-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcast_spell.py
134 lines (108 loc) · 3.5 KB
/
cast_spell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
import start
import draw_spell
global s
global t
import time
np.set_printoptions(threshold=np.inf)
def feedforward(a):
"""Return the output of the network if ``a`` is input."""
for b, w in zip(s,t):
print ""
a = sigmoid(np.dot(w, a)+b)
return a
def evaluate(test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [np.argmax(feedforward(test_data[0][0])), test_data[0][1]]
return test_results[0]
def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-z))
def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))
s,t=start.start()
# define the lower and upper boundaries of the "green"
# ball in the HSV color space
greenLower = (48, 73, 172)
greenUpper = (90, 255, 255)
camera = cv2.VideoCapture(0)
while True:
#press q for start
Var = raw_input("Ask user for something.")
if Var=='p':
pts = deque()
counter = 0
#(dX, dY) = (0, 0)
#direction = ""
# keep looping
(grabbed, frame) = camera.read()
del(frame)
pts.clear()
cv2.startWindowThread()
while True:
# grab the curr9ent frame
(grabbed, frame) = camera.read()
frame = cv2.flip(frame,1)
# resize the frame, blur it, and convert it to the HSV
# color space
frame = imutils.resize(frame, width=1000)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
# loop over the set of tracked points
for i in np.arange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
thickness = 8
cv2.line(frame, pts[i - 1], pts[i], (255, 255, 255), thickness)
# show the frame to our screen and increment the frame counter
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
counter += 1
# if the 'p' key is pressed, stop the loop
if key == ord("p"):
cv2.destroyAllWindows()
break
#print pp
# cleanup the camera and close any open windows
d=draw_spell.draw(pts)
cv2.destroyAllWindows()
z=evaluate(d)
print z