-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_output.txt
19818 lines (18496 loc) · 650 KB
/
training_output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Beginning train with params:
Attention: True, Bidirectional: False
Epoch 1 out of 2000Batch: 1, Loss: 12.254023551940918
Batch: 2, Loss: 12.25191593170166
Batch: 3, Loss: 12.097244262695312
Batch: 4, Loss: 11.602534294128418
Batch: 5, Loss: 10.74337100982666
Batch: 6, Loss: 9.429019927978516
Batch: 7, Loss: 9.444721221923828
Batch: 8, Loss: 9.950742721557617
Batch: 9, Loss: 9.674982070922852
Batch: 10, Loss: 9.02640151977539
Batch: 11, Loss: 9.089177131652832
Batch: 12, Loss: 9.581668853759766
Batch: 13, Loss: 9.441471099853516
Batch: 14, Loss: 9.22257137298584
Epoch 2 out of 2000Batch: 1, Loss: 9.255640029907227
Batch: 2, Loss: 8.952438354492188
Batch: 3, Loss: 9.139421463012695
Batch: 4, Loss: 8.786409378051758
Batch: 5, Loss: 9.008625984191895
Batch: 6, Loss: 8.807516098022461
Batch: 7, Loss: 8.86252498626709
Batch: 8, Loss: 8.724947929382324
Batch: 9, Loss: 8.856316566467285
Batch: 10, Loss: 8.785757064819336
Batch: 11, Loss: 8.941275596618652
Batch: 12, Loss: 8.58899974822998
Batch: 13, Loss: 8.863584518432617
Batch: 14, Loss: 8.720307350158691
Epoch 3 out of 2000Batch: 1, Loss: 8.818750381469727
Batch: 2, Loss: 8.737983703613281
Batch: 3, Loss: 8.455233573913574
Batch: 4, Loss: 8.4989595413208
Batch: 5, Loss: 8.659975051879883
Batch: 6, Loss: 8.699247360229492
Batch: 7, Loss: 8.280353546142578
Batch: 8, Loss: 8.58824634552002
Batch: 9, Loss: 8.596600532531738
Batch: 10, Loss: 8.988567352294922
Batch: 11, Loss: 8.471484184265137
Batch: 12, Loss: 8.619377136230469
Batch: 13, Loss: 8.737133979797363
Batch: 14, Loss: 8.88932991027832
Epoch 4 out of 2000Batch: 1, Loss: 8.640177726745605
Batch: 2, Loss: 8.534903526306152
Batch: 3, Loss: 8.410499572753906
Batch: 4, Loss: 8.502030372619629
Batch: 5, Loss: 8.598462104797363
Batch: 6, Loss: 8.691084861755371
Batch: 7, Loss: 8.481680870056152
Batch: 8, Loss: 8.450153350830078
Batch: 9, Loss: 8.707608222961426
Batch: 10, Loss: 8.197833061218262
Batch: 11, Loss: 8.69233512878418
Batch: 12, Loss: 8.517692565917969
Batch: 13, Loss: 8.462206840515137
Batch: 14, Loss: 8.557374000549316
Epoch 5 out of 2000Batch: 1, Loss: 8.287367820739746
Batch: 2, Loss: 8.274173736572266
Batch: 3, Loss: 8.292609214782715
Batch: 4, Loss: 8.368741035461426
Batch: 5, Loss: 8.443498611450195
Batch: 6, Loss: 8.37315845489502
Batch: 7, Loss: 8.525716781616211
Batch: 8, Loss: 8.470317840576172
Batch: 9, Loss: 8.537108421325684
Batch: 10, Loss: 8.515896797180176
Batch: 11, Loss: 8.146169662475586
Batch: 12, Loss: 8.457921981811523
Batch: 13, Loss: 8.106940269470215
Batch: 14, Loss: 8.476166725158691
Epoch 6 out of 2000Batch: 1, Loss: 8.118280410766602
Batch: 2, Loss: 8.444625854492188
Batch: 3, Loss: 8.2113676071167
Batch: 4, Loss: 8.442530632019043
Batch: 5, Loss: 8.281451225280762
Batch: 6, Loss: 8.468948364257812
Batch: 7, Loss: 8.260884284973145
Batch: 8, Loss: 8.402835845947266
Batch: 9, Loss: 8.118171691894531
Batch: 10, Loss: 8.17796802520752
Batch: 11, Loss: 8.2783842086792
Batch: 12, Loss: 8.29594612121582
Batch: 13, Loss: 8.215702056884766
Batch: 14, Loss: 8.384269714355469
Epoch 7 out of 2000Batch: 1, Loss: 8.418365478515625
Batch: 2, Loss: 8.553531646728516
Batch: 3, Loss: 8.25156307220459
Batch: 4, Loss: 8.575447082519531
Batch: 5, Loss: 8.232873916625977
Batch: 6, Loss: 8.242497444152832
Batch: 7, Loss: 8.354982376098633
Batch: 8, Loss: 8.164887428283691
Batch: 9, Loss: 8.754609107971191
Batch: 10, Loss: 8.179346084594727
Batch: 11, Loss: 8.551447868347168
Batch: 12, Loss: 8.447942733764648
Batch: 13, Loss: 8.149737358093262
Batch: 14, Loss: 8.062336921691895
Epoch 8 out of 2000Batch: 1, Loss: 7.864633560180664
Batch: 2, Loss: 8.330750465393066
Batch: 3, Loss: 8.281272888183594
Batch: 4, Loss: 8.307531356811523
Batch: 5, Loss: 8.520655632019043
Batch: 6, Loss: 8.64380168914795
Batch: 7, Loss: 8.049325942993164
Batch: 8, Loss: 8.576883316040039
Batch: 9, Loss: 8.02326488494873
Batch: 10, Loss: 8.193477630615234
Batch: 11, Loss: 8.353788375854492
Batch: 12, Loss: 8.408905029296875
Batch: 13, Loss: 8.2255277633667
