-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seq_model.py
239 lines (211 loc) · 11.3 KB
/
seq2seq_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import tensorflow as tf
from verbose_model import VBModel
from tensorflow.python.layers import core as layers_core
import numpy as np
class Config:
"""Holds model hyperparams and data information.
The config class is used to store various hyperparameters and dataset
information parameters. Model objects are passed a Config() object at
instantiation.
"""
dropout = 0.0
hidden_size = 32
batch_size = 32
n_epochs = 142
lr = 0.01
n_layers = 1
beam_width = 10
reg_weight = 0.00
max_gradient_norm = 5.0
def __init__(self, embed_size, vocab_size, max_encoder_timesteps, max_decoder_timesteps,
pad_token, start_token, end_token, attention, bidirectional, id2tok, beamsearch=False,
mode='TRAIN', large=True):
self.embed_size = embed_size
self.vocab_size = vocab_size
self.max_encoder_timesteps = max_encoder_timesteps
self.max_decoder_timesteps = max_decoder_timesteps
self.pad_token = pad_token
self.start_token = start_token
self.end_token = end_token
self.attention = attention
self.bidirectional = bidirectional
self.mode = mode
self.beamsearch = beamsearch
self.id2tok = id2tok
if large:
self.dropout = 0.2
self.batch_size = 64
self.hidden_size = 256
self.n_layers = 2
class Seq2SeqModel(VBModel):
def add_placeholders(self):
self.encoder_input_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_encoder_timesteps),
name="encoder_in")
self.decoder_input_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_decoder_timesteps + 1),
name="decoder_in")
self.labels_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_decoder_timesteps + 1),
name="labels")
self.dropout_placeholder = tf.placeholder(tf.float32, shape=(),
name='dropout')
self.encoder_lengths_placeholder = tf.placeholder(tf.int32, shape=(None,),
name='enc_lengths')
self.decoder_lengths_placeholder = tf.placeholder(tf.int32, shape=(None,),
name='dec_lengths')
self.dynamic_batch_size = tf.placeholder(tf.int32, shape=(), name='dynamic_batch_size')
def create_feed_dict(self, encoder_inputs_batch, decoder_inputs_batch,
labels_batch=None, encoder_lengths_batch=None, decoder_lengths_batch=None,
batch_size=None, dropout=0.0):
feed_dict = {
self.encoder_input_placeholder: encoder_inputs_batch,
self.decoder_input_placeholder: decoder_inputs_batch,
self.dropout_placeholder: dropout
}
if labels_batch is not None:
feed_dict[self.labels_placeholder] = labels_batch
if encoder_lengths_batch is not None:
feed_dict[self.encoder_lengths_placeholder] = encoder_lengths_batch
if decoder_lengths_batch is not None:
feed_dict[self.decoder_lengths_placeholder] = decoder_lengths_batch
if batch_size is not None:
feed_dict[self.dynamic_batch_size] = batch_size
return feed_dict
def add_embedding(self):
pretrained_embeddings = tf.Variable(self.pretrained_embeddings, dtype=tf.float32)
self.variable_summaries(pretrained_embeddings, name='embeddings')
encoder_embeddings = tf.nn.embedding_lookup(
pretrained_embeddings, self.encoder_input_placeholder)
decoder_embeddings = tf.nn.embedding_lookup(
pretrained_embeddings, self.decoder_input_placeholder)
encoder_embeddings = tf.cast(encoder_embeddings, tf.float32)
decoder_embeddings = tf.cast(decoder_embeddings, tf.float32)
return encoder_embeddings, decoder_embeddings
def get_lstm_cell(self):
lstm = tf.nn.rnn_cell.LSTMCell(self.config.hidden_size)
#lstm = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=1.0 - self.dropout_placeholder)
return lstm
def add_encoder(self, encoder_in):
# encoder_lengths_constant = tf.fill(tf.shape(self.encoder_lengths_placeholder),
# self.config.max_encoder_timesteps)
if self.config.bidirectional:
# forward lstm
forward_cells = [self.get_lstm_cell() for _ in range(self.config.n_layers)]
# backward lstm
backward_cells = [self.get_lstm_cell() for _ in range(self.config.n_layers)]
encoder_outputs, fw_state, bw_state = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
forward_cells, backward_cells, encoder_in,
dtype=tf.float32
)
for lstm in forward_cells:
kernel, bias = lstm.variables
self.variable_summaries(kernel, name='lstm_kernel')
self.variable_summaries(bias, name='lstm_bias')
for lstm in backward_cells:
kernel, bias = lstm.variables
self.variable_summaries(kernel, name='lstm_kernel')
self.variable_summaries(bias, name='lstm_bias')
encoder_state = fw_state
else:
encoder_cell = tf.nn.rnn_cell.MultiRNNCell([self.get_lstm_cell() for _ in range(self.config.n_layers)])
