name | topic | maintainer | version | source | |
---|---|---|---|---|---|
Distributions |
Probability Distributions |
Christophe Dutang, Patrice Kiener, Bruce J. Swihart |
2024-10-25 |
For most of the classical distributions, base R provides probability distribution functions (p), density functions (d), quantile functions (q), and random number generation (r). Beyond this basic functionality, many CRAN packages provide additional useful distributions. In particular, multivariate distributions as well as copulas are available in contributed packages.
The maintainers gratefully acknowledge Achim Zeileis, David Luethi, Tobias Verbeke, Robin Hankin, Mathias Kohl, G. Jay Kerns, Kjetil Halvorsen, William Asquith for their useful comments/suggestions. If you think information is not accurate or not complete, please send an e-mail to the maintainer or submit an issue or pull request in the GitHub repository linked above.
- Base functionality
- Discrete distributions
- Continuous distributions
- Other distributions
- Moments, skewness, kurtosis and etc
- Random number generators (RNG)
- Miscellaneous
- Bibliography
- Base R provides probability distribution functions
p
foo()
density functionsd
foo()
, quantile functionsq
foo()
, and random number generationr
foo()
where foo indicates the type of distribution: beta (foo =beta
), binomialbinom
, Cauchycauchy
, chi-squaredchisq
, exponentialexp
, Fisher Ff
, gammagamma
, geometricgeom
, hypergeometrichyper
, logisticlogis
, lognormallnorm
, negative binomialnbinom
, normalnorm
, Poissonpois
, Student tt
, uniformunif
, Weibullweibull
. Following the same naming scheme, but somewhat less standard are the following distributions in base R: probabilities of coincidences (also known as "birthday paradox")birthday
(only p and q), studentized range distributiontukey
(only p and q), Wilcoxon signed rank distributionsignrank
, Wilcoxon rank sum distributionwilcox
. - Base R provides various one-sample or two-sample tests for univariate
distributions, e.g.,
ks.test
,shapiro.test
,ansari.test
,chisq.test
,poisson.test
.r pkg("Ecume")
provides non-parametric two-sample (or k-sample) distribution comparisons in the univariate or multivariate case allowing observation weights and thresholds. - Probability generating function: no longer implemented.
Some packages may optionally provide the symbolic derivatives with respect
to the parameters for the probability functions.
For instance, the first and second derivatives of the log-density can be
of some help in estimation and inference tasks, and the derivatives of
the quantile function can help when inferring on a given quantile.
For that purpose, the following base R functions can be used
stats::D()
for derivatives w.r.t. a single parameter,
or stats::deriv()
for (partial) derivatives w.r.t. multiple parameters.
The r pkg("Deriv")
package provides a much more flexible
symbolic differentiation interface.
One can also use Stan Math library through r pkg("StanHeaders")
package,
see e.g.
this blog.
The r pkg("nieve")
package provides symbolic differentiation for
two probability distribution (Generalized Pareto and Generalized
Extreme Value) in order to compute the log-likelihood for example.
-
Beta-binomial distribution: provided in
r pkg("VGAM", priority = "core")
,r pkg("extraDistr")
,r pkg("rmutil")
,r pkg("emdbook")
. ZI/ZM beta binomial distributions are implemented inr pkg("gamlss.dist", priority = "core")
. For a continuous analog with d, p, q, r functions, seer pkg("cbbinom")
. -
Beta-geometric distribution: provided in
r pkg("VGAM")
. -
Binomial (including Bernoulli) distribution: provided in stats. Zero-modified, zero-inflated, truncated versions are provided in
r pkg("gamlss.dist")
,r pkg("extraDistr")
,r pkg("actuar", priority = "core")
and inr pkg("VGAM")
.r pkg("LaplacesDemon")
provides dedicated functions for the Bernoulli distribution.r pkg("rmutil")
provides the double binomial and the multiplicative binomial distributions.
Distribution name Packages Functions Distribution suffix binomial stats
d
,p
,q
,r
binom
zero-infl. binomial extraDistrd
,p
,q
,r
zib
zero-infl. binomial VGAMd
,p
,q
,r
zibinom
zero-infl. binomial gamlss.distd
,p
,q
,r
ZIBI
zero mod. binomial VGAMd
,p
,q
,r
zabinom
zero mod. binomial actuard
,p
,q
,r
zmbinom
zero mod. binomial gamlss.distd
,p
,q
,r
ZABI
zero trunc. binomial actuard
,p
,q
,r
ztbinom
trunc. binomial extraDistrd
,p
,q
,r
tbinom
: Summary for Binomial-related distributions
-
Bell Touchard distribution: standard and zero-inflated provided in
r pkg("countDM")
. -
Benford distribution: provided in
r pkg("VGAM")
andr pkg("BenfordTests")
. -
Bernoulli distribution: provided in
r pkg("extraDistr")
. -
Borel-Tanner distribution: provided in
r pkg("VGAM")
. -
Delaporte distribution: provided in
r pkg("gamlss.dist")
andr pkg("Delaporte")
. -
Dirac distribution: provided in
r pkg("distr", priority = "core")
. -
Discrete Burr-Hatke distribution:
r pkg("DiscreteDists")
provides d, p, q, r functions. -
Discrete categorical distribution: provided in
r pkg("LaplacesDemon")
. -
Discrete Cauchy (Cauchy-Cacoullos) distribution: provided in
r pkg("CCd")
. -
Discrete exponential distribution: provided in
r pkg("poweRlaw")
. A generalized version of the second type is inr pkg("DiscreteDists")
. -
Discrete gamma distribution: provided in
r pkg("extraDistr")
. -
Discrete inverted Kumaraswamy distribution:
r pkg("DiscreteDists")
provides d, p, q, r functions. -
Discrete inverse Weibull distribution:
r pkg("DiscreteInverseWeibull")
provides d, p, q, r functions for the inverse Weibull as well as hazard rate function and moments. -
Discrete Laplace distribution: The discrete Laplace distribution is provided in
r pkg("extraDistr")
(d, p, r). The skew discrete Laplace distribution has two parametrization (DSL and ADSL), both provided inr pkg("DiscreteLaplace")
and DSL inr pkg("disclap")
.r pkg("LaplacesDemon")
also provides the DSL parametrization only. -
Discrete Lindley distribution:
r pkg("DiscreteDists")
provides d, p, q, r functions. -
Discrete lognormal distribution: provided in
r pkg("poweRlaw")
. -
Discrete Marshall–Olkin Length Biased Exponential distribution:
r pkg("DiscreteDists")
provides d, p, q, r functions. -
Discrete normal distribution: provided in
r pkg("extraDistr")
. -
Discrete power law distribution: provided in
r pkg("poweRlaw")
. -
Discrete uniform distribution: can be easily obtained with the functions
sum,cumsum,sample
and is provided inr pkg("extraDistr")
. -
Discrete Weibull distribution: provided in
r pkg("DiscreteWeibull")
: d, p, q, r, m for disc. Weib. type 1, d, p, q, r, m, h for disc. Weib. type 3.r pkg("extraDistr")
provides d, p, q, r for Type 1. -
Felix distribution: provided in
r pkg("VGAM")
. -
gamma count distribution: provided in
r pkg("rmutil")
. -
Geometric distribution: provided in stats . Zero-modified, zero-inflated, truncated versions are provided in
r pkg("gamlss.dist")
,r pkg("actuar")
and inr pkg("VGAM")
. The time-varying geometric is provided inr pkg("tvgeom")
. -
Geometric (compound) Poisson distribution (also known Polya-Aeppli distribution): provided in
r pkg("polyaAeppli")
. Uniform-geometric distribution provided inr pkg("new.dist")
. -
Generalized/fractional binomial distribution:
r pkg("GenBinomApps")
provides the generalized binomial distribution.r pkg("frbinom")
provides the fractional binomial distribution where trials are from a generlized Bernoulli process. -
Generalized Geometric distribution: provided in
r pkg("DiscreteDists")
. -
Generalized Hermite distribution: provided in
r pkg("hermite")
. -
Good distribution: provided in
r pkg("good")
. -
Hyper-Poisson distribution: provided in
r pkg("DiscreteDists")
. -
Hypergeometric distribution: provided in stats . Non-central hypergeometric distribution is provided in
r pkg("MCMCpack")
(d,r). Extended hypergeometric distribution can be found inr pkg("BiasedUrn")
package, which provides not only p, d, q, r functions but also mean, variance, mode functions. Generalized hypergeometric distribution is implemented inr pkg("SuppDists")
. Negative hypergeometric distribution is provided inr pkg("tolerance")
,r pkg("extraDistr")
. -
Lagrangian Poisson distribution:
r pkg("RMKdiscrete")
provides d, p, q, r functions for the univariate and the bivariate Lagrangian Poisson distribution. -
Lindley's power series distribution: provided in
r pkg("LindleyPowerSeries")
and inr pkg("new.dist")
. -
Logarithmic distribution: This can be found in
r pkg("extraDistr")
,r pkg("VGAM")
,r pkg("actuar")
, andr pkg("gamlss.dist")
. Zero-modified and zero-truncated versions is provided inr pkg("actuar")
. A fast random generator is available for the logarithmic distribution is implemented inr pkg("Runuran")
as well as the 'density' function. -
Poisson distribution: provided in stats and in
r pkg("poweRlaw")
. Zero-modified, zero-inflated, truncated versions are provided inr pkg("extraDistr")
,r pkg("gamlss.dist")
,r pkg("actuar")
and inr pkg("VGAM")
.r pkg("extraDistr")
provides the truncated Poisson distribution.r pkg("LaplacesDemon")
provides the generalized Poisson distribution.r pkg("rmutil")
provides the double Poisson, the multiplicative Poisson and the Power variance function Poisson distributions.r pkg("poibin")
andr pkg("PoissonBinomial")
provide the Poisson binomial distribution. See the mixture section such as the Poisson-lognormal mixture. -
Poisson-Lindley distribution: provided in
r pkg("tolerance")
. -
Power law distribution: provided in
r pkg("poweRlaw")
. -
Mana Clash distribution: provided in
r pkg("RMKdiscrete")
. -
Negative binomial distribution: provided in stats . Zero-modified, zero-inflated, truncated versions are provided in
r pkg("gamlss.dist")
,r pkg("extraDistr")
,r pkg("emdbook")
,r pkg("actuar")
and inr pkg("VGAM")
. New parametrization of the negative binomial distribution is available inr pkg("RMKdiscrete")
.r pkg("nbconv")
provides p, q, r functions for convolutions of negative binomial distributions. -
Sichel distribution: provided in
r pkg("gamlss.dist")
. -
Skellam distribution: provided in
r pkg("extraDistr")
,r pkg("VGAM")
andr pkg("skellam")
. -
Waring distribution:
r pkg("degreenet")
provides a random generator,r pkg("cpd")
provides d, p, q, r functions for extended biparametric Waring. -
Yule-Simon distribution: provided in
r pkg("VGAM")
and sampling inr pkg("degreenet")
. -
Zeta and Haight's Zeta distribution: provided in
r pkg("VGAM")
,r pkg("tolerance")
. -
Zipf distribution and extensions: d, p, q, r functions of the Zipf and the Zipf-Mandelbrot distributions are provided in
r pkg("tolerance")
,r pkg("VGAM")
. Packager pkg("zipfR")
provides tools for distribution of word frequency, such as the Zipf distribution.r pkg("zipfextR")
provides three extensions of the Zipf distribution: the Marshall-Olkin Extended Zipf, the Zipf-Poisson Extreme and the Zipf-Poisson Stopped Sum distributions.