Batch: 14, Loss: 8.399787902832031
Epoch 9 out of 2000Batch: 1, Loss: 8.318036079406738
Batch: 2, Loss: 8.54316234588623
Batch: 3, Loss: 8.333841323852539
Batch: 4, Loss: 8.432065963745117
Batch: 5, Loss: 8.03018856048584
Batch: 6, Loss: 8.227914810180664
Batch: 7, Loss: 8.185105323791504
Batch: 8, Loss: 8.23983383178711
Batch: 9, Loss: 7.920746326446533
Batch: 10, Loss: 8.232810020446777
Batch: 11, Loss: 8.17255687713623
Batch: 12, Loss: 8.368489265441895
Batch: 13, Loss: 8.10755443572998
Batch: 14, Loss: 8.492040634155273
Epoch 10 out of 2000Batch: 1, Loss: 7.989803791046143
Batch: 2, Loss: 8.401665687561035
Batch: 3, Loss: 8.234040260314941
Batch: 4, Loss: 8.412680625915527
Batch: 5, Loss: 8.017650604248047
Batch: 6, Loss: 8.230708122253418
Batch: 7, Loss: 8.411041259765625
Batch: 8, Loss: 8.464361190795898
Batch: 9, Loss: 8.105236053466797
Batch: 10, Loss: 8.227592468261719
Batch: 11, Loss: 8.433673858642578
Batch: 12, Loss: 8.339011192321777
Batch: 13, Loss: 8.640127182006836
Batch: 14, Loss: 7.759188652038574
Epoch 11 out of 2000Batch: 1, Loss: 8.3538179397583
Batch: 2, Loss: 8.28172779083252
Batch: 3, Loss: 8.375755310058594
Batch: 4, Loss: 8.376099586486816
Batch: 5, Loss: 8.215927124023438
Batch: 6, Loss: 8.228222846984863
Batch: 7, Loss: 8.355270385742188
Batch: 8, Loss: 8.267539978027344
Batch: 9, Loss: 8.303471565246582
Batch: 10, Loss: 8.609461784362793
Batch: 11, Loss: 8.210335731506348
Batch: 12, Loss: 8.064865112304688
Batch: 13, Loss: 8.106392860412598
Batch: 14, Loss: 8.48868465423584
Epoch 12 out of 2000Batch: 1, Loss: 7.799697399139404
Batch: 2, Loss: 8.191864967346191
Batch: 3, Loss: 8.05532169342041
Batch: 4, Loss: 8.246565818786621
Batch: 5, Loss: 8.453341484069824
Batch: 6, Loss: 8.000646591186523
Batch: 7, Loss: 7.91249942779541
Batch: 8, Loss: 8.184586524963379
Batch: 9, Loss: 8.28076457977295
Batch: 10, Loss: 8.319211959838867
Batch: 11, Loss: 8.274142265319824
Batch: 12, Loss: 8.309982299804688
Batch: 13, Loss: 8.044892311096191
Batch: 14, Loss: 8.391528129577637
Epoch 13 out of 2000Batch: 1, Loss: 8.15353775024414
Batch: 2, Loss: 8.157795906066895
Batch: 3, Loss: 8.114786148071289
Batch: 4, Loss: 8.23250961303711
Batch: 5, Loss: 8.215822219848633
Batch: 6, Loss: 8.342339515686035
Batch: 7, Loss: 7.940728187561035
Batch: 8, Loss: 8.234031677246094
Batch: 9, Loss: 8.087803840637207
Batch: 10, Loss: 8.244668960571289
Batch: 11, Loss: 8.502052307128906
Batch: 12, Loss: 7.911170482635498
Batch: 13, Loss: 8.395779609680176
Batch: 14, Loss: 8.196388244628906
Epoch 14 out of 2000Batch: 1, Loss: 8.39000415802002
Batch: 2, Loss: 7.922604084014893
Batch: 3, Loss: 8.243598937988281
Batch: 4, Loss: 8.22706127166748
Batch: 5, Loss: 8.29222583770752
Batch: 6, Loss: 7.8849382400512695
Batch: 7, Loss: 7.94384241104126
Batch: 8, Loss: 7.8503031730651855
Batch: 9, Loss: 8.283293724060059
Batch: 10, Loss: 8.265983581542969
Batch: 11, Loss: 7.933539390563965
Batch: 12, Loss: 8.432833671569824
Batch: 13, Loss: 8.015131950378418
Batch: 14, Loss: 8.393714904785156
Epoch 15 out of 2000Batch: 1, Loss: 8.028244972229004
Batch: 2, Loss: 7.84512996673584
Batch: 3, Loss: 8.228151321411133
Batch: 4, Loss: 8.061742782592773
Batch: 5, Loss: 8.262336730957031
Batch: 6, Loss: 7.912011623382568
Batch: 7, Loss: 7.999852180480957
Batch: 8, Loss: 7.905797481536865
Batch: 9, Loss: 8.312772750854492
Batch: 10, Loss: 7.979814529418945
Batch: 11, Loss: 8.099061012268066
Batch: 12, Loss: 7.876398086547852
Batch: 13, Loss: 7.905157089233398
Batch: 14, Loss: 7.8895392417907715
Epoch 16 out of 2000Batch: 1, Loss: 7.946425914764404
Batch: 2, Loss: 8.019169807434082
Batch: 3, Loss: 7.892148971557617
Batch: 4, Loss: 8.18656063079834
Batch: 5, Loss: 7.954122066497803
Batch: 6, Loss: 7.757812976837158
Batch: 7, Loss: 8.157893180847168
Batch: 8, Loss: 8.43757152557373
Batch: 9, Loss: 8.5158052444458
Batch: 10, Loss: 8.042984962463379
Batch: 11, Loss: 7.835908889770508
Batch: 12, Loss: 8.034564971923828
Batch: 13, Loss: 7.964926719665527
Batch: 14, Loss: 8.362537384033203
Epoch 17 out of 2000Batch: 1, Loss: 7.601719379425049
Batch: 2, Loss: 8.227131843566895
Batch: 3, Loss: 7.962001323699951
Batch: 4, Loss: 8.117670059204102