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
cell=encoder_cell, inputs=encoder_in,
# sequence_length=encoder_lengths_constant,
dtype=tf.float32
)
print(encoder_state)
return encoder_outputs, encoder_state
def add_attention(self, encoder_outputs, encoder_state, decoder_cell):
if self.config.attention:
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
self.config.hidden_size, encoder_outputs)
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
decoder_cell, attention_mechanism, attention_layer_size=self.config.hidden_size
)
decoder_initial_state = decoder_cell.zero_state(self.dynamic_batch_size, tf.float32).clone(
cell_state=encoder_state
)
else:
decoder_initial_state = encoder_state
return decoder_cell, decoder_initial_state
def add_decoder(self, decoder_in, encoder_outputs, encoder_state):
lstm_cells = [self.get_lstm_cell() for _ in range(self.config.n_layers)]
decoder_cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cells)
decoder_cell, decoder_initial_state = self.add_attention(encoder_outputs, encoder_state, decoder_cell)
outputs, state = tf.nn.dynamic_rnn(
cell=decoder_cell, inputs=decoder_in,
# sequence_length=encoder_lengths_constant,
initial_state=decoder_initial_state,
dtype=tf.float32
)
for lstm in lstm_cells:
kernel, bias = lstm.variables
self.variable_summaries(kernel, name='lstm_kernel')
self.variable_summaries(bias, name='lstm_bias')
logits = tf.layers.dense(outputs, self.config.vocab_size)
return logits
def add_prediction_op(self):
encoder_in, decoder_in = self.add_embedding()
with tf.variable_scope('encoder'):
encoder_outputs, encoder_state = self.add_encoder(encoder_in)
with tf.variable_scope('decoder'):
logits = self.add_decoder(decoder_in, encoder_outputs, encoder_state)
assert (logits.get_shape()[2] == self.config.vocab_size)
return logits
def add_loss_op(self, pred):
mask = tf.sequence_mask(self.decoder_lengths_placeholder + 1, self.config.max_decoder_timesteps + 1)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=self.labels_placeholder, logits=pred)
loss = tf.reduce_mean(tf.boolean_mask(loss, mask))
return loss
def add_training_op(self, loss):
train_op = tf.train.AdamOptimizer().minimize((loss))
return train_op
def greedy_batch_decode(self, sess, encoder_inputs_batch, start_token, end_token):
decoder_batch = np.full(
(encoder_inputs_batch.shape[0], 2 * self.config.max_decoder_timestep + 1), start_token)
for i in range(decoder_batch.shape[1]):
predictions, _ = self.predict_on_batch(sess, encoder_inputs_batch,
decoder_batch, batch_size=encoder_inputs_batch.shape[0])
decoder_batch[:, i + 1] = predictions[:, i]
return decoder_batch
def predict_on_batch(self, sess, encoder_inputs_batch, decoder_inputs_batch, labels_batch=None,
encoder_lengths_batch=None, decoder_lengths_batch=None, batch_size=None):
"""Make predictions for the provided batch of data
Args:
sess: tf.Session()
input_batch: np.ndarray of shape (n_samples, n_features)
Returns:
predictions: np.ndarray of shape (n_samples, n_classes)
"""
feed = self.create_feed_dict(encoder_inputs_batch, decoder_inputs_batch, labels_batch=labels_batch,
encoder_lengths_batch=encoder_lengths_batch,
decoder_lengths_batch=decoder_lengths_batch,
batch_size=batch_size)
if labels_batch is None:
predictions = sess.run([tf.argmax(self.pred, axis=2)], feed_dict=feed)
loss = 0
else:
predictions, loss = sess.run([tf.argmax(self.pred, axis=2), self.loss], feed_dict=feed)
return predictions, loss
def train_on_batch(self, sess, encoder_inputs_batch, decoder_inputs_batch,
encoder_lengths_batch, decoder_lengths_batch, labels_batch, batch_size):
merge = tf.summary.merge_all()
feed = self.create_feed_dict(encoder_inputs_batch, decoder_inputs_batch, labels_batch=labels_batch,
encoder_lengths_batch=encoder_lengths_batch,
decoder_lengths_batch=decoder_lengths_batch,
batch_size=batch_size, dropout=self.config.dropout)
predictions, _, loss, summaries = sess.run([tf.argmax(self.pred, axis=2), self.train_op, self.loss, merge], feed_dict=feed)
return predictions, loss, summaries
def __init__(self, config, pretrained_embeddings, report=None):
super(Seq2SeqModel, self).__init__(config, report)
self.pretrained_embeddings = pretrained_embeddings
# Defining placeholders.
self.encoder_input_placeholder = None
self.decoder_input_placeholder = None
self.labels_placeholder = None
self.dropout_placeholder = None
self.encoder_lengths_placeholder = None
self.decoder_lengths_placeholder = None
self.dynamic_batch_size = None
self.build()
def preprocess_sequence_data(self, examples):
return examples