- Hyper Dirichlet distribution: provided in
r pkg("hyper2")
package. - Multinomial distribution: stats,
r pkg("mc2d")
,r pkg("extraDistr")
packages provide d, r functions. r is provided inr pkg("MultiRNG")
andr pkg("compositions")
. p function is provided byr pkg("pmultinom")
. - Multinomial Dirichlet distribution: functions d, r are provided in
r pkg("MCMCpack")
,r pkg("mc2d")
,r pkg("dirmult")
,r pkg("extraDistr")
andr pkg("bayesm")
. r is provided inr pkg("MultiRNG")
. - Multivariate Ewens distribution: not yet implemented?
- Multivariate geometric: d, r functions provided in
r pkg("bivgeom")
for the bivariate geometric distribution.r pkg("BivGeo")
provides the Basu-Dhar bivariate geometric distribution. - Multivariate hypergeometric distribution: provided in
r pkg("extraDistr")
. The conditional hypergeometric distribution is provided (d, p, q, r) inr pkg("chyper")
. - Multivariate logarithmic distribution: the bivariate
logarithmic distribution is provided in
r pkg("trawl")
. - Multiplicative multinomial distribution: The multiplicative multinomial
distribution is implemented in
r pkg("MM")
. - Multivariate negative distribution: A bivariate distribution with
negative-binomial marginals is available in
r pkg("RMKdiscrete")
andr pkg("trawl")
.r pkg("MNB")
provides a generator and diagnostic tool for multivariate negative binomial distribution.
r pkg("bzinb")
provides a random generator for the bivariate negative binomial (classic and zero-inflated) distribution. - Multivariate Poisson distribution:
r pkg("compositions")
provides a random generator.r pkg("bzinb")
provides a random generator for the bivariate Poisson (classic and zero-inflated) distribution. - Multivariate Poisson-lognormal: the bivariate
Poisson-lognormal distribution is provided in
r pkg("poilog")
. - Multivariate Dirichlet (also known as Polya) distribution:
functions d, r of the Dirichlet distribution are
provided in
r pkg("extraDistr")
,r pkg("LaplacesDemon")
,r pkg("DirichletReg")
andr pkg("Compositional")
. The flexible Dirichlet distribution is given inr pkg("FlexDir")
. - Truncated Stick-Breaking distribution: provided in
r pkg("LaplacesDemon")
.
-
Arcsine distribution: implemented in package
r pkg("distr")
. -
Argus distribution: implemented in package
r pkg("argus")
. -
Beta distribution and its extensions: Base R provides the d, p, q, r functions for this distribution (see above).
r pkg("extraDistr")
provides the beta distribution parametrized by the mean and the precision.r pkg("actuar")
provides moments and limited expected values.r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for doubly non central beta distribution for computing d, p, q, r functions.r pkg("extraDistr")
provides the four-parameter beta with lower and upper bounds. The generalized beta of the first kind (GB1) (exponentiation of beta 1) is provided inr pkg("gamlss.dist")
,r pkg("mbbefd")
,r pkg("actuar")
.r pkg("betafunctions")
provides the four-parameter beta (that is with location and scale parameters), the beta parametrized by the mean and the variance as well as the beta compound beta distribution. The beta prime (or beta of the second kind), which is the distribution of X/(1-X) when X follows a beta distribution of the first kind, is provided inr pkg("VGAM")
,r pkg("extraDistr")
,r pkg("LaplacesDemon")
andr pkg("mc2d")
. The zero and one inflated beta distribution can be found inr pkg("gamlss.dist")
. The generalized beta of the second kind (GB2) is provided inr pkg("gamlss.dist")
,r pkg("GB2")
. Several special cases of the generalized beta distribution are also implemented inr pkg("VGAM")
,r pkg("mc2d")
: Lomax, inverse Lomax, Dagum, Singh-Maddala, Pert distributions.r pkg("actuar")
provides the Feller-Pareto distribution with special cases Burr, log-logistic, paralogistic, generalized Pareto, Pareto, see also the Pareto subsection.
Distribution name Packages Functions Distribution suffix Beta (1st kind) stats d, p, q, r
beta
Beta actuar m, mgf, levbeta
Beta betafunctions d, p, q, rBeta.4P
Doubly non central beta sadists d, p, q, rnbeta
4-param beta extraDistr d, p, q, rnsbeta
zero-infl beta gamlss.dist d, p, q, rBEZI
one-infl beta gamlss.dist d, p, q, rBEOI
one-infl beta mbbefd d, p, q, r, m, ecoibeta
GB1 gamlss.dist d, p, q, rGB1
GB1 mbbefd d, p, q, r, m, ecgbeta
GB1 actuar d, p, q, r, m, levgenbeta
one-infl GB1 mbbefd d, p, q, r, m, ecoigbeta
: Summary for Beta-related distributions
Distribution name Packages Functions Distribution suffix Beta (2nd kind) VGAM d, p, q, r
beta
Beta (2nd kind) extraDistr d, p, q, rinvbeta
Beta (2nd kind) LaplacesDemon d, rbetapr
GB2 VGAM d, p, q, rgenbetaII
GB2 gamlss.dist d, p, q, rGB2
GB2 GB2 d, p, q, rgb2
Trans beta 2 actuar d, p, q, r, m, levtrbeta
: Summary for Beta-2-related distributions
-
Bell-G distribution:
r pkg("BGFD")
provides d, p, q, r functions for Bell exponential, Bell extended exponential, Bell Weibull, Bell extended Weibull, Bell-Fisk, Bell-Lomax, Bell Burr-XII, Bell Burr-X, complementary Bell exponential, complementary Bell extended exponential, complementary Bell Weibull, complementary Bell extended Weibull, complementary Bell-Fisk, complementary Bell-Lomax, complementary Bell Burr-XII and complementary Bell Burr-X distribution.
The package also provides hazard function and an estimation procedure. -
Benini distribution: provided in
r pkg("VGAM")
. -
Bezier-Montenegro-Torres distribution: provided in
r pkg("BMT")
. -
Bhattacharjee (normal+uniform) distribution: provided in package
r pkg("extraDistr")
. -
Birnbaum-Saunders distribution: provided in
r pkg("bsgof")
,r pkg("extraDistr")
,r pkg("VGAM")
. -
Bridge distribution: provided in
r pkg("bridgedist")
, as detailed in Wang and Louis (2003). The distribution of random intercept that allows a marginalized random intercept logistic regression to also be logistic regression. -
Box Cox distribution:
r pkg("gamlss.dist")
provides the Box-Cox normal, the Box-Cox power exponential and the Box-Cox t distributions.r pkg("rmutil")
provides the Box-Cox normal. -
Burr distribution: see Pareto.
-
Cardioid distribution: provided in
r pkg("VGAM")
(d,p,q,r) andr pkg("CircStats")
,r pkg("circular")
(d,r). -
Carthwrite's Power-of-Cosine distribution: provided in
r pkg("circular")
(d,r). -
Cauchy distribution: Base R provides the d, p, q, r functions for this distribution (see above). Other implementations are available in
r pkg("lmomco", priority = "core")
andr pkg("sgt")
. The skew Cauchy distribution is provided inr pkg("sn")
.r pkg("LaplacesDemon")
provides d, p, q, r functions for the Half-Cauchy distribution. The wrapped Cauchy distribution is provided inr pkg("CircStats")
. -
Chen distribution: a special case of the Extended Chen-Poisson Lifetime Distribution as found in
r pkg("ecpdist")
. -
Chernoff distribution:
r pkg("ChernoffDist")
provides d, p, q functions of the distribution of the maximizer of the two-sided Brownian motion minus quadratic drift, known as Chernoff's distribution. -
Chi(-squared or not) distribution: Base R provides the d, p, q, r functions for the chi-squared distribution, both central and non-central (see above). Moments, limited expected values and the moment generating function are provided in
r pkg("actuar")
.r pkg("extraDistr")
provides d, p, q, r functions for inverse chi-squared distribution (standard and scaled). Only d,r functions are available for the inverse chi-squared distribution in packager pkg("LaplacesDemon")
. A fast random generator is available for the Chi distribution is implemented inr pkg("Runuran")
as well as the density function. The non-central Chi distribution is not yet implemented. The chi-bar-squared distribution is implemented inr pkg("emdbook")
.r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for sums of non central chi-squared raised to powers distribution and sums of log of non central chi-squared for computing d, p, q, r functions.
Distribution name Packages Functions Distribution suffix Chi-squared stats d, p, q, r
chisq
Chi-squared actuar m, mgf, levchisq
Chi-squared Runuran d, rchisq
Chi-bar-squared emdbook d, p, q, rchibarsq
Chi Runuran d, rchi
Inverse Chi-squared extraDistr d, p, q, rinvchisq
Scaled Inverse Chi-squared extraDistr d, p, q, rinvchisq
Sum of power Chi-squared sadists d, p, q, rsumchisqpow
Sum of log Chi-squared sadists d, p, q, rsumlogchisq
: Summary for Chi-related distributions
-
Circular distribution: uniform circular provided in
r pkg("circular")
(d,r); Generalized von Mises circular provided inr pkg("circular")
(d). -
Consul distribution: see
r pkg("rmutil")
. -
Continuous binomial distribution:
r pkg("cbinom")
provides the d/p/q/r functions for a continuous analog to the standard discrete binomial with continuous size parameter and continuous support with x in [0, size + 1]. -
Dagum distribution: see beta. the power log Dagum provided in
r pkg("new.dist")
. -
Davies distribution: The Davies distribution is provided in
r pkg("Davies")
package. -
(non-central) Dunnett's test distribution: no longer provided.
-
Eta-mu distribution: provided in
r pkg("lmomco")
.r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for doubly non central eta distribution for computing d, p, q, r functions. -
Exponential distribution and its extensions: Base R provides the d, p, q, r functions for this distribution (see above).
r pkg("actuar")
provides additional functions such as the moment generating function, moments and limited expected values. It also has the d, p, q, r for the inverse exponential distribution. The shifted (or two-parameter exponential) and the truncated exponential distributions are implemented inr pkg("lmomco")
andr pkg("tolerance")
packages with d, p, q, r functions. Exponential Power distribution is also known as General Error Distribution: d, p, q, r functions for the power and the skew power exponential type 1-4 distributions are implemented inr pkg("gamlss.dist")
andr pkg("lmomco")
. The power exponential distribution is also provided inr pkg("normalp")
,r pkg("rmutil")
,r pkg("LaplacesDemon")
. The skew power exponential is providedr pkg("mixSPE")
. A fast random generator is available for the power Exponential distribution is implemented inr pkg("Runuran")
as well as the density function.r pkg("AEP")
implements the Asymmetric Exponential Power Distribution.