Batch: 5, Loss: 7.892786979675293
Batch: 6, Loss: 7.6521100997924805
Batch: 7, Loss: 8.034025192260742
Batch: 8, Loss: 7.724926471710205
Batch: 9, Loss: 7.792229652404785
Batch: 10, Loss: 8.121109962463379
Batch: 11, Loss: 7.733841896057129
Batch: 12, Loss: 7.931893825531006
Batch: 13, Loss: 7.9429097175598145
Batch: 14, Loss: 7.7183942794799805
Epoch 18 out of 2000Batch: 1, Loss: 7.908027648925781
Batch: 2, Loss: 7.793918132781982
Batch: 3, Loss: 7.762823581695557
Batch: 4, Loss: 8.222494125366211
Batch: 5, Loss: 7.663701057434082
Batch: 6, Loss: 7.920137405395508
Batch: 7, Loss: 8.017393112182617
Batch: 8, Loss: 8.034159660339355
Batch: 9, Loss: 8.025391578674316
Batch: 10, Loss: 8.136712074279785
Batch: 11, Loss: 7.705811500549316
Batch: 12, Loss: 7.869151592254639
Batch: 13, Loss: 8.000831604003906
Batch: 14, Loss: 7.758541584014893
Epoch 19 out of 2000Batch: 1, Loss: 7.942932605743408
Batch: 2, Loss: 8.160622596740723
Batch: 3, Loss: 7.881821632385254
Batch: 4, Loss: 8.195915222167969
Batch: 5, Loss: 7.745213031768799
Batch: 6, Loss: 8.139327049255371
Batch: 7, Loss: 8.125258445739746
Batch: 8, Loss: 7.879761219024658
Batch: 9, Loss: 7.792822360992432
Batch: 10, Loss: 7.754894733428955
Batch: 11, Loss: 8.00483512878418
Batch: 12, Loss: 8.019369125366211
Batch: 13, Loss: 8.192856788635254
Batch: 14, Loss: 8.08275318145752
Epoch 20 out of 2000Batch: 1, Loss: 7.696094036102295
Batch: 2, Loss: 8.26889705657959
Batch: 3, Loss: 8.103581428527832
Batch: 4, Loss: 7.797860145568848
Batch: 5, Loss: 8.034070014953613
Batch: 6, Loss: 8.176468849182129
Batch: 7, Loss: 7.698998928070068
Batch: 8, Loss: 7.907798767089844
Batch: 9, Loss: 7.845635890960693
Batch: 10, Loss: 7.761733531951904
Batch: 11, Loss: 7.920449256896973
Batch: 12, Loss: 7.856392860412598
Batch: 13, Loss: 7.750489711761475
Batch: 14, Loss: 7.274873733520508
Epoch 21 out of 2000Batch: 1, Loss: 7.895782947540283
Batch: 2, Loss: 7.596241474151611
Batch: 3, Loss: 7.900785446166992
Batch: 4, Loss: 7.865739822387695
Batch: 5, Loss: 7.933367729187012
Batch: 6, Loss: 8.136033058166504
Batch: 7, Loss: 7.66384220123291
Batch: 8, Loss: 7.717433452606201
Batch: 9, Loss: 8.252494812011719
Batch: 10, Loss: 7.9949469566345215
Batch: 11, Loss: 7.877534866333008
Batch: 12, Loss: 7.895975112915039
Batch: 13, Loss: 7.7609028816223145
Batch: 14, Loss: 8.293606758117676
Epoch 22 out of 2000Batch: 1, Loss: 8.172621726989746
Batch: 2, Loss: 7.574173927307129
Batch: 3, Loss: 8.043623924255371
Batch: 4, Loss: 7.776050090789795
Batch: 5, Loss: 7.782577037811279
Batch: 6, Loss: 7.899184226989746
Batch: 7, Loss: 7.798099994659424
Batch: 8, Loss: 7.711167812347412
Batch: 9, Loss: 7.713881969451904
Batch: 10, Loss: 7.7713117599487305
Batch: 11, Loss: 7.816153049468994
Batch: 12, Loss: 7.7850494384765625
Batch: 13, Loss: 7.539384365081787
Batch: 14, Loss: 7.825423240661621
Epoch 23 out of 2000Batch: 1, Loss: 7.897287368774414
Batch: 2, Loss: 7.905958652496338
Batch: 3, Loss: 7.757344722747803
Batch: 4, Loss: 7.627646446228027
Batch: 5, Loss: 7.72152853012085
Batch: 6, Loss: 7.826195240020752
Batch: 7, Loss: 8.080121040344238
Batch: 8, Loss: 8.25960636138916
Batch: 9, Loss: 7.853007793426514
Batch: 10, Loss: 7.962173938751221
Batch: 11, Loss: 7.92840051651001
Batch: 12, Loss: 7.766347408294678
Batch: 13, Loss: 8.052386283874512
Batch: 14, Loss: 7.57435417175293
Epoch 24 out of 2000Batch: 1, Loss: 7.547525405883789
Batch: 2, Loss: 8.140472412109375
Batch: 3, Loss: 7.636968612670898
Batch: 4, Loss: 7.709420680999756
Batch: 5, Loss: 7.494126796722412
Batch: 6, Loss: 7.994075298309326
Batch: 7, Loss: 7.8294172286987305
Batch: 8, Loss: 7.85117244720459
Batch: 9, Loss: 7.620445251464844
Batch: 10, Loss: 7.940559387207031
Batch: 11, Loss: 7.6461262702941895
Batch: 12, Loss: 8.172048568725586
Batch: 13, Loss: 7.830754280090332
Batch: 14, Loss: 7.918497562408447
Epoch 25 out of 2000Batch: 1, Loss: 7.643758773803711
Batch: 2, Loss: 7.090243339538574
Batch: 3, Loss: 7.2337541580200195
Batch: 4, Loss: 7.027431011199951
Batch: 5, Loss: 6.965003490447998
Batch: 6, Loss: 6.749851226806641
Batch: 7, Loss: 6.742945194244385
Batch: 8, Loss: 6.900846004486084
Batch: 9, Loss: 6.925375461578369
