diff --git a/CMakeLists.txt b/CMakeLists.txt index cae904de..f0b58bfa 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -36,6 +36,7 @@ set_base_platform_files(RESULT FLEECE_BASE_PLATFORM_SRC) set(FLEECE_BASE_SRC Fleece/Support/Backtrace.cc Fleece/Support/FleeceException.cc Fleece/Support/InstanceCounted.cc + Fleece/Support/NumConversion.cc Fleece/Support/ParseDate.cc Fleece/Support/RefCounted.cc Fleece/Support/Writer.cc @@ -44,6 +45,7 @@ set(FLEECE_BASE_SRC Fleece/Support/Backtrace.cc Fleece/Support/varint.cc vendor/libb64/cdecode.c vendor/libb64/cencode.c + vendor/SwiftDtoa/SwiftDtoa.cc ${FLEECE_BASE_PLATFORM_SRC}) add_library(FleeceBase STATIC ${FLEECE_BASE_SRC}) @@ -77,5 +79,6 @@ foreach(platform Fleece FleeceStatic FleeceBase fleeceTool FleeceTests) Experimental vendor/libb64 vendor/jsonsl + vendor/SwiftDtoa ) endforeach() diff --git a/Fleece.xcodeproj/project.pbxproj b/Fleece.xcodeproj/project.pbxproj index 2a224209..b01d6a64 100644 --- a/Fleece.xcodeproj/project.pbxproj +++ b/Fleece.xcodeproj/project.pbxproj @@ -132,6 +132,11 @@ 27D7218B1F8E8EEA00AA4458 /* FleeceException.hh in Headers */ = {isa = PBXBuildFile; fileRef = 275CED511D3EF7BE001DE46C /* FleeceException.hh */; }; 27D7218C1F8E8EEA00AA4458 /* SharedKeys.hh in Headers */ = {isa = PBXBuildFile; fileRef = 27E3DD411DB6A14200F2872D /* SharedKeys.hh */; }; 27D721961F8E900400AA4458 /* libFleeceMutableObjC.a in Frameworks */ = {isa = PBXBuildFile; fileRef = 27D721901F8E8EEA00AA4458 /* libFleeceMutableObjC.a */; }; + 27D965682339595700F4A51C /* NumConversion.hh in Headers */ = {isa = PBXBuildFile; fileRef = 27D965662339595700F4A51C /* NumConversion.hh */; }; + 27D965692339595700F4A51C /* NumConversion.cc in Sources */ = {isa = PBXBuildFile; fileRef = 27D965672339595700F4A51C /* NumConversion.cc */; }; + 27D9656D23397EF700F4A51C /* SwiftDtoa.h in Headers */ = {isa = PBXBuildFile; fileRef = 27D9656B23397EF700F4A51C /* SwiftDtoa.h */; }; + 27D9656E23397EF700F4A51C /* SwiftDtoa.cc in Sources */ = {isa = PBXBuildFile; fileRef = 27D9656C23397EF700F4A51C /* SwiftDtoa.cc */; settings = {COMPILER_FLAGS = "-Wno-implicit-int-conversion -Wno-shadow -Wno-shorten-64-to-32"; }; }; + 27D96573233AB44000F4A51C /* NumericTests.cc in Sources */ = {isa = PBXBuildFile; fileRef = 27D96572233AB44000F4A51C /* NumericTests.cc */; }; 27DE2E922125FA1700123597 /* varint.cc in Sources */ = {isa = PBXBuildFile; fileRef = 270FA2761BF53CEA005DCB13 /* varint.cc */; }; 27DE2E962125FA1700123597 /* RefCounted.cc in Sources */ = {isa = PBXBuildFile; fileRef = 274D8254209D1764008BB39F /* RefCounted.cc */; }; 27DE2E9D2125FA1700123597 /* slice+CoreFoundation.cc in Sources */ = {isa = PBXBuildFile; fileRef = 272E5A601BF91F6C00848580 /* slice+CoreFoundation.cc */; }; @@ -424,6 +429,11 @@ 27D721241F8C4B7500AA4458 /* MDictIterator.hh */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = MDictIterator.hh; sourceTree = ""; }; 27D721501F8D8F3F00AA4458 /* MContext.hh */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = MContext.hh; sourceTree = ""; }; 27D721901F8E8EEA00AA4458 /* libFleeceMutableObjC.a */ = {isa = PBXFileReference; explicitFileType = archive.ar; includeInIndex = 0; path = libFleeceMutableObjC.a; sourceTree = BUILT_PRODUCTS_DIR; }; + 27D965662339595700F4A51C /* NumConversion.hh */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = NumConversion.hh; sourceTree = ""; }; + 27D965672339595700F4A51C /* NumConversion.cc */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = NumConversion.cc; sourceTree = ""; }; + 27D9656B23397EF700F4A51C /* SwiftDtoa.