Distribution name Packages Functions Distribution suffix Exponential stats d, p, q, r
exp
Exponential actuar m, mgf, levexp
Exponential gamlss.dist d, p, q, rEXP
Exponential poweRlaw d, p, q, rexp
Inverse exponential actuar d, p, q, r, m, levinvexp
Shifted exponential lmomco d, p, q, r, lm, tlmrexp
Shifted exponential tolerance d, p, q, r2exp
Truncated exponential lmomco d, p, q, r, lm, tlmrtexp
Truncated exponential ReIns d, p, q, rtexp
Power exponential normalp d, p, q, rnormp
Power exponential Runuran d, rexp
Power exponential rmutil d, rpowexp
Power exponential LaplacesDemon d, p, q, rpe
Skew power exp. lmomco d, p, q, r, lm, tlmraep4
Power and skew power exp. mixSPE rpe, spe
Power and skew power exp. gamlss.dist d, p, q, rPE, SEP
: Summary for exponential-related distributions
-
Externally studentized midrange distribution: Package
r pkg("SMR")
computes the studentized midrange distribution (d, p, q, r). -
Fisher-Snedecor (or F) distribution: Base R provides the d, p, q, r functions for the F distribution, possibly with a non-central parameter.
r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for doubly non central Fisher distribution (and product of multiple doubly non central Fisher distribution) for computing d, p, q, r functions.r pkg("flexsurv")
provides d, p, q, r functions as well as hazard (h) and integrated hazard rate (i) functions for the generalized F distribution.r pkg("fpow")
returns the noncentrality parameter of the noncentral F distribution if probability of type I and type II error, degrees of freedom of the numerator and the denominator are given. -
Frechet distribution: provided in
r pkg("VGAM")
,r pkg("RTDE")
,r pkg("ReIns")
,r pkg("extraDistr")
,r pkg("distributionsrd")
andr pkg("evd")
. A fast random generator is available for the Frechet distribution is implemented inr pkg("Runuran")
as well as the density function. The truncated Frechet distribution is provided inr pkg("ReIns")
. -
Friedman's Chi distribution: provided in
r pkg("SuppDists")
. -
Gamma distribution and its extensions: Base R provides the d, p, q, r functions for this distribution (see above).
r pkg("EnvStats")
provides d, p, q, r functions of the gamma parametrized by the mean and the coefficient of variation.r pkg("actuar")
provides d, p, q, r functions of the inverse, the inverse transformed and the log gamma distributions whiler pkg("ghyp")
provides those functions for the variance gamma distribution.r pkg("extraDistr")
andr pkg("LaplacesDemon")
provide the inverse gamma distribution.r pkg("CaDENCE")
provides the zero-inflated gamma distribution.r pkg("VarianceGamma")
provides d, p, q, r functions for the variance gamma distribution as well as moments (skewness, kurtosis, ...).r pkg("VGAM")
,r pkg("ggamma")
provide d, p, q, r functions of the log gamma and the generalized gamma distribution. The generalized gamma distribution can also be found inr pkg("gamlss.dist")
. See Pearson III for a three-parameter gamma distribution with a location parameter.r pkg("flexsurv")
provides d, p, q, r functions as well as hazard (h) and integrated hazard rate (i) functions for the generalized gamma distribution.r pkg("coga")
provides d, p, r functions for a sum of independent but not identically distributed gamma distributions.r pkg("MCMCpack")
provides d, r functions of the Inverse Gamma.r pkg("rmutil")
provides the generalized Gamma.r pkg("distTails")
provides the full-tail gamma distributionr pkg("sglg")
provides the generalized log-Gamma along with various functions to fit semi-parametric regression models.r pkg("ollggamma")
provides d, p, q, r for the Odd Log-Logistic Generalized Gamma.
Distribution name Packages Functions Distribution suffix Gamma stats d, p, q, r
gamma
Gamma actuar m, mgf, levgamma
Gamma EnvStats d, p, q, rgammaAlt
zero-inflated Gamma CaDENCE d, p, q, rbgamma
Inverse gamma actuar d, p, q, r, m, lev, mgfinvgamma
Inverse gamma extraDistr d, p, q, rinvgamma
Inverse gamma LaplacesDemon d, rinvgamma
Inverse gamma MCMCpack d, rinvgamma
Log-gamma actuar d, p, q, r, m, levlgamma
Log-gamma VGAM d, p, q, rlgamma
Variance gamma ghyp d, p, q, rVG
Variance gamma VarianceGamma d, p, q, r, mvg
Generalized gamma flexsurv d, p, q, r, h, igengamma
Generalized gamma gamlss.dist d, p, q, rGG
Generalized gamma VGAM d, p, q, rgengamma.stacy
Generalized gamma rmutil d, p, q, rggamma
Generalized gamma ggamma d, p, q, rggamma
convolution of gamma coga d, p, rcoga
Full-taill gamma distTails d, p, rdFTG
Generalized log-gamma sglg d, p, q, rglg
: Summary for gamma-related distributions
-
Pólya–Gamma distribution: r function random sampling routines for the distribution are provided by
r pkg("BayesLogit")
,r pkg("pg")
, andr pkg("pgdraw")
. -
Gaussian (or normal) distribution and its extensions: Base R provides the d, p, q, r functions for this distribution (see above).
r pkg("actuar")
provides the moment generating function and moments. Ther pkg("truncnorm")
package provides d, p, q, r functions for the truncated gaussian distribution as well as functions for the first two moments.r pkg("EnvStats")
provides d, p, q, r functions for the truncated normal distribution and the zero-modified distribution.r pkg("extraDistr")
provides the truncated normal.r pkg("LaplacesDemon")
provides d, p, q, r functions for the Half-normal distribution. The wrapped normal distribution is provided inr pkg("CircStats")
.r pkg("lmomco")
implements the generalized normal distribution. The Exponentially modified Gaussian is available inr pkg("emg")
,r pkg("gamlss.dist")
,r pkg("tsdistributions")
,r pkg("sn")
implements the skew normal distribution.r pkg("greybox")
implements the folded normal distribution.r pkg("VGAM")
implements the folded and the skewed normal distribution, andr pkg("csn")
provides d, r functions for the closed skew normal distribution.r pkg("NormalLaplace")
provides d, p, q, r functions for the sum of a normal and a Laplace random variables, whiler pkg("LaplacesDemon")
provides d, r functions of the sum of a normal and a Laplace random variables.r pkg("PSDistr")
provides d, p, q, r functions of transformations of the normal distribution, such as expnormal and sinh-normal distributions.
Distribution name Packages Functions Distribution suffix Normal stats d, p, q, r
norm
Normal actuar m, mgfnorm
Truncated normal truncnorm d, p, q, r, mtruncnorm
Truncated normal EnvStats d, p, q, rnormTrunc
Truncated normal extraDistr d, p, q, rtnorm
Truncated normal crch d, p, q, rcnorm
Generalized normal lmomco d, p, q, rgno
Zero modified Gaussian EnvStats d, p, q, rzmnorm
Exponentially modified Gaussian emg d, p, q, remg
Exponentially modified Gaussian gamlss.dist d, p, q, rexGAUSS
Folded and skew normal gamlss.dist d, p, q, rSN1, SN2
Folded normal greybox d, p, q, rfnorm
Closed skew normal csn d, p, q, rcsn
Skew normal sn d, p, q, rsn
Skew normal snorm d, p, q, rtsdistributions
: Summary for Gaussian-related distributions
-
General error distribution (also known as exponential power distribution): see exponential item.
-
Generalized extreme value distribution: d, p, q provided in
r pkg("lmomco")
; d, p, q, r, provided inr pkg("VGAM")
,r pkg("evd")
,r pkg("evir")
,r pkg("FAdist")
,r pkg("extraDistr")
,r pkg("EnvStats")
,r pkg("TLMoments")
,r pkg("rmutil")
,r pkg("QRM")
,r pkg("ROOPSD")
andr pkg("fExtremes")
.r pkg("revdbayes")
provide d, p, q, r functions of the GEV distribution in a Bayesian setting.r pkg("bgev")
provide d, p, q, r functions of the bimodal GEV distribution -
Gompertz distribution: provided in
r pkg("flexsurv")
,r pkg("extraDistr")
.r pkg("flexsurv")
also provides hazard (h) and integrated hazard rate (i) functions. The shifted Gompertz distribution is implemented inr pkg("extraDistr")
. The unit-Gompertz is provided inr pkg("ugomquantreg")
. -
Govindarajulu distribution: provided in
r pkg("lmomco")
. -
Gumbel distribution: provided in packages
r pkg("lmomco")
,r pkg("VGAM")
,r pkg("gamlss.dist")
,r pkg("FAdist")
,r pkg("extraDistr")
,r pkg("QRM")
,r pkg("TLMoments")
,r pkg("dgumbel")
,r pkg("EnvStats")
andr pkg("evd")
.r pkg("actuar")
provides the raw moments and the moment generating function (mgf) in addition to the d, p, q, r functions. A fast random generator is available for the Gumbel distribution is implemented inr pkg("Runuran")
as well as the density function. The reverse Gumbel distribution is implemented inr pkg("lmomco")
andr pkg("gamlss.dist")
.r pkg("bgumbel")
provides the bimodel Gumbel distribution. -
Hjorth distribution: provided in
r pkg("rmutil")
. -
Huber distribution: Huber's least favourable distribution provided in package
r pkg("smoothmest")
(d, r), and inr pkg("VGAM")
,r pkg("marg")
,r pkg("extraDistr")
(d, p, q, r). -
(generalized) G-and-K, G-and-H distributions:
r pkg("gk")
provides d, p, q, r functions for the g-and-k and generalized g-and-h distributions which are nonlinear transforms of the Gaussian variables. -
(generalized) Hyperbolic distribution:
r pkg("fBasics")
,r pkg("ghyp")
,r pkg("tsdistributions")
,r pkg("GeneralizedHyperbolic")
andr pkg("HyperbolicDist")
packages provide d, p, q, r functions for the generalized hyperbolic distribution.r pkg("QRM")
provides d, r functions for the generalized hyperbolic distribution.r pkg("SkewHyperbolic")
provides the skewed Hyperbolic Student t-Distribution.r pkg("fBasics")
also implements the standardized generalized Hyperbolic distribution. A fast random generator is available for the hyperbolic distribution is implemented inr pkg("Runuran")
as well as the density function. -
Hyperbolic sine distribution and extension:
r pkg("gamlss.dist")
provides the sinh and the asinh distributions. Generalized Power Hyperbolic sine distributions are provided inr pkg("FatTailsR")
