lines (57 loc) · 2.28 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
def __init__(self, state_size, action_size, seed):
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, 128)
self.bn1 = nn.BatchNorm1d(128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 32)
self.fc4 = nn.Linear(32, 16)
self.fc5 = nn.Linear(16, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(*hidden_init(self.fc3))
self.fc4.weight.data.uniform_(*hidden_init(self.fc4))
self.fc5.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
if state.dim() == 1:
state = torch.unsqueeze(state,0)
x = F.relu(self.fc1(state))
x = self.bn1(x)
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = torch.tanh(self.fc5(x))
return x
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=128, fc3_units=64):
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.bn1 = nn.BatchNorm1d(fcs1_units)
self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, fc3_units)
self.fc4 = nn.Linear(fc3_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(*hidden_init(self.fc3))
self.fc4.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
xs = F.relu(self.bn1(self.fcs1(state)))
x = torch.cat((xs, action), dim=1)
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return self.fc4(x)