Batch: 10, Loss: 6.568729877471924
Batch: 11, Loss: 7.088710784912109
Batch: 12, Loss: 6.829679012298584
Batch: 13, Loss: 6.929009437561035
Batch: 14, Loss: 6.58795166015625
Epoch 26 out of 2000Batch: 1, Loss: 8.633538246154785
Batch: 2, Loss: 8.133443832397461
Batch: 3, Loss: 8.42988395690918
Batch: 4, Loss: 7.864134311676025
Batch: 5, Loss: 7.69320011138916
Batch: 6, Loss: 7.5321221351623535
Batch: 7, Loss: 7.984462738037109
Batch: 8, Loss: 7.291662693023682
Batch: 9, Loss: 7.8099284172058105
Batch: 10, Loss: 7.767948627471924
Batch: 11, Loss: 7.636945724487305
Batch: 12, Loss: 7.537145137786865
Batch: 13, Loss: 7.998318672180176
Batch: 14, Loss: 7.485981464385986
Epoch 27 out of 2000Batch: 1, Loss: 7.407718181610107
Batch: 2, Loss: 7.478379726409912
Batch: 3, Loss: 8.255635261535645
Batch: 4, Loss: 7.739867210388184
Batch: 5, Loss: 7.415920734405518
Batch: 6, Loss: 7.713293075561523
Batch: 7, Loss: 7.738606929779053
Batch: 8, Loss: 7.879271030426025
Batch: 9, Loss: 7.624266147613525
Batch: 10, Loss: 7.162899494171143
Batch: 11, Loss: 7.8107099533081055
Batch: 12, Loss: 7.604345798492432
Batch: 13, Loss: 7.9304728507995605
Batch: 14, Loss: 7.512510776519775
Epoch 28 out of 2000Batch: 1, Loss: 7.818088054656982
Batch: 2, Loss: 7.489032745361328
Batch: 3, Loss: 7.477642059326172
Batch: 4, Loss: 7.76746940612793
Batch: 5, Loss: 7.652566909790039
Batch: 6, Loss: 7.63895845413208
Batch: 7, Loss: 7.413259029388428
Batch: 8, Loss: 7.63342809677124
Batch: 9, Loss: 7.649043560028076
Batch: 10, Loss: 7.814393997192383
Batch: 11, Loss: 7.710982322692871
Batch: 12, Loss: 7.799316883087158
Batch: 13, Loss: 7.908840656280518
Batch: 14, Loss: 7.690427780151367
Epoch 29 out of 2000Batch: 1, Loss: 7.208197116851807
Batch: 2, Loss: 7.677475452423096
Batch: 3, Loss: 7.438896179199219
Batch: 4, Loss: 7.737471580505371
Batch: 5, Loss: 7.540366172790527
Batch: 6, Loss: 7.5323662757873535
Batch: 7, Loss: 7.730781555175781
Batch: 8, Loss: 7.681673049926758
Batch: 9, Loss: 7.736932754516602
Batch: 10, Loss: 7.439610958099365
Batch: 11, Loss: 7.891902446746826
Batch: 12, Loss: 7.950441837310791
Batch: 13, Loss: 7.599212169647217
Batch: 14, Loss: 7.889555931091309
Epoch 30 out of 2000Batch: 1, Loss: 6.698480129241943
Batch: 2, Loss: 7.170404434204102
Batch: 3, Loss: 7.035371780395508
Batch: 4, Loss: 7.2751240730285645
Batch: 5, Loss: 6.93674373626709
Batch: 6, Loss: 7.3199052810668945
Batch: 7, Loss: 6.780619144439697
Batch: 8, Loss: 6.839408874511719
Batch: 9, Loss: 6.60707426071167
Batch: 10, Loss: 7.100233554840088
Batch: 11, Loss: 6.726046085357666
Batch: 12, Loss: 6.7900848388671875
Batch: 13, Loss: 6.867264747619629
Batch: 14, Loss: 6.876457214355469
Epoch 31 out of 2000Batch: 1, Loss: 7.960165977478027
Batch: 2, Loss: 7.736069679260254
Batch: 3, Loss: 7.503546714782715
Batch: 4, Loss: 7.761797904968262
Batch: 5, Loss: 7.343226432800293
Batch: 6, Loss: 7.939368724822998
Batch: 7, Loss: 7.480332851409912
Batch: 8, Loss: 8.081514358520508
Batch: 9, Loss: 7.885415554046631
Batch: 10, Loss: 7.625922679901123
Batch: 11, Loss: 7.646022319793701
Batch: 12, Loss: 7.850436687469482
Batch: 13, Loss: 8.063338279724121
Batch: 14, Loss: 7.818145751953125
Epoch 32 out of 2000Batch: 1, Loss: 7.923928260803223
Batch: 2, Loss: 7.640509605407715
Batch: 3, Loss: 7.345317363739014
Batch: 4, Loss: 7.237403392791748
Batch: 5, Loss: 6.729519367218018
Batch: 6, Loss: 7.115402698516846
Batch: 7, Loss: 7.4971699714660645
Batch: 8, Loss: 7.150339126586914
Batch: 9, Loss: 6.8587870597839355
Batch: 10, Loss: 6.482772350311279
Batch: 11, Loss: 6.749338150024414
Batch: 12, Loss: 6.6209397315979
Batch: 13, Loss: 6.672293663024902
Batch: 14, Loss: 6.694264888763428
Epoch 33 out of 2000Batch: 1, Loss: 8.622614860534668
Batch: 2, Loss: 8.39599895477295
Batch: 3, Loss: 7.87960958480835
Batch: 4, Loss: 8.070436477661133
Batch: 5, Loss: 7.628142833709717
Batch: 6, Loss: 7.6593217849731445
Batch: 7, Loss: 7.842017650604248
Batch: 8, Loss: 7.4753031730651855
Batch: 9, Loss: 7.609384059906006
Batch: 10, Loss: 7.631045341491699
Batch: 11, Loss: 7.563052177429199
Batch: 12, Loss: 6.779371738433838
Batch: 13, Loss: 7.610367774963379
Batch: 14, Loss: 8.120607376098633