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = SwiftDtoa.h; sourceTree = ""; }; + 27D9656C23397EF700F4A51C /* SwiftDtoa.cc */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = SwiftDtoa.cc; sourceTree = ""; }; + 27D96572233AB44000F4A51C /* NumericTests.cc */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = NumericTests.cc; sourceTree = ""; }; 27DE2EDF2125FA1700123597 /* libfleeceBase.a */ = {isa = PBXFileReference; explicitFileType = archive.ar; includeInIndex = 0; path = libfleeceBase.a; sourceTree = BUILT_PRODUCTS_DIR; }; 27DFAE10219F83AB00DF57EB /* InstanceCounted.hh */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = InstanceCounted.hh; sourceTree = ""; }; 27DFAE11219F83AB00DF57EB /* InstanceCounted.cc */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = InstanceCounted.cc; sourceTree = ""; }; @@ -584,6 +594,7 @@ 27298E3E1C00F8A9000CFBA8 /* vendor */ = { isa = PBXGroup; children = ( + 27D9656A23397EBD00F4A51C /* SwiftDtoa */, 27E3DD461DB6B86000F2872D /* catch */, 27298E3F1C00F8A9000CFBA8 /* jsonsl */, 277015321D596436008BADD7 /* libb64 */, @@ -613,6 +624,7 @@ 276D15481E008E7A00543B1B /* JSON5Tests.cc */, 27298E771C01A461000CFBA8 /* PerfTests.cc */, 274D824E209A8D01008BB39F /* MutableTests.cc */, + 27D96572233AB44000F4A51C /* NumericTests.cc */, 272E5A5E1BF91DBE00848580 /* ObjCTests.mm */, 27AEFAC4210913C500106ED8 /* DeltaTests.cc */, 27C8DF09208521B600A99BFC /* HashTreeTests.cc */, @@ -739,6 +751,8 @@ 276D15451E007D3000543B1B /* JSON5.hh */, 27FE87F11E53E43200C5CF3F /* JSONEncoder.cc */, 27FE87F21E53E43200C5CF3F /* JSONEncoder.hh */, + 27D965662339595700F4A51C /* NumConversion.hh */, + 27D965672339595700F4A51C /* NumConversion.cc */, 2700BB9B217E8C0C00797537 /* ParseDate.cc */, 2700BB9A217E8C0C00797537 /* ParseDate.hh */, 271507ED2122381E005FE6E8 /* PlatformCompat.hh */, @@ -822,6 +836,15 @@ path = ObjC; sourceTree = ""; }; + 27D9656A23397EBD00F4A51C /* SwiftDtoa */ = { + isa = PBXGroup; + children = ( + 27D9656B23397EF700F4A51C /* SwiftDtoa.h */, + 27D9656C23397EF700F4A51C /* SwiftDtoa.cc */, + ); + path = SwiftDtoa; + sourceTree = ""; + }; 27DE2EE22125FAC600123597 /* Frameworks */ = { isa = PBXGroup; children = ( @@ -966,6 +989,7 @@ 27DE2EBD2125FA1700123597 /* Array.hh in Headers */, 27DE2EBE2125FA1700123597 /* DeepIterator.hh in Headers */, 27DE2EBF2125FA1700123597 /* MArray.hh in Headers */, + 27D9656D23397EF700F4A51C /* SwiftDtoa.h in Headers */, 27DE2EC02125FA1700123597 /* Dict.hh in Headers */, 27DE2EC12125FA1700123597 /* StringTable.hh in Headers */, 27DE2EC22125FA1700123597 /* JSONEncoder.hh in Headers */, @@ -994,6 +1018,7 @@ 27C59BA4212F898F003C8492 /* SmallVector.hh in Headers */, 27DE2ED72125FA1700123597 /* Path.hh in Headers */, 27DE2ED82125FA1700123597 /* HeapDict.hh in Headers */, + 27D965682339595700F4A51C /* NumConversion.hh in Headers */, 27DE2ED92125FA1700123597 /* HeapValue.hh in Headers */, 27DE2EDA2125FA1700123597 /* FleeceException.hh in Headers */, 27DE2EDB2125FA1700123597 /* SharedKeys.hh in Headers */, @@ -1251,6 +1276,7 @@ 277F45B4208FDA1800A0D159 /* HashTreeTests.cc in Sources */, 27AEFAC5210913C500106ED8 /* DeltaTests.cc in Sources */, 27298E781C01A461000CFBA8 /* PerfTests.cc in Sources */, + 27D96573233AB44000F4A51C /* NumericTests.cc in Sources */, ); runOnlyForDeploymentPostprocessing = 0; }; @@ -1292,11 +1318,13 @@ 27DE2E9E2125FA1700123597 /* slice.cc in Sources */, 27DFAE13219F83AB00DF57EB /* InstanceCounted.cc in Sources */, 27DE2E9D2125FA1700123597 /* slice+CoreFoundation.cc in Sources */, + 27D965692339595700F4A51C /* NumConversion.cc in Sources */, 27DE2EEA2125FC5A00123597 /* Writer.cc in Sources */, 27DE2E922125FA1700123597 /* varint.cc in Sources */, 27DE2EE82125FB2100123597 /* cdecode.c in Sources */, 27DE2EE92125FB2100123597 /* cencode.c in Sources */, 2700BB9D217E8C0D00797537 /* ParseDate.cc in Sources */, + 27D9656E23397EF700F4A51C /* SwiftDtoa.cc in Sources */, ); runOnlyForDeploymentPostprocessing = 0; }; diff --git a/Fleece/Core/JSONConverter.cc b/Fleece/Core/JSONConverter.cc index 1aa3a2c5..108fe971 100644 --- a/Fleece/Core/JSONConverter.cc +++ b/Fleece/Core/JSONConverter.cc @@ -17,6 +17,7 @@ // #include "JSONConverter.hh" +#include "NumConversion.hh" #include "jsonsl.h" #include @@ -114,9 +115,7 @@ namespace fleece { namespace impl { unsigned f = state->special_flags; if (f & JSONSL_SPECIALf_FLOAT) { char *start = (char*)&_input[state->pos_begin]; - char *end; - double n = ::strtod(start, &end); - _encoder.writeDouble(n); + _encoder.writeDouble(ParseDouble(start)); } else if (f & JSONSL_SPECIALf_UNSIGNED) { _encoder.writeUInt(state->nelem); } else if (f & JSONSL_SPECIALf_SIGNED) { diff --git a/Fleece/Support/JSONEncoder.hh b/Fleece/Support/JSONEncoder.hh index 9b86cc02..82495af5 100644 --- a/Fleece/Support/JSONEncoder.hh +++ b/Fleece/Support/JSONEncoder.hh @@ -21,6 +21,7 @@ #include "Writer.hh" #include "Value.hh" #include "FleeceException.hh" +#include "NumConversion.hh" #include @@ -51,10 +52,10 @@ namespace fleece { namespace impl { void writeNull() {comma(); _out << slice("null");} void writeBool(bool b) {comma(); _out.write(b ? "true"_sl : "false"_sl);} - void writeInt(int64_t i) {writef("%lld", i);} - void writeUInt(uint64_t i) {writef("%llu", i);} - void writeFloat(float f) {writef("%.6g", f);} - void writeDouble(double d) {writef("%.16g", d);} + void writeInt(int64_t i) {_writeInt("%lld", i);} + void writeUInt(uint64_t i) {_writeInt("%llu", i);} + void writeFloat(float f) {_writeFloat(f);} + void writeDouble(double d) {_writeFloat(d);} void writeString(const std::string &s) {writeString(slice(s));} void writeString(slice s); @@ -119,12 +120,19 @@ namespace fleece { namespace impl { } template - void writef(const char *fmt, T t) { + void _writeInt(const char *fmt, T t) { comma(); char str[32]; _out.write(str, sprintf(str, fmt, t)); } + template + void _writeFloat(T t) { + comma(); + char str[32]; + _out.write(str, WriteFloat(t, str, sizeof(str))); + } + Writer _out; bool _json5 {false}; bool _canonical {false}; diff --git a/Fleece/Support/NumConversion.cc b/Fleece/Support/NumConversion.cc new file mode 100644 index 00000000..874d9056 --- /dev/null +++ b/Fleece/Support/NumConversion.cc @@ -0,0 +1,52 @@ +// +// NumConversion.cc +// +// Copyright © 2019 Couchbase. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// + +#include "NumConversion.hh" +#include "SwiftDtoa.h" +#include +#include +#ifndef _MSC_VER +#include +#endif + +namespace fleece { + + double ParseDouble(const char *str) noexcept { + // strtod is locale-aware, so in some locales it will not interpret '.' as a decimal point. + // To work around that, use the C locale explicitly. + #ifdef LC_C_LOCALE // Apple & BSD + return strtod_l(str, nullptr, LC_C_LOCALE); + #elif defined(_MSC_VER) // Windows + static _locale_t kCLocale = _create_locale(LC_ALL, "C"); + return _strtod_l(str, nullptr, kCLocale); + #else // Linux + static locale_t kCLocale = newlocale(LC_ALL_MASK, NULL, NULL); + return strtod_l(str, nullptr, kCLocale); + #endif + } + + + size_t WriteFloat(float n, char *dst, size_t capacity) { + return swift_format_float(n, dst, capacity); + } + + + size_t WriteFloat(double n, char *dst, size_t capacity) { + return swift_format_double(n, dst, capacity); + } +} diff --git a/Fleece/Support/NumConversion.hh b/Fleece/Support/NumConversion.hh new file mode 100644 index 00000000..d781be63 --- /dev/null +++ b/Fleece/Support/NumConversion.hh @@ -0,0 +1,26 @@ +// +// NumConversion.hh +// +// Copyright © 2019 Couchbase. All rights reserved. +// + +#pragma once +#include "PlatformCompat.hh" +#include + +namespace fleece { + + /// Parse `str` as a floating-point number, reading as many digits as possible. + /// (I.e. non-numeric characters after the digits are not treated as an error.) + double ParseDouble(const char *str NONNULL) noexcept; + + /// Format a 64-bit-floating point number to a string. + size_t WriteFloat(double n, char *dst, size_t capacity); + + /// Format a 32-bit floating-point number to a string. + size_t WriteFloat(float n, char *dst, size_t capacity); + + /// Alternative syntax for formatting a 64-bit-floating point number to a string. + static inline size_t WriteDouble(double n, char *dst, size_t c) {return WriteFloat(n, dst, c);} + +} diff --git a/Tests/EncoderTests.cc b/Tests/EncoderTests.cc index 70171c9f..c61ef219 100644 --- a/Tests/EncoderTests.cc +++ b/Tests/EncoderTests.cc @@ -240,7 +240,7 @@ class EncoderTests { enc.writeBool(true); checkOutput("3800"); checkReadBool(true); } - TEST_CASE_METHOD(EncoderTests, "Ints", "[Encoder]") { + TEST_CASE_METHOD(EncoderTests, "Ints", "[Encoder][Numeric]") { enc.writeInt( 0); checkOutput("0000"); checkRead(0); enc.writeInt( 128); checkOutput("0080"); checkRead(128); enc.writeInt( 1234); checkOutput("04D2"); checkRead(1234); @@ -294,7 +294,7 @@ class EncoderTests { } } - TEST_CASE_METHOD(EncoderTests, "Floats", "[Encoder]") { + TEST_CASE_METHOD(EncoderTests, "Floats", "[Encoder][Numeric]") { enc.writeFloat( 0.5); checkOutput("2000 0000 003F 8003"); checkReadFloat( 0.5); enc.writeFloat(-0.5); checkOutput("2000 0000 00BF 8003"); checkReadFloat(-0.5); enc.writeFloat((float)M_PI); checkOutput("2000 DB0F 4940 8003"); checkReadFloat((float)M_PI); diff --git a/Tests/MutableTests.cc b/Tests/MutableTests.cc index ece997ef..1eead882 100644 --- a/Tests/MutableTests.cc +++ b/Tests/MutableTests.cc @@ -116,7 +116,7 @@ namespace fleece { CHECK(!i); } - CHECK(ma->asArray()->toJSON() == "[null,false,true,0,-123,2017,123456789,-123456789,\"Hot dog\",3.14159,3.141592653589793]"_sl); + CHECK(ma->asArray()->toJSON() == "[null,false,true,0,-123,2017,123456789,-123456789,\"Hot dog\",3.1415927,3.141592653589793]"_sl); ma->remove(3, 5); CHECK(ma->count() == 6); diff --git a/Tests/NumericTests.cc b/Tests/NumericTests.cc new file mode 100644 index 00000000..cbb0cade --- /dev/null +++ b/Tests/NumericTests.cc @@ -0,0 +1,170 @@ +// +// NumericTests.cc +// +// Copyright © 2019 Couchbase. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// + +// Adapted from Swift tests at +// https://github.com/apple/swift/blob/master/test/stdlib/PrintFloat.swift.gyb +// (There are many more that haven't been ported yet) + +#include "FleeceTests.hh" +#include "NumConversion.hh" +#include +#include +#include + +using namespace std; + + +template +static string floatStr(FLOAT n) { + char str[32]; + auto length = WriteFloat(n, str, sizeof(str)); + CHECK(length == strlen(str)); + if (sizeof(FLOAT) >= sizeof(double)) { + // Test for 100% accurate double->string->double round-trip: + CHECK(ParseDouble(str) == n); + } + return string(str); +} + + +#define expectDescription(STR, N) CHECK(floatStr(N) == STR) + + +TEST_CASE("WriteFloat","[Numeric]") { + static constexpr float maxDecimalForm = float(1 << 24); + + expectDescription("0.0", 0.0F); + expectDescription("-0.0", -0.0F); + expectDescription("0.1", 0.1F); + expectDescription("-0.1", -0.1F); + expectDescription("1.0", 1.0F); + expectDescription("-1.0", -1.0F); + expectDescription("1.1", 1.1F); + expectDescription("100.125", 100.125F); + expectDescription("-100.125", -100.125F); + expectDescription("inf", numeric_limits::infinity()); + expectDescription("-inf", -numeric_limits::infinity()); + expectDescription("3.1415925", 3.1415926f); + expectDescription("3.4028235e+38", numeric_limits::max()); + expectDescription("1e-45", numeric_limits::denorm_min()); + expectDescription("1.1754944e-38", numeric_limits::min()); + expectDescription("1.00000075e-36", 1.00000075e-36F); + expectDescription("7.0385313e-26", 7.0385313e-26F); + expectDescription("16777216.0", maxDecimalForm); + expectDescription("-16777216.0", -maxDecimalForm); + expectDescription("1.6777218e+07", nextafter(maxDecimalForm, HUGE_VALF)); + expectDescription("-1.6777218e+07", nextafter(-maxDecimalForm, -HUGE_VALF)); + expectDescription("1.00001", 1.00001F); + expectDescription("1.25e+17", 125000000000000000.0F); + expectDescription("1.25e+16", 12500000000000000.0F); + expectDescription("1.25e+15", 1250000000000000.0F); + expectDescription("1.25e+14", 125000000000000.0F); + expectDescription("1.25e+13", 12500000000000.0F); + expectDescription("1.25e+12", 1250000000000.0F); + expectDescription("1.25e+11", 125000000000.0F); + expectDescription("1.25e+10", 12500000000.0F); + expectDescription("1.25e+09", 1250000000.0F); + expectDescription("1.25e+08", 125000000.0F); + expectDescription("12500000.0", 12500000.0F); + expectDescription("1250000.0", 1250000.0F); + expectDescription("125000.0", 125000.0F); + expectDescription("12500.0", 12500.0F); + expectDescription("1250.0", 1250.0F); + expectDescription("125.0", 125.0F); + expectDescription("12.5", 12.5F); + expectDescription("1.25", 1.25F); + expectDescription("0.125", 0.125F); + expectDescription("0.0125", 0.0125F); + expectDescription("0.00125", 0.00125F); + expectDescription("0.000125", 0.000125F); + expectDescription("1.25e-05", 0.0000125F); + expectDescription("1.25e-06", 0.00000125F); + expectDescription("1.25e-07", 0.000000125F); + expectDescription("1.25e-08", 0.0000000125F); + expectDescription("1.25e-09", 0.00000000125F); + expectDescription("1.25e-10", 0.000000000125F); + expectDescription("1.25e-11", 0.0000000000125F); + expectDescription("1.25e-12", 0.00000000000125F); + expectDescription("1.25e-13", 0.000000000000125F); + expectDescription("1.25e-14", 0.0000000000000125F); + expectDescription("1.25e-15", 0.00000000000000125F); + expectDescription("1.25e-16", 