. -
Inverse Gaussian (also known Wald) distribution: d, p, q, and r functions of the inverse Gaussian are provided in
r pkg("statmod")
,r pkg("extraDistr")
,r pkg("SuppDists")
,r pkg("rmutil")
.r pkg("LaplacesDemon")
provides d, r functions for the inverse Gaussian distribution.r pkg("actuar")
provides d, p, q, r, m, lev, mgf functions for the Inverse Gaussian distribution.r pkg("SuppDists")
also provides a function that returns moments, skewness, kurtosis.r pkg("fBasics")
the normal inverse Gaussian and standardized normal inverse Gaussian distributions.r pkg("tsdistributions")
provides the normal inverse Gaussian distribution. The generalized inverse gaussian (GIG) distribution can be found inr pkg("gamlss.dist")
,r pkg("ginormal")
,r pkg("HyperbolicDist")
,r pkg("QRM")
,r pkg("rmutil")
. The truncated GIG is also available inr pkg("ginormal")
. A random generator is available for the (generalized) Inverse Gaussian distribution is implemented inr pkg("Runuran")
as well as the density function.r pkg("GIGrvg")
generates random variables from the generalized inverse Gaussian distribution. Unit inverse Gaussian provided inr pkg("new.dist")
. -
Johnson distribution: provided in
r pkg("SuppDists")
,r pkg("ForestFit")
,r pkg("tsdistributions")
provides d, p of Johnson SB distribution. -
Jones and Pewsey distribution: provided in
r pkg("circular")
(d). -
K-prime distribution:
r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for K-prime distribution for computing d, p, q, r functions. -
Kappa distribution: A 4-parameter Kappa distribution is provided in
r pkg("lmomco")
andr pkg("FAdist")
. -
Kappa-mu distribution: provided in
r pkg("lmomco")
. -
Kato-Jones distribution: provided in
r pkg("circular")
(d, r). -
Kendall's tau distribution: provided in
r pkg("SuppDists")
. -
Kiener distribution: a family of distributions generalizing hyperbolic sine distributions (see hyperbolic sine section), d, p, q, r, m provided in
r pkg("FatTailsR")
. -
Kruskal Wallis distribution: provided in
r pkg("SuppDists")
. -
Kumaraswamy distribution: provided in packages
r pkg("VGAM")
,r pkg("extraDistr")
,r pkg("lmomco")
,r pkg("new.dist")
.r pkg("elfDistr")
provides the Kumaraswamy Complementary Weibull Geometric Probability Distribution. -
(Tukey) Lambda distribution and its extensions: The generalized Lambda distribution (GLD) is well known for its wide range of shapes. The original Tukey Lambda distribution can be obtained as a special case of the generalized Lambda distribution. There exists different parametrization of GLD in the literature: RS (Ramberg-Schmeiser or tail-index param), FMKL (Freimer-Mudholkar-Kollia-Lin), FM5 (Five-parameter version of FKML by Gilchrist), GPD (gen. Pareto dist.) and AS (Asymmetry-steepness). The following packages implement such distributions (with d, p, q, r functions):
r pkg("gld")
(RS, FKML, FM5, GPD),r pkg("Davies")
(RS),r pkg("gb")
(RS),r pkg("lmomco")
(FMKL),r pkg("extraDistr")
(original Tukey). -
Tukey's G/H distribution: provided in
r pkg("TukeyGH77")
, and Tukey's H distribution is provided as a special case of Lambert W x F distribution. -
Lambda-prime distribution:
r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for K-prime distribution for computing d, p, q, r functions. -
Lambert W x F distribution:
r pkg("LambertW")
package provides d, p, q, r functions as well as the first 4 central moments and a qqplot. -
Laplace (also called double exponential distribution) and asymmetric Laplace distribution: provided in
r pkg("distr")
,r pkg("lmomco")
,r pkg("LaplacesDemon")
,r pkg("L1pack")
,r pkg("VGAM")
,r pkg("sgt")
,r pkg("extraDistr")
,r pkg("greybox")
,r pkg("rmutil")
andr pkg("HyperbolicDist")
packages.r pkg("LaplacesDemon")
provides the Laplace distribution parametrized by the precision parameter as well as the skew Laplace distribution. Asymetric Laplace distribution is implemented inr pkg("ald")
,r pkg("greybox")
. A fast random generator is available for the Laplace distribution is implemented inr pkg("Runuran")
as well as the density function.r pkg("smoothmest")
implements the density and the random generator. The skew Laplace distribution is available inr pkg("sgt")
.r pkg("LaplacesDemon")
provides the log-Laplace distribution. -
LASSO distribution: provided in
r pkg("LaplacesDemon")
. -
Lévy distribution: provided in
r pkg("rmutil")
. -
Lindley distribution: provided in
r pkg("VGAM")
,r pkg("gambin")
,r pkg("new.dist")
. -
Linear failure rate distribution: no longer implemented.
-
Loglog distribution: no longer implemented.
-
Lomax distribution: see beta.
-
Logistic distribution and its extensions: Base R provides the d, p, q, r functions for this distribution (see above).
r pkg("actuar")
andr pkg("VGAM")
provide d, p, q, r functions for the log-logistic (also called Fisk), the paralogistic and the inverse paralogistic distributions.r pkg("FAdist")
the log-logistic distribution with two and three parameters.r pkg("llogistic")
provides the log-logistic parametrized by the median.r pkg("trdist")
provides the log-logistic distribution. The generalized logistic distribution (Type I, also known as skew-logistic distribution) is provided inr pkg("lmomco")
,r pkg("sld")
,r pkg("rmutil")
,r pkg("SCI")
andr pkg("glogis")
.r pkg("GTDL")
implements generalized Time-Dependent Logistic distribution.
Distribution name Packages Functions Distribution suffix Logistic stats d, p, q, r
logis
Logistic actuar m, mgflogis
Log logistic actuar d, p, q, r, m, levllogis
Log logistic VGAM d, p, q, rfisk
Log logistic FAdist d, p, q, rllog, llog3
Paralogistic actuar d, p, q, r, m, levparalogis
Paralogistic VGAM d, p, q, rparalogistic
Inv. paralogistic actuar d, p, q, r, m, levinvparalogis
Inv. paralogistic VGAM d, p, q, rinv.paralogistic
Truncated logistic crch d, p, q, rtlogis
Generalized logistic glogis d, p, q, rglogis
Generalized logistic SCI d, p, qgenlog
Generalized logistic lmomco d, p, q, rglo
Generalized logistic sld d, p, q, rsl
Generalized logistic rmutil d, p, q, rglogis
: Summary for Logistic-related distributions
-
Logit-normal distribution: provided in
r pkg("logitnorm")
. -
Log-normal distribution and its extensions: The log normal distribution is implemented in Base R (see above) and
r pkg("poweRlaw")
. The log normal distribution parametrized by its mean and its coefficient of variation is also provided inr pkg("EnvStats")
.r pkg("LaplacesDemon")
provides the lognormal parametrized by the precision parameter. The truncated lognormal distribution is provided inr pkg("EnvStats")
with two possible parametrizations as well as inr pkg("ReIns")
. The 3-parameter lognormal distribution is available inr pkg("lmomco")
,r pkg("greybox")
,r pkg("TLMoments")
,r pkg("EnvStats")
andr pkg("FAdist")
. The packager pkg("loglognorm")
implements d, p, q, r functions for the double lognormal distribution, as well as the raw moment, the expected value and the variance functions.r pkg("EnvStats")
provides d, p, q, r functions for the zero-modified lognormal distribution with two possible parametrizations.r pkg("distributionsrd")
provides the double Pareto-lognormal distribution, the left Pareto-lognormal distribution, the truncated lognormal distribution. -
Makeham distribution: provided in
r pkg("VGAM")
. -
Maxwell distribution: provided in
r pkg("VGAM")
,r pkg("new.dist")
. -
Minimax distribution: provided in
r pkg("minimax")
. -
Mittag-Leffler distribution: d, p, q, r functions provided in
r pkg("MittagLeffleR")
. -
Muth distribution: provided in
r pkg("new.dist")
. -
Nakagami distribution: provided in
r pkg("VGAM")
. -
Neutrosophic: provided in
r pkg("ntsDists")
. -
Pareto distribution: d, p, q, r functions are implemented in
r pkg("VGAM")
for the Pareto distribution type IV (which includes Burr's distribution, Pareto type III, Pareto type II (also called the lomax distribution) and Pareto type I) and the (upper/lower) truncated Pareto distribution. In an actuarial context,r pkg("actuar")
provides d, p, q, r functions as well as moments and limited expected values for the Pareto I and II, the inverse Pareto, the 'generalized pareto' distributions, the Burr and the inverse Burr distributions, all special cases of the transformed beta II distribution. A fast random generator for the Burr and the Pareto II distribution is implemented inr pkg("Runuran")
as well as the density.r pkg("EnvStats")
andr pkg("LaplacesDemon")
provides d, p, q, r functions for Pareto I distribution.r pkg("extremefit")
provides the Burr, the Pareto II, mixture of Pareto I distributions and a composite distribution of two Pareto I distributions.r pkg("lmomco")
,r pkg("evd")
,r pkg("fExtremes")
,r pkg("extraDistr")
,r pkg("QRM")
,r pkg("Renext")
,r pkg("revdbayes")
,r pkg("FAdist")
,r pkg("LaplacesDemon")
,r pkg("TLMoments")
r pkg("qrmtools")
andr pkg("evir")
packages implement the Generalized Pareto Distribution (from Extreme Value Theory), which is depending the shape parameter's value a Pareto II distribution, a shifted exponential distribution or a generalized beta I distribution.r pkg("ParetoPosStable")
implements the Pareto positive stable distribution. The extended Pareto distribution is implemented inr pkg("RTDE")
and the shifted truncated (to unit interval) Pareto is implemented inr pkg("mbbefd")
.r pkg("ReIns")
provides Burr, extended Pareto, generalized Pareto, Pareto 1 distributions and their truncated version.r pkg("CaDENCE")
provides the Pareto 2 and the zero-inflated Pareto 2 distribution.r pkg("Pareto")
provides the Pareto 1, piecewise Pareto and the generalized Pareto (from actuarial theory). The gamma-Lomax distribution is provided inr pkg("new.dist")
.
