-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
97 lines (79 loc) · 3.22 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Layer
from tensorflow.keras.layers import Conv2D, ReLU, LeakyReLU
from tensorflow.keras.layers import Add, Lambda, ZeroPadding2D
class instance_norm(Layer):
def __init__(self, epsilon=1e-8):
super(instance_norm, self).__init__()
self.epsilon = epsilon
def build(self, input_shape):
self.beta = tf.Variable(tf.zeros([input_shape[3]]))
self.gamma = tf.Variable(tf.ones([input_shape[3]]))
def call(self, inputs):
mean, var = tf.nn.moments(inputs, axes=[1, 2], keepdims=True)
x = tf.divide(tf.subtract(inputs, mean), tf.sqrt(tf.add(var, self.epsilon)))
return self.gamma * x + self.beta
class ConvBlock(Layer):
def __init__(self, num_filters):
super(ConvBlock, self).__init__()
self.num_filters = num_filters
self.initializer = tf.random_normal_initializer(0., 0.02)
self.conv2D = Conv2D(filters=self.num_filters,
kernel_size=3,
strides=1,
padding='valid',
use_bias=False,
kernel_initializer=self.initializer)
self.instance_norm = instance_norm()
def call(self, x):
x = self.conv2D(x)
x = self.instance_norm(x)
x = LeakyReLU(alpha=0.2)(x)
return x
class Generator(Model):
def __init__(self, num_filters, name='Generator'):
super(Generator, self).__init__()
self.initializer = tf.random_normal_initializer(0., 0.02)
self.padding = ZeroPadding2D(5)
self.head = ConvBlock(num_filters)
self.convblock1 = ConvBlock(num_filters)
self.convblock2 = ConvBlock(num_filters)
self.convblock3 = ConvBlock(num_filters)
self.tail = Conv2D(filters=3,
kernel_size=3,
strides=1,
padding='valid',
activation='tanh',
kernel_initializer=self.initializer)
def call(self, prev, noise):
prev_pad = self.padding(prev)
noise_pad = self.padding(noise)
x = Add()([prev_pad, noise_pad])
x = self.head(x)
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
x = self.tail(x)
x = Add()([x, prev])
return x
class Discriminator(Model):
def __init__(self, num_filters, name='Discriminator'):
super(Discriminator, self).__init__()
self.initializer = tf.random_normal_initializer(0., 0.02)
self.head = ConvBlock(num_filters)
self.convblock1 = ConvBlock(num_filters)
self.convblock2 = ConvBlock(num_filters)
self.convblock3 = ConvBlock(num_filters)
self.tail = Conv2D(filters=1,
kernel_size=3,
strides=1,
padding='valid',
kernel_initializer=self.initializer)
def call(self, x):
x = self.head(x)
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
x = self.tail(x)
return x