Epoch 34 out of 2000Batch: 1, Loss: 7.487742900848389
Batch: 2, Loss: 7.989434242248535
Batch: 3, Loss: 7.5557661056518555
Batch: 4, Loss: 7.886852741241455
Batch: 5, Loss: 7.481020450592041
Batch: 6, Loss: 7.91298246383667
Batch: 7, Loss: 7.73046350479126
Batch: 8, Loss: 7.620742321014404
Batch: 9, Loss: 7.335224151611328
Batch: 10, Loss: 7.537680625915527
Batch: 11, Loss: 7.692893981933594
Batch: 12, Loss: 7.706057548522949
Batch: 13, Loss: 7.594534873962402
Batch: 14, Loss: 7.666473865509033
Epoch 35 out of 2000Batch: 1, Loss: 7.985451698303223
Batch: 2, Loss: 7.34136438369751
Batch: 3, Loss: 8.012252807617188
Batch: 4, Loss: 7.564963340759277
Batch: 5, Loss: 7.7094035148620605
Batch: 6, Loss: 7.506202697753906
Batch: 7, Loss: 7.628141403198242
Batch: 8, Loss: 7.597513198852539
Batch: 9, Loss: 7.5472941398620605
Batch: 10, Loss: 7.358421325683594
Batch: 11, Loss: 7.813508033752441
Batch: 12, Loss: 7.549070358276367
Batch: 13, Loss: 7.565581321716309
Batch: 14, Loss: 7.492249011993408
Epoch 36 out of 2000Batch: 1, Loss: 6.609252452850342
Batch: 2, Loss: 7.365708827972412
Batch: 3, Loss: 6.948084354400635
Batch: 4, Loss: 6.871750831604004
Batch: 5, Loss: 7.267830848693848
Batch: 6, Loss: 6.919427871704102
Batch: 7, Loss: 6.872591972351074
Batch: 8, Loss: 7.041697978973389
Batch: 9, Loss: 6.8324995040893555
Batch: 10, Loss: 6.81899356842041
Batch: 11, Loss: 6.803180694580078
Batch: 12, Loss: 6.9568963050842285
Batch: 13, Loss: 6.513517379760742
Batch: 14, Loss: 6.983434200286865
Epoch 37 out of 2000Batch: 1, Loss: 8.219520568847656
Batch: 2, Loss: 8.184919357299805
Batch: 3, Loss: 7.74473762512207
Batch: 4, Loss: 7.7551727294921875
Batch: 5, Loss: 7.880995750427246
Batch: 6, Loss: 7.632931232452393
Batch: 7, Loss: 7.9178466796875
Batch: 8, Loss: 7.6561079025268555
Batch: 9, Loss: 7.87657356262207
Batch: 10, Loss: 7.739620208740234
Batch: 11, Loss: 7.486558437347412
Batch: 12, Loss: 7.368182182312012
Batch: 13, Loss: 7.755082607269287
Batch: 14, Loss: 7.217576026916504
Epoch 38 out of 2000Batch: 1, Loss: 7.402896404266357
Batch: 2, Loss: 7.321439266204834
Batch: 3, Loss: 7.53420352935791
Batch: 4, Loss: 7.809811592102051
Batch: 5, Loss: 7.855821132659912
Batch: 6, Loss: 7.961400985717773
Batch: 7, Loss: 7.672679424285889
Batch: 8, Loss: 7.622215270996094
Batch: 9, Loss: 7.37321662902832
Batch: 10, Loss: 7.041633129119873
Batch: 11, Loss: 7.633258819580078
Batch: 12, Loss: 7.203369617462158
Batch: 13, Loss: 7.535045146942139
Batch: 14, Loss: 7.6947855949401855
Epoch 39 out of 2000Batch: 1, Loss: 7.300292015075684
Batch: 2, Loss: 6.8596696853637695
Batch: 3, Loss: 7.272675514221191
Batch: 4, Loss: 7.356436252593994
Batch: 5, Loss: 7.434508323669434
Batch: 6, Loss: 7.196353435516357
Batch: 7, Loss: 7.258642196655273
Batch: 8, Loss: 7.063047409057617
Batch: 9, Loss: 7.037965774536133
Batch: 10, Loss: 7.076812267303467
Batch: 11, Loss: 7.038439750671387
Batch: 12, Loss: 7.180414199829102
Batch: 13, Loss: 7.130382061004639
Batch: 14, Loss: 6.990730285644531
Epoch 40 out of 2000Batch: 1, Loss: 7.7553391456604
Batch: 2, Loss: 7.365002155303955
Batch: 3, Loss: 7.5988922119140625
Batch: 4, Loss: 7.7907586097717285
Batch: 5, Loss: 7.495532035827637
Batch: 6, Loss: 7.506589412689209
Batch: 7, Loss: 7.782192707061768
Batch: 8, Loss: 7.57368803024292
Batch: 9, Loss: 7.462986469268799
Batch: 10, Loss: 7.281033039093018
Batch: 11, Loss: 7.771012306213379
Batch: 12, Loss: 7.743344306945801
Batch: 13, Loss: 7.645419597625732
Batch: 14, Loss: 7.318934917449951
Epoch 41 out of 2000Batch: 1, Loss: 7.1378068923950195
Batch: 2, Loss: 7.6430487632751465
Batch: 3, Loss: 7.797008991241455
Batch: 4, Loss: 7.478437900543213
Batch: 5, Loss: 7.629979133605957
Batch: 6, Loss: 7.589933395385742
Batch: 7, Loss: 7.635220527648926
Batch: 8, Loss: 7.808137893676758
Batch: 9, Loss: 7.389942646026611
Batch: 10, Loss: 7.961324214935303
Batch: 11, Loss: 7.635312557220459
Batch: 12, Loss: 7.595307350158691
Batch: 13, Loss: 8.078387260437012
Batch: 14, Loss: 7.1322245597839355
Epoch 42 out of 2000Batch: 1, Loss: 7.397344589233398
Batch: 2, Loss: 7.25728702545166
Batch: 3, Loss: 7.597677707672119
Batch: 4, Loss: 7.196158409118652
Batch: 5, Loss: 7.694732666015625