Distribution name Packages Functions Distribution suffix Pareto I VGAM d, p, q, r
paretoI
Pareto I actuar d, p, q, r, m, levpareto1
Pareto I EnvStats d, p, q, rpareto
Pareto I extraDistr d, p, q, rpareto
Pareto I ReIns d, p, q, rpareto
Pareto I LaplacesDemon d, p, q, rpareto
Pareto I distributionsrd d, p, q, rpareto
Pareto I Pareto d, p, q, rPareto
Trunc. Pareto I ReIns d, p, q, rtpareto
Pareto II VGAM d, p, q, rparetoII
Pareto II actuar d, p, q, r, m, levpareto, pareto2
Pareto II Runuran d, rpareto
Pareto II extraDistr d, p, q, hlomax
Pareto II extremefit d, p, q, hpareto
Pareto II Renext d, p, q, rlomax
Pareto II rmutil d, p, q, rpareto
Pareto II CaDENCE d, p, q, rpareto2
zero-inflated Pareto II CaDENCE d, p, q, rbpareto2
Pareto III VGAM d, p, q, rparetoIII
Pareto III actuar d, p, q, rpareto3
Pareto IV VGAM d, p, q, rparetoIV
Pareto IV actuar d, p, q, rpareto4
Inverse Pareto actuar d, p, q, r, m, levinvpareto
Inverse Pareto distributionsrd d, p, q, r, m, levinvpareto
Extended Pareto RTDE d, p, q, rEPD
Extended Pareto ReIns d, p, q, repd
Shift. trunc. Pareto mbbefd d, p, q, r, m, ecstpareto
Gen. Pareto (actuarial) actuar d, p, q, r, m, levgenpareto
Gen. Pareto (actuarial) Pareto d, p, q, rGenPareto
Gen. Pareto (EVT) lmomco d, p, q, rgpa
Gen. Pareto (EVT) evd d, p, q, rgpd
Gen. Pareto (EVT) fExtremes d, p, q, rgpd
Gen. Pareto (EVT) evir d, p, q, rgpd
Gen. Pareto (EVT) extraDistr d, p, q, rgpd
Gen. Pareto (EVT) QRM d, p, q, rGPD
Gen. Pareto (EVT) ReIns d, p, q, rgpd
Gen. Pareto (EVT) LaplacesDemon d, rgpd
Gen. Pareto (EVT) TLMoments d, p, q, rgpd
Trunc. Gen. Pareto (EVT) ReIns d, p, q, rtgpd
Gen. Pareto (EVT) revdbayes d, p, q, rgp
Gen. Pareto (EVT) Renext d, p, q, rGPD
Gen. Pareto (EVT) qrmtools d, p, q, rGPD
Gen. Pareto (EVT) ROOPSD d, p, q, rgpd
Feller-Pareto actuar d, p, q, r, m, levfpareto
Burr actuar d, p, q, r, m, levburr
Burr extremefit d, p, q, rburr
Burr ReIns d, p, q, rburr
Burr rmutil d, p, q, rburr
Trunc. Burr ReIns d, p, q, rtburr
Inverse Burr actuar d, p, q, r, m, levinvburr
: Summary for Pareto-related distributions
-
Pearson's distribution: Pearson type III available in
r pkg("lmomco")
andr pkg("FAdist")
. A log-Pearson type III distribution is also available inr pkg("FAdist")
.r pkg("PearsonDS", priority = "core")
provides the d, p, q, r functions as well as the first four moments for the Pearson distributions: types I, II, III, IV, V, VI, VII.r pkg("cpd")
provides d, p, q, r for complex bi/triparametric Pearson distributions. -
Pearson's Rho distribution: provided in
r pkg("SuppDists")
. -
Perks distribution: provided in
r pkg("VGAM")
. -
Planck's distribution: a random generator is available in
r pkg("Runuran")
. -
Phase-type distribution: provided in
r pkg("actuar")
,r pkg("mapfit")
,r pkg("matrixdist")
,r pkg("PhaseTypeR")
. -
Power distribution:
r
r pkg("poweRlaw")implement the exponential power distribution. Two-sided power distribution provided in
r pkg("rmutil")`. -
Proportion distribution: this is the distribution for the difference between two independent beta distributions. d, p, q, r functions in
r pkg("tolerance")
. -
Omega distribution: provided in
r pkg("new.dist")
. -
Quadratic forms and their ratios:
r pkg("CompQuadForm")
provides several exact and approximate methods to evaluate the distribution function of quadratic forms in normal variables.r pkg("Qapprox")
provides fast approximations for the distribution function in nonnegative definite cases.r pkg("QF")
provides d, p, q, r for nonnegative definite quadratic forms in normal variables and their ratios where the numerator and denominator are independent, as well as p for ratios of central quadratic forms in the same normal variables.r pkg("qfratio")
provides d, p, q, r for the distribution of ratios of potentially noncentral quadratic forms in the same normal variables, as well as moment. -
Rayleigh distribution: provided in packages
r pkg("VGAM")
,r pkg("extraDistr")
andr pkg("lmomco")
. The slashed generalized Rayleigh distribution provided inr pkg("new.dist")
. The two-parameter Rayleigh provided inr pkg("new.dist")
. -
Ram Awadh: provided in
r pkg("new.dist")
. -
Response time distribution:
r pkg("rtdists")
provides d, p, q, r functions for the (Ratcliff) diffusion distribution and for the linear ballistic accumulator (LBA) with different underlying drift-distributions (Normal, Gamma, Frechet, and log-normal). -
Rice distribution: provided in
r pkg("VGAM")
andr pkg("lmomco")
. -
Simplex distribution: provided in
r pkg("rmutil")
. -
Singh-Maddala distribution: see beta.
-
Slash distribution: provided in
r pkg("lmomco")
,r pkg("extraDistr")
andr pkg("VGAM")
. -
Spearman's Rho distribution: provided in
r pkg("SuppDists")
. -
Stable distribution: d, p, q, r functions are available in
r pkg("fBasics")
andr pkg("stabledist")
, the functions use the approach of J.P. Nolan for general stable distributions.r pkg("stable")
(d, p, q, r, h) is also used for general stable and uses a modified Buck parametrization.r pkg("MixedTS")
provides mixed tempered stable distribution (d, p, q, r).r pkg("FMStable")
provides (d, p, q) the extremal or maximally skew stable and the finite moment log stable distributions.r pkg("SymTS")
provides d, p, q, r functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.r pkg("TempStable")
provides d, p, q, r functions for tempered stable distributions.r pkg("libstable4u")
provides d, p, q, r functions for skew stable distributions.r pkg("dstabledist")
provides d, p, r functions for skew stable distributions.r pkg("StableEstim")
provides fitting functions, characteristic functions, and simulation capabilities for 4-parameter stable distributions. -
Student distribution and its extensions: Base R provides the d, p, q, r functions for Student and non central Student distribution (see above).
r pkg("extraDistr")
andr pkg("LaplacesDemon")
provides the Student distribution with location and scale parameters.r pkg("LaplacesDemon")
provides d, p, q, r functions for the Half-Student distribution.r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for doubly non central Student distribution for computing d, p, q, r functions. The skewed Student distribution is provided inr pkg("skewt")
,r pkg("sn")
,r pkg("tsdistributions")
andr pkg("gamlss.dist")
packages. The generalized skew distribution is provided inr pkg("sgt")
. d, p, q, r functions for the generalized t-distribution can be found inr pkg("gamlss.dist")
.r pkg("fBasics")
provides d, p, q, r functions for the skew and the generalized hyperbolic t-distribution. The L-moments of the Student t (3-parameter) are provided inr pkg("lmomco")
.r pkg("crch")
provides d, p, q, r functions for the truncated student distribution.
Distribution name Packages Functions Distribution suffix Student stats d, p, q, r
t
Student with loc. and scal. extraDistr d, p, q, rlst
Student with loc. and scal. LaplacesDemon d, p, q, rst
Doubly non central St. sadists d, p, q, rdnt
Skew Student skewt d, p, q, rskt
Skew Student sn d, p, q, rst
Skew St. Type 1-5 gamlss.dist d, p, q, rST1, ST2, ST3, ST4, ST5
Gen. Student gamlss.dist d, p, q, rGT
Gen. Hyp. Student fBasics d, p, q, rght
Skew Gen. Student sgt d, p, q, rsgt
: Summary for Student-related distributions
-
Topp-Leone Cauchy Rayleigh (TLCAR) distribution: provided in
r pkg("TLCAR")
(d, p, q, r). -
Triangle/trapezoidal distribution: packages
r pkg("triangle")
,r pkg("extraDistr")
,r pkg("mc2d")
,r pkg("EnvStats")
andr pkg("VGAM")
provide d, p, q, r functions for the triangle or triangular distribution, while the packager pkg("trapezoid")
provides d, p, q, r functions for the Generalized Trapezoidal Distribution.r pkg("CircStats")
,r pkg("circular")
provide d, r functions for triangular distribution. A fast random generator is available for the triangle distribution is implemented inr pkg("Runuran")
as well as the density function. -
Tsallis or q-Exponential distribution:
r pkg("tsallisqexp")
provides d, p, q, r functions for two parametrizations of the Tsallis distribution and also implements a left-censored version. -
Tweedie distribution: the Tweedie distribution is implemented in package
r pkg("tweedie")
. Let us note that the Tweedie distribution is not necessarily continuous, a special case of it is the Poisson distribution. -
Uniform distribution: d, p, q, r functions are of course provided in R. See section RNG for random number generation topics.
r pkg("KScorrect")
provides d, p, q, r functions for the log-uniform distribution. -
Upsilon distribution:
r pkg("sadists")
implements Gram Charlier, Edgeworth and Cornish-Fisher approximations for Upsilon distribution for computing d, p, q, r functions. -
Vasicek distribution:
r pkg("vasicek")
implements d, p, r functions.r pkg("vasicekreg")
implements d, p, q, r functions. -
von Mises distribution: The
r pkg("CircStats")
package provides d, p, r functions; ther pkg("circular")
package provides d, p, q, r functions.r pkg("rvMF")
package provides a fast random generator for von Mises Fisher distribution. -
Wakeby distribution: A 5-parameter Wakeby is provided in
r pkg("lmomco")
. -
Weibull distribution and its extensions: Base R provides the d, p, q, r functions for this distribution (see above). The inverse Weibull is provided in
r pkg("actuar")
package and also the moments and the limited expected value for both the raw and the inverse Weibull distribution.r pkg("FAdist")
implements the three-parameter Weibull distribution. Furthermore,r pkg("lmomco")
implements the Weibull distribution whiler pkg("evd")
implements the reverse Weibull distribution. The reverse generalized extreme value distribution are provided inr pkg("gamlss.dist")
(d, p, q, r) and the shifted left truncated Weibull distribution is provided inr pkg("Renext")
. The right truncated Weibull is provided inr pkg("ReIns")
. The generalized Weibull is provided inr pkg("rmutil")
. The tail Weibull is provided inr pkg("distTails")
.r pkg("CaDENCE")
provides the zero-inflated Weibull distribution. The bimodal Weibull distribution is provided inr pkg("new.dist")
. -
First-passage time of a Wiener process:
r pkg("WienR")
provides d, p functions of the first-passage time of a diffusion model.
- Bivariate Pareto:
r pkg("Bivariate.Pareto")
provides a random generator for the bivariate Pareto distribution. - Multivariate beta distribution:
r pkg("NonNorMvtDist")
provides d, p, q, r, s functions for inverted beta distribution. - Multivariate Burr distribution:
r pkg("NonNorMvtDist")
provides d, p, q, r, s functions. - Multivariate Cauchy distribution:
r pkg("sn")
provide d, p, r functions for the multivariate skew Cauchy distribution, whiler pkg("LaplacesDemon")
provides d, r functions for the multivariate Cauchy distribution parametrized either by sigma, by the Cholesky decomposition of sigma, by the precision matrix omega or by the Cholesky decomposition of omega.r pkg("mcauchyd")
provides d, p, r functions of the multivariate Cauchy distribution.. - Cook-Johnson's Multivariate Uniform Distribution:
r pkg("NonNorMvtDist")
provides d, p, q, r, s functions. - Multivariate Dirichlet distribution:
r pkg("Compositional")
,r pkg("LaplacesDemon")
,r pkg("MCMCpack")
packages provide d, r functions as well as a fitting function forr pkg("Compositional")
.r pkg("compositions")
,r pkg("bayesm")
provide r function.r pkg("SGB")
provides a generalization of the Dirichlet distribution called Simplicial Generalized Beta distribution. - Multivariate exponential distribution: while
r pkg("LaplacesDemon")
provides d, r functions for the multivariate power exponential distribution parametrized either by sigma, or by the Cholesky decomposition of sigma. - Multivariate F distribution:
r pkg("NonNorMvtDist")
provides d, p, q, r, s functions. - Multivariate Gaussian (or normal) distribution: The multivariate
Gaussian distribution is provided in the packages
r pkg("mvtnorm", priority = "core")
(d, p, r),r pkg("mnormt", priority = "core")
(d, p, r),r pkg("mnorm")
(d, p, r),r pkg("mniw")
(d, r),r pkg("Compositional")
(r),r pkg("compositions")
(r).r pkg("pbv")
provides d, p functions for bivariate normal distributions.r pkg("symmoments")
computes central and non-central moments of the multivariate Gaussian distribution.r pkg("LaplacesDemon")
provides d, r functions for the multivariate normal distribution parametrized either by sigma, by the Cholesky decomposition of sigma, by the precision matrix omega or by the Cholesky decomposition of omega. Futhermore, the multivariate truncated normal is implemented inr pkg("TruncatedNormal")
for d, p, r functions;r pkg("tmvtnorm")
for p, q, r, m(oments) functions;r pkg("tmvmixnorm")
for a fast RNG;r pkg("nntmvn")
for RNG using SNN method.r pkg("sparseMVN")
implements very fast algorithms to compute the density and generate random variates of a multivariate normal distribution for which the covariance matrix or precision matrix is sparse.r pkg("cmvnorm")
implements the complex multivariate normal distribution (d, r). Furthermore,r pkg("condMVNorm")
implements d, p, r functions for the conditional multivariate normal distribution.r pkg("condTruncMVN")
implements d, p, r functions of the conditional truncated multivariate normal distribution. Finally,r pkg("sn")
besides providing facilities for their distribution functions,r pkg("sn")
allows the creation of S4 objects which encapsulate these distributions and provide facilities for plotting, summary, marginalization, conditioning, affine transformations of these S4 objects.r pkg("Compositional")
provides random generator for the multivariate normal distribution on the simplex and multivariate skew normal distribution on the simplex. A random generator of the multivariate normal is provided inr pkg("MultiRNG")
.r pkg("mggd")
provides d, r function of the multivariate generalized Gaussian distribution. - Multivariate generalized hyperbolic distribution:
r pkg("QRM")
provides d, r functions of the standard and the symmetric multivariate generalized hyperbolic distribution.r pkg("ghyp")
provides d, p, r functions of the standard multivariate generalized hyperbolic distribution. - Multivariate generalized extreme value distribution: Both
bivariate and multivariate Extreme Value distributions as well as
order/maxima/minima distributions are implemented in
r pkg("evd")
(d, p, r). - Multivariate inverse Gaussian distribution:
r pkg("mig")
provides (d, p, r) functionality as well as a fitting function. - Multivariate Laplace distribution:
r pkg("LaplacesDemon")
provides d, r functions for the multivariate Laplace distribution parametrized either by sigma, or by the Cholesky decomposition of sigma. r is provided inr pkg("MultiRNG")
.r pkg("L1pack")
provides d, r functions of the multivariate Laplace distribution. - Multivariate logistic distribution:
r pkg("VGAM")
package implements the bivariate logistic distribution, whiler pkg("NonNorMvtDist")
implements the multivariate logistic distribution. - Multivariate lognormal distribution:
r pkg("compositions")
provides r function. - Multivariate Pareto distribution:
r pkg("evd")
provides the density for the multivariate generalized Pareto type I.r pkg("NonNorMvtDist")
provides d, p, q, r, s functions for multivariate Lomax (type II) distributions and its generalized version.r pkg("NonNorMvtDist")
provides d, p, q, r, s functions for Mardia's Multivariate Pareto Type I Distribution - Multivariate Stable distribution: For elliptically contoured (subgaussian
stable),
r pkg("alphastable")
provides d, r functions as well as a fitting function,r pkg("mvgb")
provides p function. The multivariate subgaussian stable distribution (d, p, r) is available inr pkg("mvpd")
. - Multivariate Student distribution: The multivariate Student
distribution is provided in the packages
r pkg("mvtnorm")
(d, r),r pkg("mnormt")
(d, p, r),r pkg("Compositional")
(r),r pkg("tmvmixnorm")
(r),r pkg("QRM")
(d, r),r pkg("bayesm")
(r),r pkg("MVT")
(r).r pkg("TruncatedNormal")
for d, p, r functions;r pkg("tmvtnorm")
for d, p, q, r functions.r pkg("sn")
provides d, p, r functions for the multivariate skew t distribution.r pkg("LaplacesDemon")
provides d, r functions for the multivariate Student distribution parametrized either by sigma, by the Cholesky decomposition of sigma, by the precision matrix omega or by the Cholesky decomposition of omega. Random generator r is provided inr pkg("MultiRNG")
. A special case of a bivariate noncentral t-distribution called Owen distribution is provided inr pkg("OwenQ")
. Distance between multivariate t distributions are provided inr pkg("mstudentd")
. - Multivariate Uniform distribution: r is provided in
r pkg("MultiRNG")
.r pkg("compositions")
provides a random generator on the simplex.
- Maxwell-Boltzmann-Bose-Einstein-Fermi-Dirac (MBBEFD) distribution
: provided in
r pkg("mbbefd")
andr pkg("MBBEFDLite")
. - Mixed ordinal and normal distribution: provided in
r pkg("OrdNor")
. - One-inflated distributions: a generic distribution as well as
special cases (OI-beta, OI-uniform, OI-GB1, OI-Pareto) are provided
in
r pkg("mbbefd")
. The zero and one inflated beta distribution can be found inr pkg("gamlss.dist")
. - Zero-modified distributions:
r pkg("EnvStats")
provides the zero-modified normal distribution and the zero-modified lognormal distribution.
- Bernoulli-dist mixture: d, p, q, r functions for
Bernoulli-exponential, Bernoulli-Gamma, Bernoulli-lognormal,
Bernoulli-Weibull distributions are provided in
r pkg("qmap")
. - Cauchy-polynomial quantile mixture: d, p, q, r functions are
provided in
r pkg("Lmoments")
. - Chi-square mixture: d, p, q, r functions are provided in
r pkg("emdbook")
. - Gaussian mixture: Functions d, r are provided in
r pkg("mixtools")
,r pkg("bmixture")
package when dealing with finite mixture models.r pkg("nor1mix")
,r pkg("extraDistr")
,r pkg("mclust")
,r pkg("LaplacesDemon")
,r pkg("KScorrect")
provides d, p, r functions for Gaussian mixture.r pkg("EnvStats")
provides d, p, q, r functions for mixture of two normal distributions.r pkg("bayesm")
provides d function for the mixture of multivariate normals. - Gamma Poisson: provided in
r pkg("extraDistr")
. - Gamma mixture: Ga
r pkg("GSM")
package provides d, p, r,r pkg("bmixture")
provides d, r,r pkg("evmix")
provides d, p, q, r. - Generic mixtures: there is an implementation via S4-class
UnivarMixingDistribution in package
r pkg("distr")
.r pkg("gendist")
provides d, p, q, r functions for two-distribution mixture models working with any distribution defined by its d, p, q, r functions.r pkg("fmx")
provides d, p, q, r functions for finite parametrized distributions. - Horseshoe distribution: provided in
r pkg("LaplacesDemon")
. - Laplace mixture distribution: provided in
r pkg("LaplacesDemon")
. - Left-truncated mixtures of Gamma, Weibull, and Lognormal distributions: provided in
r pkg("ltmix")
. - Log normal mixture: d, p, q, r functions are provided in
r pkg("EnvStats")
with two possible parametrizations. - Normal-polynomial quantile mixture: d, p, q, r functions are
provided in
r pkg("Lmoments")
. - Pareto distribution:
r pkg("extremefit")
implements the mixture of two Pareto I distributions. - Poisson beta distribution: provided in
r pkg("scModels")
. - Poisson Binomial distribution:
r pkg("poibin")
implements the Poisson Binomial distribution. - Poisson lognormal distribution:
r pkg("poilog")
implements the Poisson lognormal distribution. - Poisson mixture: provided in
r pkg("extraDistr")
. - Poisson-Tweedie exponential family models: provided in
r pkg("poistweedie")
. - Student mixture: The
r pkg("AdMit")
package provides d, r functions for Student mixtures in the context of Adaptive Mixture of Student-t distributions.r pkg("bmixture")
package also provide d, r functions for mixture of Student-t distributions. - von Mises Fisher (or Langevin) mixture: The
r pkg("movMF")
andr pkg("CircStats")
packages provide d, r functions for finite von Mises Fisher mixtures.
-
Huang-Wan distribution: provided in
r pkg("LaplacesDemon")
. -
Inverse matrix gamma distribution: provided in
r pkg("LaplacesDemon")
. -
Inverse Wishart distribution:
r pkg("LaplacesDemon")
provides inverse Wishart distribution parametrized either by Sigma or by its Cholesky decomposition.r pkg("LaplacesDemon")
provides the scaled inverse Wishart distribution.r pkg("MCMCpack")
andr pkg("mniw")
provides the inverse Wishart distribution.r pkg("wishmom")
allows to computes the theoretical moments of the inverse beta-Wishart distribution. -
Marcenko-Pastur distribution: provided in
r pkg("RMTstat")
,r pkg("MCMCpack")
andr pkg("bayesm")
. -
Matrix gamma distribution: provided in
r pkg("LaplacesDemon")
. -
Matrix normal distribution:
r pkg("MBSP")
(r) provides a random generator using a Cholesky decomposition;r pkg("matrixsampling")
(r) provides a random generator using a spectral decomposition;r pkg("LaplacesDemon")
andr pkg("mniw")
(d, r);r pkg("matrixNormal")
(d, p, r) collects these forms in one place and allows users to be flexible in simulating random variates (Cholesky, spectral, SVD). -
Matrix student distribution: provided in
r pkg("mniw")
. -
Normal Inverse Wishart distribution: provided in
r pkg("LaplacesDemon")
,r pkg("mniw")
. -
Normal Wishart distribution: provided in
r pkg("LaplacesDemon")
. -
Tracy-Widom distribution: provided in
r pkg("RMTstat")
,r pkg("MCMCpack")
andr pkg("bayesm")
: supported beta values are 1 (Gaussian Orthogonal Ensemble), 2 (Gaussian Unitary Ensemble), and 4 (Gaussian Symplectic Ensemble). -
Sparse matrix:
r pkg("spam")
provides functionalities to draw random numbers from a user-supplied RNG (e.g.rexp
) or from a multivariate normal distribution for large sparse matrices: typically for sparse covariance matrices. -
Spiked Wishart Maximum Eigenvalue Distribution: provided in
r pkg("RMTstat")
,r pkg("MCMCpack")
andr pkg("bayesm")
. -
Wishart distributions: Base R provides the r function for the Wishart distribution.
r pkg("MCMCpack")
,r pkg("RMTstat")
,r pkg("bayesm")
,r pkg("mniw")
provides d, r functions,r pkg("bayesm")
provides r function.r pkg("LaplacesDemon")
provides Wishart distribution parametrized either by Sigma or by its Cholesky decomposition.r pkg("wishmom")
allows to computes the theoretical moments of the beta-Wishart distribution. -
White Wishart Maximum Eigenvalue Distribution: provided in
r pkg("RMTstat")
,r pkg("MCMCpack")
andr pkg("bayesm")
. -
Yang-Berger distribution: provided in
r pkg("LaplacesDemon")
. -
Zellner distribution: provided in
r pkg("LaplacesDemon")
.