Batch: 6, Loss: 7.024880886077881
Batch: 7, Loss: 7.058206558227539
Batch: 8, Loss: 7.664847373962402
Batch: 9, Loss: 7.73433780670166
Batch: 10, Loss: 7.479039192199707
Batch: 11, Loss: 7.31046199798584
Batch: 12, Loss: 7.565159797668457
Batch: 13, Loss: 7.46840763092041
Batch: 14, Loss: 7.474876403808594
Epoch 43 out of 2000Batch: 1, Loss: 7.590305328369141
Batch: 2, Loss: 7.57390832901001
Batch: 3, Loss: 7.6874098777771
Batch: 4, Loss: 7.326111316680908
Batch: 5, Loss: 7.295412540435791
Batch: 6, Loss: 7.632351398468018
Batch: 7, Loss: 7.442176818847656
Batch: 8, Loss: 7.225893020629883
Batch: 9, Loss: 7.587707042694092
Batch: 10, Loss: 7.563149929046631
Batch: 11, Loss: 7.588900566101074
Batch: 12, Loss: 7.617690086364746
Batch: 13, Loss: 7.496392726898193
Batch: 14, Loss: 6.955493927001953
Epoch 44 out of 2000Batch: 1, Loss: 7.324615478515625
Batch: 2, Loss: 6.927003383636475
Batch: 3, Loss: 7.197373867034912
Batch: 4, Loss: 7.417144298553467
Batch: 5, Loss: 7.104475498199463
Batch: 6, Loss: 6.997908115386963
Batch: 7, Loss: 6.915808200836182
Batch: 8, Loss: 7.134610652923584
Batch: 9, Loss: 7.348791599273682
Batch: 10, Loss: 7.127333641052246
Batch: 11, Loss: 6.797506332397461
Batch: 12, Loss: 6.499114513397217
Batch: 13, Loss: 6.4912495613098145
Batch: 14, Loss: 7.096771240234375
Epoch 45 out of 2000Batch: 1, Loss: 7.994129180908203
Batch: 2, Loss: 7.017436981201172
Batch: 3, Loss: 7.316004276275635
Batch: 4, Loss: 7.750971794128418
Batch: 5, Loss: 7.488574504852295
Batch: 6, Loss: 7.344296932220459
Batch: 7, Loss: 7.527384281158447
Batch: 8, Loss: 7.544767379760742
Batch: 9, Loss: 7.917145252227783
Batch: 10, Loss: 7.439125061035156
Batch: 11, Loss: 7.809083461761475
Batch: 12, Loss: 7.29249906539917
Batch: 13, Loss: 7.595306396484375
Batch: 14, Loss: 7.388632297515869
Epoch 46 out of 2000Batch: 1, Loss: 6.394713401794434
Batch: 2, Loss: 6.262265205383301
Batch: 3, Loss: 6.551106929779053
Batch: 4, Loss: 5.982705116271973
Batch: 5, Loss: 5.805661678314209
Batch: 6, Loss: 6.2000017166137695
Batch: 7, Loss: 6.248691558837891
Batch: 8, Loss: 5.989522457122803
Batch: 9, Loss: 6.314854621887207
Batch: 10, Loss: 6.319121360778809
Batch: 11, Loss: 6.493471145629883
Batch: 12, Loss: 6.211798191070557
Batch: 13, Loss: 6.1902570724487305
Batch: 14, Loss: 6.360259532928467
Epoch 47 out of 2000Batch: 1, Loss: 7.682934761047363
Batch: 2, Loss: 7.91456413269043
Batch: 3, Loss: 8.102523803710938
Batch: 4, Loss: 8.699057579040527
Batch: 5, Loss: 8.137472152709961
Batch: 6, Loss: 7.583312511444092
Batch: 7, Loss: 7.6669440269470215
Batch: 8, Loss: 7.858158588409424
Batch: 9, Loss: 7.613863945007324
Batch: 10, Loss: 7.325061798095703
Batch: 11, Loss: 8.052736282348633
Batch: 12, Loss: 7.346005916595459
Batch: 13, Loss: 7.444416046142578
Batch: 14, Loss: 7.300511360168457
Epoch 48 out of 2000Batch: 1, Loss: 7.793323040008545
Batch: 2, Loss: 7.379281997680664
Batch: 3, Loss: 7.212667465209961
Batch: 4, Loss: 7.376772880554199
Batch: 5, Loss: 7.6684980392456055
Batch: 6, Loss: 7.785469055175781
Batch: 7, Loss: 7.499057292938232
Batch: 8, Loss: 7.830666542053223
Batch: 9, Loss: 7.532487392425537
Batch: 10, Loss: 7.698414325714111
Batch: 11, Loss: 8.118769645690918
Batch: 12, Loss: 7.733436107635498
Batch: 13, Loss: 7.420522212982178
Batch: 14, Loss: 7.044177055358887
Epoch 49 out of 2000Batch: 1, Loss: 6.766819000244141
Batch: 2, Loss: 7.193127155303955
Batch: 3, Loss: 6.98573637008667
Batch: 4, Loss: 6.816336631774902
Batch: 5, Loss: 7.1267313957214355
Batch: 6, Loss: 6.940865516662598
Batch: 7, Loss: 7.145584583282471
Batch: 8, Loss: 6.9040422439575195
Batch: 9, Loss: 6.958603382110596
Batch: 10, Loss: 6.895288467407227
Batch: 11, Loss: 6.855592250823975
Batch: 12, Loss: 6.705226898193359
Batch: 13, Loss: 7.027975559234619
Batch: 14, Loss: 6.962980270385742
Epoch 50 out of 2000Batch: 1, Loss: 7.366079330444336
Batch: 2, Loss: 7.670934200286865
Batch: 3, Loss: 7.389729976654053
Batch: 4, Loss: 7.526963233947754
Batch: 5, Loss: 7.5768914222717285
Batch: 6, Loss: 7.891210556030273
Batch: 7, Loss: 7.470196723937988
Batch: 8, Loss: 7.520089149475098
Batch: 9, Loss: 7.44631290435791
Batch: 10, Loss: 7.531017780303955