- Unified approaches: The packages
r pkg("fCopulae", priority = "core")
,r pkg("copula", priority = "core")
, andr pkg("copBasic")
provide a lot of general functionality for copulas. Although lacking support for many existing copulas themselves,r pkg("copBasic")
is primarily oriented around utility functions for the general mathematics of copulas as described in the well known introduction to copulas by Nelsen. - Archimedean copulas:
r pkg("gumbel")
is a standalone package for the Gumbel copular pkg("fCopulae")
implements the 22 Archimedean copulas of Nelsen (1998, Introduction to Copulas , Springer-Verlag) including Gumbel, Frank, Clayton, and Ali-Mikhail-Haq.r pkg("VGAM")
provides Ali-Mikhail-Haq, Clayton, Frank, Frechet copulas.r pkg("copula")
provides Ali-Mikhail-Haq, Clayton, Frank, Gumbel and Joe copulas. The Frank bivariate distribution is available inr pkg("RTDE")
.r pkg("VineCopula")
provides Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8 copulas. Nested Archimedean copulas are available in ther pkg("HAC")
package.r pkg("copBasic")
provides functions for Ali-Mikhail-Haq, Clayton, Frechet copulas.r pkg("QRM")
provides pdf and random generator for Clayton, Gumbel, Frank, BB9 copula.r pkg("Bivariate.Pareto")
provides a random generator for the Frank copula with Pareto margins.r pkg("HAC")
provides hierarchical archimedean copulas.r pkg("lcopula")
provides the Liouville copula.r pkg("CopulaGAMM")
provides the bivariate version of Frank, FGM, Galambos, Gumbel, Huesler-Reiss, Joe, MTCJ, Plackett copulas. - Blomqvist copula: provided in
r pkg("copBasic")
. - Composition of copula:
r pkg("copBasic")
provides functions for composition of a single symmetric copula and composition of two copulas. - Cubic copula: Not yet implemented?
- Dirichlet copula: Not yet implemented?
- Empirical copula: provided in
r pkg("copBasic")
,r pkg("copent")
,r pkg("HAC")
.r pkg("GenOrd")
provides sampling function for multivariate discrete random vectors with a specified correlation matrix. - Elliptical copulas: Gaussian, Student and Cauchy copulas are
implemented in
r pkg("fCopulae")
for the bivariate cases.r pkg("copula")
,r pkg("VGAM")
,r pkg("VineCopula")
provide the Gaussian and the Student copulas.r pkg("QRM")
provides pdf and random generator for Gaussian, Student copulas.r pkg("relliptical")
provides a random generator for multivariate truncated Normal, Student-t, Power Exponential, Pearson VII, Slash and Contaminated Normal distributions.r pkg("CopulaGAMM")
provides the bivariate Gaussian and student copula. - Extreme value copulas:
r pkg("fCopulae")
provides the following copulas Gumbel, Galambos, Husler-Reiss, Tawn, or BB5.r pkg("copula")
implements Gumbel, Galambos and Husler-Reiss. - Eyraud-Farlie-Gumbel-Morgenstern copula: provided in
r pkg("VGAM")
,r pkg("RTDE")
, andr pkg("copula")
. - Integrated gamma copula: provided in
r pkg("igcop")
. - Mardia copula: Not yet implemented?
- Nested copulas: arbitrary nested versions of copulas can be
implemented in
r pkg("copula")
. - Plackett: provided in
r pkg("VGAM")
,r pkg("copBasic")
andr pkg("copula")
. - Vine copulas: Package
r pkg("vines")
provides functions for C- and D-vine copulas andr pkg("VineCopula")
for general R-vine copulas.
- Absolute value or half distribution: Half-Cauchy, half normal and
half-student are implemented both in
r pkg("extraDistr")
and inr pkg("LaplacesDemon")
. - Composite distribution also known as spliced distribution:
Split-normal (also known as
the two-piece normal distribution) not yet implemented.
Split-student provided in package
r pkg("dng")
.r pkg("evmix")
provides d, p, q, r of the following composite distributions: gamma-GPD, lognormal GPD, normal-GPD, Weibull-GPD as well as bulk models such as GPD-normal-GPD distribution.r pkg("gendist")
provides d, p, q, r functions for composite models working with any distribution defined by its d, p, q, r functions. - Compound distribution:
r pkg("kdist")
provides d, p, q, r functions of the K distribution. - Discretized distribution:
r pkg("distcrete")
allows discretised versions of continuous distribution by mapping continuous values to an underlying discrete grid, based on a (uniform) frequency of discretisation, a valid discretisation point, and an integration range. - Quantile-based asymmetric (QBA) family of distributions: no longer implemented.
- Transformed distribution:
r pkg("Newdistns")
provides G-transformed distributions for a selected number of distributions which includes Marshall Olkin G distribution, exponentiated G distribution, beta G distribution, gamma G distribution, Kumaraswamy G distribution, generalized beta G distribution, beta extended G distribution, gamma G distribution, gamma uniform G distribution, beta exponential G distribution, Weibull G distribution, log gamma G1/G2 distribution, exponentiated generalized G distribution, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distribution, truncated-exponential skew-symmetric G distribution, modified beta G distribution, and exponentiated exponential Poisson G distribution.r pkg("MPS")
provides also G-transformed distributions, such as beta exponential G distribution, beta G distribution, exponentiated exponential Poisson G distribution, exponentiated G distribution, exponentiated generalized G distribution, exponentiated Kumaraswamy G distribution, gamma uniform G distribution, gamma uniform type I/II G distribution, generalized beta G distribution, geometric exponential Poisson G distribution, gamma-X family of modified beta exponential G distribution, exponentiated exponential Poisson G distribution, gamma-X generated of log-logistic-X familiy of G distribution, Kumaraswamy G distribution, log gamma G type I/II distribution, modified beta G distribution, Marshall-Olkin Kumaraswamy G distribution, odd log-logistic G distribution, truncated-exponential skew-symmetric G distribution, T-X{log-logistic}G distribution, Weibull G distribution.r pkg("gendist")
provides d, p, q, r functions for composite models, folded models, skewed symmetric models and arctan models working with any distribution defined by its d, p, q, r functions.r pkg("ComRiskModel")
provides also G-transformed such as binomial-G, complementary negative binomial-G and complementary geometric-G families of distributions taking baseline models such as exponential, extended exponential, Weibull, extended Weibull, Fisk, Lomax, Burr-XII and Burr-X.r pkg("geppe")
provides exponential-Poisson (EP), the generalised EP (GEP) and the Poisson-exponential (PE) distributions. - Truncated distribution: A generic code snippet is available in
the JSS . This code
is now available in two packages:
r pkg("truncdist")
,r pkg("trdist")
are dedicated packages providing d, p, q, r, m(oments) functions of a univariate truncated distribution for a base distribution and a user-supplied distribution;r pkg("LaplacesDemon")
provides a generic function in a Bayesian environment.r pkg("TruncExpFam")
provides d, r functions for truncated distributions of the exponential family, e.g. truncated gamma or truncated Poisson as well as fitting procedures. It also provides functions to retrieve the original distribution parameters from a truncated sample by maximum-likelihood estimation.
- Empirical mean, standard deviation and variance: base R provides
mean()
,sd()
,var()
functions to compute the mean, standard deviation and variance, respectively. - Empirical skewness: available in
r pkg("agricolae")
,r pkg("e1071")
,r pkg("GLDEX")
,r pkg("HyperbolicDist")
,r pkg("modeest")
,r pkg("moments")
,r pkg("s20x")
,r pkg("fromo")
,r pkg("DistributionUtils")
,r pkg("EnvStats")
,r pkg("parameters")
packages. - Empirical kurtosis: available in
r pkg("agricolae")
,r pkg("DistributionUtils")
,r pkg("e1071")
,r pkg("EnvStats")
,r pkg("GLDEX")
,r pkg("HyperbolicDist")
,r pkg("fromo")
,r pkg("moments")
,r pkg("parameters")
packages. The raw or centered moments are provided inr pkg("e1071")
,r pkg("moments")
. - Empirical L-moments: L-moments are available in
r pkg("lmom")
,r pkg("lmomco")
,r pkg("Lmoments")
,r pkg("GLDEX")
,r pkg("EnvStats")
, trimmed L-moments are available inr pkg("lmomco")
,r pkg("TLMoments")
andr pkg("Lmoments")
, right-censored L-moments are available inr pkg("lmomco")
, and cumulants inr pkg("GLDEX")
.r pkg("TLMoments")
provides a function to convert them to some distribution parameters. - Empirical probability weighted moments: Probability weighted
moments are available in
r pkg("EnvStats")
andr pkg("fromo")
. - Empirical cumulants:
r pkg("fromo")
provides centered and standardized cumulants. - Mode estimation: Package
r pkg("modeest")
provides mode computation of known distributions and mode estimation on datasets in the unimodal case. Packager pkg("ModEstM")
provides mode estimation in unimodal and multimodal cases. Packager pkg("multimode")
provides for testing and exploring the number of modes on data using non-parametric procedures. - Order statistics: Distribution function of the jth order statistic
can be obtained with base R functions.
r pkg("orders")
allows to generate samples of k-th order statistics and others quantities of interest for the following distributions: Burr, Feller-Pareto, Generalized Pareto, The Inverse Paralogistic, Marshall-Olkin G, exponentiated G, beta G, gamma G, Kumaraswamy G, generalized beta G, beta extended G, gamma G, gamma uniform G, beta exponential G, Weibull G, log gamma G I/II, exponentiated generalized G, exponentiated Kumaraswamy G, geometric exponential Poisson G, truncated-exponential skew-symmetric G, modified beta G, exponentiated exponential Poisson G, Poisson-inverse gaussian, Skew normal type 1, Skew student t, Sinh-Arcsinh, Sichel, Zero inflated Poisson. - Empirical characteristic function:
r pkg("empichar")
evaluates the empirical characteristic function of univariate and multivariate samples. - Dispersion index: Package
r pkg("GWI")
provides univariate dispersion index against a particular distribution. - Theoretical moments:
- common distributions: The
r pkg("actuar")
package implements raw moments, limited expected values and moment generating function for base R distributions.r pkg("lmomco")
provides L-moments (L), trimmed L-moments (TL), and right-censored [RC] for the following distributions: Asymmetric Exponential Power (L), Cauchy (TL), Eta-Mu (L), Exponential (L), Gamma (L), Generalized Extreme Value (L), Generalized Lambda (L and TL), Generalized Logistic (L), Generalized Normal (L), Generalized Pareto (L[RC] and TL), Govindarajulu (L), Gumbel (L), Kappa (L), Kappa-Mu (L), Kumaraswamy (L), Laplace (L), Normal (L), 3-parameter log-Normal (L), Pearson Type III (L), Rayleigh (L), Reverse Gumbel (L[RC]), Rice/Rician (L), Slash (TL), 3-parameter Student T (L), Truncated Exponential (L), Wakeby (L), and Weibull (L). Multivariate L-moments (L-comoments).r pkg("Distributacalcul")
provides first few moments for most common distributions. - hyperbolic distributions:
r pkg("HyperbolicDist")
provides the mean, variance, skewness, kurtosis, mode, raw and centered moments for the hyperbolic, the generalized hyperbolic and the generalized inverse Gaussian distributions. - Lambda distribution:
r pkg("GLDEX")
also provides the mean, variance, skewness, kurtosis of generalized Lambda distribution. - multivariate distributions:
r pkg("MomTrunc")
provides mean vector, covariance matrices and raw moments for truncated or folded of the following multivariate distributions: normal, skew normal, extended skew normal and student.
- common distributions: The
- Basic functionality: R provides several random number generators
(RNGs). The random seed can be provided via
set.seed
and the kind of RNG can be specified usingRNGkind
. The default RNG is the Mersenne-Twister algorithm. Other generators include Wichmann-Hill, Marsaglia-Multicarry, Super-Duper, Knuth-TAOCP, Knuth-TAOCP-2002, as well as user-supplied RNGs. For normal random numbers, the following algorithms are available: Kinderman-Ramage, Ahrens-Dieter, Box-Muller, Inversion (default). In addition to the tools above,r pkg("setRNG")
provides an easy way to set, retain information about the setting, and reset the RNG. - Pseudo-randomness:
r pkg("RDieHarder")
offers several dozen new RNGs from the GNU GSL.r pkg("randtoolbox")
provides more recent RNGs such as SF Mersenne-Twister and WELL, which are generators of Mersenne Twister type, but with improved quality parameters.r pkg("SuppDists")
implements two RNGs of G. Marsaglia.r pkg("dqrng")
provides PCG family by O'Neill (2014) as well as Xoroshiro128+ and Xoshiro256+ by Blackman and Vigna (2018).- For non-uniform generation, the
r pkg("Runuran")
package interfaces to the UNU.RAN library for universal non-uniform generation as well as customised distributions based on polynomial interpolation of the inverse cumulative distribution function.r pkg("rust")
performs non-uniform random variate generation from unimodal (low-dimensional) multivariate continuous distributions, using the generalized ratio-of-uniforms method.r pkg("UnivRNG")
provides 17 non-uniform generators either using an acceptance/rejection algorithm or the inverse CDF method.r pkg("MultiRNG")
provides 11 multivariate generators, see each distribution.r pkg("Tinflex")
provides a non-uniform random number generator for quite arbitrary distributions with piecewise twice differentiable densities. r pkg("kernelboot")
provides functions for random generation from univariate and multivariate kernel densities (in particular multivariate Gaussian kernels).
- For non-uniform generation, the
- Quasi-randomness: The
r pkg("randtoolbox")
provides the following quasi random sequences: the Sobol sequence, the Halton (hence Van Der Corput) sequence and the Torus sequence (also known as Kronecker sequence).r pkg("lhs")
andr pkg("mc2d")
packages implement the latin hypercube sampling, an hybrid quasi/pseudo random method.r pkg("sfsmisc")
also provides the Halton sequence.r pkg("qrng")
provides Korobov, generalize Halton and Sobol quasi-random sequences.r pkg("spacefillr")
provides Halton and Sobol sequences. - True randomness: The
r pkg("random")
package provides several functions that access the true random number service at random.org . - RNG tests:
r pkg("RDieHarder")
offers numerous tests of RNGs based on a reimplementation and extension of Marsaglia's DieHarder battery.r pkg("randtoolbox")
provides basic RNG tests. - Parallel computing: Support for several independent streams:
r pkg("rstream")
focuses on multiple independent streams of random numbers from different sources (in an object oriented approach).r pkg("dqrng")
provides RNG for parallel computation either in R or in C++.r pkg("rlecuyer")
provides an interface to the C implementation of the random number generator with multiple independent streams.- See the
r view("HighPerformanceComputing")
task view for more details.
- Multivariate random vectors: for parametric multivariate distributions,
we refer to Multivariate Continuous
and Multivariate Discrete.
For non-parametric distributions,
r pkg("SimJoint")
offers various to simulate multivariate distributions with non-parametric marginals given a Pearson or Spearman correlation matrix. - Unit sphere and other:
r pkg("simdd")
provides a generator for the Fisher Bingham distribution on the unit sphere, the matrix Bingham distribution on a Grassmann manifold, the matrix Fisher distribution on SO(3), and the bivariate von Mises sin model on the torus.r pkg("uniformly")
provides sampling on various geometric shapes, such as spheres, ellipsoids, simplices.r pkg("watson")
allows simulating mixtures of Watson distributions. - Tidyverse:
r pkg("TidyDensity")
maps the RNG ofstats
(andactuar
) distributions to a tidytibble
which allows to work with the rest of thetidyverse
.
- Computation/benchmark:
- Approximation of d, p, q, r functions:
r pkg("PDQutils")
provides tools for computing the density, cumulative distribution, and quantile functions of a distribution when the cumulants or moments are given, using the classical Gram Charlier, Edgeworth and Cornish-Fisher approximations.r pkg("sadists")
is a showcase for PDQutils, providing density, cumulative distribution, quantile, and random generation for the doubly non-central t, doubly non-central F, K-prime, Lambda-prime, Upsilon, and sum of (non-central) chi-squares to powers distributions. Various approximations and alternative computations for d, p, q functions of probability distributions in R are givenr pkg("DPQ")
. r pkg("benchden")
implements the 28 distributions introduced as kernel benchmarks for nonparametric density estimation by Berlinet and Devroye (1994): includes d, p, q, r functions as well as additional information on features of the densities.- For non-uniform generation, see the
r pkg("Runuran")
above.
- Approximation of d, p, q, r functions:
- Non parametric models:
- Binned Empirical distributions: no longer provided.
- Empirical distribution: Base R provides functions for
univariate analysis: (1) the empirical density (see
density()
), (2) the empirical cumulative distribution function (seeecdf()
), (3) the empirical quantile (seequantile()
) and (4) random sampling with or without replacement (seesample()
).r pkg("distributionsrd")
provides d, p, q, r user-friendly functions for the empirical distributions as well as moments.r pkg("distfromq")
provides d, p, q, r user-friendly functions for the empirical distributions and options for estimating the tails.r pkg("mded")
provides a function for measuring the difference between two independent or non-independent empirical distributions and returning a significance level of the difference.
r pkg("MEPDF")
provides functions to compute and visualize empirical density functions for multivariate data. - Non Parametric distributions :
r pkg("spd")
provides the Semi Parametric Piecewise Distribution, whiler pkg("fBasics")
implements spline smoothed distributions.
- Hierarchical models: Distributions whose some parameters are no
longer constant but random according to a particular distribution.
r pkg("VGAM")
provides a lot of hierarchical models: beta/binomial, beta/geometric and beta/normal distributions.r pkg("bayesm")
implements: binary logit, linear, multivariate logit and negative binomial models. Furthermorer pkg("LearnBayes")
andr pkg("MCMCpack")
provides poisson/gamma, beta/binomial, normal/normal and multinomial/Dirichlet models. - Unified interface to handle distributions:
- S3 Object-orientation:
r pkg("distributions3")
provides tools to create and to manipulate probability distributions using S3, that isr pkg("distributions3")
, genericsrandom()
,pdf()
,cdf()
andquantile()
provide replacements for base R'sr/d/p/q
style functions.r pkg("distributional")
also provides tools to create and to manipulate probability distributions using S3, withcdf()
,density()
,hdr()
,mean()
,median()
,quantile()
,... - S4 Object-orientation: General discrete and continuous
distributions are implemented in package
r pkg("distr")
respectively via S4-class DiscreteDistribution and AbscontDistribution providing the classic d, p, q and r functions.r pkg("distrEx")
extends available distributions to multivariate and conditional distributions as well as methods to compute useful statistics (expectation, variance,...) and distances between distributions (Hellinger, Kolmogorov,... distance). Finally packager pkg("distrMod")
provides functions for the computation of minimum criterion estimators (maximum likelihood and minimum distance estimators). See other packages of the distr-family (r pkg("distrSim")
,r pkg("distrTEst")
,r pkg("distrTeach")
,r pkg("distrDoc")
,r pkg("distrEllipse")
). - R6 Object-orientation:
r pkg("ROOPSD")
provides a R6 class interface to classic statistical distribution. - Transformation: Lebesgue decomposition are implemented in
r pkg("distr")
, as well as Convolution, Truncation and Huberization of distributions. Furthermore,r pkg("distr")
provides distribution of the maximum or minimum of two distributions. See Object-orientation above.r pkg("convdistr")
provides functions to convolute probabilistic distributions using RNG for a set of distributions.
- S3 Object-orientation:
- Transversal functions:
- Histogram, tail plots, distance estimation:
r pkg("DistributionUtils")
provides log-histogram, tail plots, functions for testing distributions using inversion tests and the Massart inequality.r pkg("visualize")
provides functions to plot the pdf or pmf with highlights on area or when probability is present in user defined locations, as well as the graph is the mean and variance of the distribution.r pkg("visualize")
provides lower tail, bounded, upper tail, and two tail calculations.r pkg("visualize")
contains convenience functions for constructing and plotting bivariate probability distributions (probability mass functions, probability density functions and cumulative distribution functions).r pkg("vistributions")
provides visualization tools for a selected number of distributions. - Parameter estimation:
r pkg("lmomco")
andr pkg("Lmoments")
focus on univariate/multivariate (L-)moments estimation.r pkg("VGAM")
provides a lot of parameter estimation for usual and "exotic" distributions.r pkg("gaussDiff")
provides a collection difference measures for multivariate Gaussian probability density functions Packager pkg("MASS")
implements the flexiblefitdistr
function for parameter estimations.r pkg("fitdistrplus")
greatly enlargesfitdistr
and enhances the tools to fit a user-supplied probability distribution.r pkg("OneStep")
is based uponr pkg("fitdistrplus")
to provide one-step estimation procedures.r pkg("EnvStats")
,r pkg("fitteR")
,r pkg("ExtDist")
,r pkg("MLE")
also provide tools to fit and select a set of probability distributions.r pkg("flexsurv")
andr pkg("msm")
provides a quantile function for a generic distribution based on numerical computation based on a dichotomic search.r pkg("reservr")
provides fitting procedures for censored and truncated dataset on a set of selected distributions.
- Histogram, tail plots, distance estimation:
- N. L. Johnson, S. Kotz, N. Balakrishnan (1994). Continuous univariate distributions, Volume 1, Wiley.
- N. L. Johnson, S. Kotz, N. Balakrishnan (1995). Continuous univariate distributions, Volume 2, Wiley.
- N. L. Johnson, S. Kotz, N. Balakrishnan (1997). Discrete multivariate distributions, Wiley.
- N. L. Johnson, A. W. Kemp, S. Kotz (2008). Univariate discrete distributions, Wiley.
r doi("10.1002/0471715816")
- S. Kotz, N. Balakrishnan, N. L. Johnson (2000). Continuous multivariate distributions Volume 1, Wiley.
- G. Wimmer (1999), Thesaurus of univariate discrete probability distributions.
- M. Ahsanullah, B.M. Golam Kibria, M. Shakil (2014). Normal and Student's t Distributions and Their Applications, Springer.
r doi("10.2991/978-94-6239-061-4")
- B. C. Arnold (2010). Pareto Distributions, Chapman and Hall.
r doi("10.1201/b18141")
- A. Azzalini (2013). The Skew-Normal and Related Families.
r doi("10.1017/CBO9781139248891")
- N. Balakrishnan (2014). Handbook of the Logistic Distribution, CRC Press.
r doi("10.1201/9781482277098 ")
- C. Forbes, M. Evans, N. Hastings, B. Peacock (2011). Statistical Distributions, Wiley.
r doi("10.1002/9780470627242")
- K. Krishnamoorthy (2015). Handbook of Statistical Distributions with Applications, Chapman and Hall.
r doi("10.1201/b19191")
- Z. A. Karian, E. J. Dudewicz, K. Shimizu (2010). Handbook of Fitting Statistical Distributions with R, CRC Press.
r doi("10.1201/b10159-3")
- Clickable diagram of distribution relationships
- Compendium of distributions.
- Comprehensive list of data types
- Diagram of discrete distribution relationships
- Diagram of continuous distribution relationships
- Journal of Statistical Software: R programs for truncated distributions
- List and diagram of distribution relationship.