Batch: 11, Loss: 7.33204460144043
Batch: 12, Loss: 7.364738464355469
Batch: 13, Loss: 7.318597316741943
Batch: 14, Loss: 7.727908611297607
Epoch 51 out of 2000Batch: 1, Loss: 7.579535961151123
Batch: 2, Loss: 7.604560852050781
Batch: 3, Loss: 7.541243076324463
Batch: 4, Loss: 7.261159420013428
Batch: 5, Loss: 7.262716770172119
Batch: 6, Loss: 7.501424312591553
Batch: 7, Loss: 7.297022819519043
Batch: 8, Loss: 7.658252716064453
Batch: 9, Loss: 7.553589344024658
Batch: 10, Loss: 7.430466175079346
Batch: 11, Loss: 7.486516952514648
Batch: 12, Loss: 7.873631954193115
Batch: 13, Loss: 7.422300338745117
Batch: 14, Loss: 7.284532070159912
Epoch 52 out of 2000Batch: 1, Loss: 7.031269073486328
Batch: 2, Loss: 7.848986625671387
Batch: 3, Loss: 7.6403422355651855
Batch: 4, Loss: 7.121187210083008
Batch: 5, Loss: 7.6188764572143555
Batch: 6, Loss: 7.522540092468262
Batch: 7, Loss: 7.258356094360352
Batch: 8, Loss: 7.619215965270996
Batch: 9, Loss: 7.4598846435546875
Batch: 10, Loss: 7.150884628295898
Batch: 11, Loss: 7.335002899169922
Batch: 12, Loss: 7.523345470428467
Batch: 13, Loss: 7.814327239990234
Batch: 14, Loss: 7.398917198181152
Epoch 53 out of 2000Batch: 1, Loss: 7.4176459312438965
Batch: 2, Loss: 7.385398864746094
Batch: 3, Loss: 7.05951452255249
Batch: 4, Loss: 7.600537300109863
Batch: 5, Loss: 7.561263561248779
Batch: 6, Loss: 7.257518768310547
Batch: 7, Loss: 7.217218399047852
Batch: 8, Loss: 7.461880207061768
Batch: 9, Loss: 7.308581352233887
Batch: 10, Loss: 7.725757122039795
Batch: 11, Loss: 7.558960914611816
Batch: 12, Loss: 7.115146636962891
Batch: 13, Loss: 7.797519207000732
Batch: 14, Loss: 7.506619453430176
Epoch 54 out of 2000Batch: 1, Loss: 7.286978244781494
Batch: 2, Loss: 7.032135963439941
Batch: 3, Loss: 7.53452730178833
Batch: 4, Loss: 6.807910919189453
Batch: 5, Loss: 7.245662212371826
Batch: 6, Loss: 7.946627616882324
Batch: 7, Loss: 7.545712471008301
Batch: 8, Loss: 7.547688007354736
Batch: 9, Loss: 7.243282318115234
Batch: 10, Loss: 7.200174331665039
Batch: 11, Loss: 7.306236267089844
Batch: 12, Loss: 7.968938827514648
Batch: 13, Loss: 7.46914529800415
Batch: 14, Loss: 7.6343488693237305
Epoch 55 out of 2000Batch: 1, Loss: 7.600791931152344
Batch: 2, Loss: 7.05237340927124
Batch: 3, Loss: 7.44821834564209
Batch: 4, Loss: 7.497063636779785
Batch: 5, Loss: 7.2092719078063965
Batch: 6, Loss: 7.608808994293213
Batch: 7, Loss: 7.035467624664307
Batch: 8, Loss: 7.301912307739258
Batch: 9, Loss: 8.078886985778809
Batch: 10, Loss: 7.499397277832031
Batch: 11, Loss: 7.2697577476501465
Batch: 12, Loss: 7.170557975769043
Batch: 13, Loss: 7.738405227661133
Batch: 14, Loss: 7.006256103515625
Epoch 56 out of 2000Batch: 1, Loss: 7.648859977722168
Batch: 2, Loss: 7.656069278717041
Batch: 3, Loss: 7.4268999099731445
Batch: 4, Loss: 7.939401626586914
Batch: 5, Loss: 7.451574325561523
Batch: 6, Loss: 7.402614593505859
Batch: 7, Loss: 7.402265548706055
Batch: 8, Loss: 7.370781421661377
Batch: 9, Loss: 7.94379997253418
Batch: 10, Loss: 7.406612396240234
Batch: 11, Loss: 6.903968811035156
Batch: 12, Loss: 7.233881950378418
Batch: 13, Loss: 7.286665439605713
Batch: 14, Loss: 6.66563606262207
Epoch 57 out of 2000Batch: 1, Loss: 7.765999794006348
Batch: 2, Loss: 7.374444007873535
Batch: 3, Loss: 7.620251178741455
Batch: 4, Loss: 7.400959014892578
Batch: 5, Loss: 7.290789604187012
Batch: 6, Loss: 7.053805828094482
Batch: 7, Loss: 7.325307369232178
Batch: 8, Loss: 7.308426856994629
Batch: 9, Loss: 7.278383731842041
Batch: 10, Loss: 7.0895209312438965
Batch: 11, Loss: 7.742935657501221
Batch: 12, Loss: 7.570366859436035
Batch: 13, Loss: 7.507164001464844
Batch: 14, Loss: 6.81024169921875
Epoch 58 out of 2000Batch: 1, Loss: 7.071238040924072
Batch: 2, Loss: 7.317084312438965
Batch: 3, Loss: 7.461686134338379
Batch: 4, Loss: 7.108959197998047
Batch: 5, Loss: 7.8071370124816895
Batch: 6, Loss: 7.280014991760254
Batch: 7, Loss: 7.528170585632324
Batch: 8, Loss: 7.0792741775512695
Batch: 9, Loss: 8.009133338928223
Batch: 10, Loss: 7.531156539916992
Batch: 11, Loss: 7.343084335327148
Batch: 12, Loss: 7.085585117340088
Batch: 13, Loss: 7.1786651611328125
Batch: 14, Loss: 7.884459018707275
Epoch 59 out of 2000Batch: 1, Loss: 6.971447467803955
Batch: 2, Loss: 7.357208728790283
Batch: 3, Loss: 7.675997734069824
Batch: 4, Loss: 7.160478591918945
Batch: 5, Loss: 7.602113723754883
Batch: 6, Loss: 7.6596269607543945
Batch: 7, Loss: 6.876770973205566
Batch: 8, Loss: 7.26146125793457
Batch: 9, Loss: 7.543468475341797
Batch: 10, Loss: 7.677295684814453
Batch: 11, Loss: 7.521183967590332
Batch: 12, Loss: 7.652825832366943
Batch: 13, Loss: 7.593069553375244
Batch: 14, Loss: 7.201169967651367
Epoch 60 out of 2000Batch: 1, Loss: 7.432466506958008
Batch: 2, Loss: 7.240054607391357
Batch: 3, Loss: 7.186990261077881
Batch: 4, Loss: 7.274890899658203
Batch: 5, Loss: 7.260390281677246
Batch: 6, Loss: 7.338306903839111
Batch: 7, Loss: 7.381532669067383
Batch: 8, Loss: 7.710775375366211
Batch: 9, Loss: 7.011302471160889
Batch: 10, Loss: 7.343836307525635
Batch: 11, Loss: 7.235107421875
Batch: 12, Loss: 7.523616313934326
Batch: 13, Loss: 6.875869274139404
Batch: 14, Loss: 7.006814479827881
Epoch 61 out of 2000Batch: 1, Loss: 6.91378927230835
Batch: 2, Loss: 7.1332597732543945
Batch: 3, Loss: 6.911494731903076
Batch: 4, Loss: 6.743350982666016
Batch: 5, Loss: 6.9272589683532715
Batch: 6, Loss: 6.866818904876709
Batch: 7, Loss: 6.834436893463135
Batch: 8, Loss: 7.092511177062988
Batch: 9, Loss: 6.999369144439697
Batch: 10, Loss: 6.753415584564209
Batch: 11, Loss: 6.6411590576171875
Batch: 12, Loss: 6.957487106323242
Batch: 13, Loss: 6.544041156768799
Batch: 14, Loss: 6.775254249572754
Epoch 62 out of 2000Batch: 1, Loss: 7.333604335784912
Batch: 2, Loss: 6.410362243652344
Batch: 3, Loss: 7.054166793823242
Batch: 4, Loss: 6.374022960662842
Batch: 5, Loss: 6.699273586273193
Batch: 6, Loss: 7.0522894859313965
Batch: 7, Loss: 6.89964485168457
Batch: 8, Loss: 6.870771408081055
Batch: 9, Loss: 6.782897472381592
Batch: 10, Loss: 6.3673577308654785
Batch: 11, Loss: 6.760152339935303
Batch: 12, Loss: 6.759187698364258
Batch: 13, Loss: 7.096804141998291
Batch: 14, Loss: 7.171116828918457
Epoch 63 out of 2000Batch: 1, Loss: 6.770739555358887
Batch: 2, Loss: 6.95455265045166
Batch: 3, Loss: 7.089184284210205
Batch: 4, Loss: 6.871710777282715
Batch: 5, Loss: 7.352537631988525
Batch: 6, Loss: 6.585887908935547
Batch: 7, Loss: 6.5768961906433105
Batch: 8, Loss: 6.758606433868408
Batch: 9, Loss: 6.779995441436768
Batch: 10, Loss: 7.08689546585083
Batch: 11, Loss: 6.782513618469238
Batch: 12, Loss: 6.707918167114258
Batch: 13, Loss: 6.548192977905273
Batch: 14, Loss: 6.561730861663818
Epoch 64 out of 2000Batch: 1, Loss: 7.026318550109863
Batch: 2, Loss: 6.747451305389404
Batch: 3, Loss: 6.983273983001709
Batch: 4, Loss: 6.631645679473877
Batch: 5, Loss: 6.959066390991211
Batch: 6, Loss: 6.727052211761475
Batch: 7, Loss: 7.012659549713135
Batch: 8, Loss: 6.871471405029297
Batch: 9, Loss: 6.583921909332275
Batch: 10, Loss: 6.893016338348389
Batch: 11, Loss: 6.523111343383789
Batch: 12, Loss: 6.7873945236206055
Batch: 13, Loss: 6.8599467277526855
Batch: 14, Loss: 5.907695293426514
Epoch 65 out of 2000Batch: 1, Loss: 7.502610206604004
Batch: 2, Loss: 7.566674709320068
Batch: 3, Loss: 7.363464832305908
Batch: 4, Loss: 7.302368640899658
Batch: 5, Loss: 7.77941370010376
Batch: 6, Loss: 7.478716850280762
Batch: 7, Loss: 7.511263370513916
Batch: 8, Loss: 6.930612087249756
Batch: 9, Loss: 7.297153949737549
Batch: 10, Loss: 7.669095039367676
Batch: 11, Loss: 7.473089694976807
Batch: 12, Loss: 7.2382893562316895
Batch: 13, Loss: 7.76314115524292
Batch: 14, Loss: 7.14797306060791
Epoch 66 out of 2000Batch: 1, Loss: 7.18959379196167
Batch: 2, Loss: 7.415387153625488
Batch: 3, Loss: 7.393677711486816
Batch: 4, Loss: 7.197296619415283
Batch: 5, Loss: 7.594670295715332
Batch: 6, Loss: 7.517486095428467
Batch: 7, Loss: 7.6286773681640625
Batch: 8, Loss: 7.598445415496826
Batch: 9, Loss: 7.203334331512451
Batch: 10, Loss: 7.540720462799072
Batch: 11, Loss: 7.1956892013549805
Batch: 12, Loss: 7.662097454071045
Batch: 13, Loss: 7.708444118499756
Batch: 14, Loss: 7.743168830871582
Epoch 67 out of 2000Batch: 1, Loss: 7.365479469299316
Batch: 2, Loss: 7.416244983673096
Batch: 3, Loss: 7.393946170806885
Batch: 4, Loss: 7.095812797546387
Batch: 5, Loss: 7.11737060546875
Batch: 6, Loss: 7.265783786773682