0.000000000000000125F); + expectDescription("1.25e-17", 0.0000000000000000125F); +} + + +TEST_CASE("WriteDouble","[Numeric]") { + static constexpr double maxDecimalForm = double(1LL << 53); + + expectDescription("0.0", 0.0); + expectDescription("-0.0", -0.0); + expectDescription("0.1", 0.1); + expectDescription("-0.1", -0.1); + expectDescription("1.0", 1.0); + expectDescription("-1.0", -1.0); + expectDescription("1.1", 1.1); + expectDescription("100.125", 100.125); + expectDescription("-100.125", -100.125); + expectDescription("3.141592653589793", M_PI); + expectDescription("1.7976931348623157e+308", numeric_limits::max()); + expectDescription("5e-324", numeric_limits::denorm_min()); + expectDescription("2.2250738585072014e-308", numeric_limits::min()); + expectDescription("inf", numeric_limits::infinity()); + expectDescription("-inf", -numeric_limits::infinity()); + expectDescription("2.311989689387339e-82", 2.311989689387339e-82); + expectDescription("9007199254740992.0", maxDecimalForm); + expectDescription("-9007199254740992.0", -maxDecimalForm); + expectDescription("9.007199254740994e+15", nextafter(maxDecimalForm, HUGE_VAL)); + expectDescription("-9.007199254740994e+15", nextafter(-maxDecimalForm, -HUGE_VAL)); + expectDescription("1.00000000000001", 1.00000000000001); + expectDescription("1.25e+17", 125000000000000000.0); + expectDescription("1.25e+16", 12500000000000000.0); + expectDescription("1250000000000000.0", 1250000000000000.0); + expectDescription("125000000000000.0", 125000000000000.0); + expectDescription("12500000000000.0", 12500000000000.0); + expectDescription("1250000000000.0", 1250000000000.0); + expectDescription("125000000000.0", 125000000000.0); + expectDescription("12500000000.0", 12500000000.0); + expectDescription("1250000000.0", 1250000000.0); + expectDescription("125000000.0", 125000000.0); + expectDescription("12500000.0", 12500000.0); + expectDescription("1250000.0", 1250000.0); + expectDescription("125000.0", 125000.0); + expectDescription("12500.0", 12500.0); + expectDescription("1250.0", 1250.0); + expectDescription("125.0", 125.0); + expectDescription("12.5", 12.5); + expectDescription("1.25", 1.25); + expectDescription("0.125", 0.125); + expectDescription("0.0125", 0.0125); + expectDescription("0.00125", 0.00125); + expectDescription("0.000125", 0.000125); + expectDescription("1.25e-05", 0.0000125); + expectDescription("1.25e-06", 0.00000125); + expectDescription("1.25e-07", 0.000000125); + expectDescription("1.25e-08", 0.0000000125); + expectDescription("1.25e-09", 0.00000000125); + expectDescription("1.25e-10", 0.000000000125); + expectDescription("1.25e-11", 0.0000000000125); + expectDescription("1.25e-12", 0.00000000000125); + expectDescription("1.25e-13", 0.000000000000125); + expectDescription("1.25e-14", 0.0000000000000125); + expectDescription("1.25e-15", 0.00000000000000125); + expectDescription("1.25e-16", 0.000000000000000125); + expectDescription("1.25e-17", 0.0000000000000000125); +} diff --git a/Tests/ObjCTests.mm b/Tests/ObjCTests.mm index 6aa26fb3..8e4caa7a 100644 --- a/Tests/ObjCTests.mm +++ b/Tests/ObjCTests.mm @@ -57,7 +57,7 @@ static void checkIt(id obj, const char* json) { TEST_CASE("Obj-C Floats", "[Encoder]") { checkIt(@0.5, "0.5"); checkIt(@-0.5, "-0.5"); - checkIt(@((float)M_PI), "3.14159"); + checkIt(@((float)M_PI), "3.1415927"); checkIt(@((double)M_PI), "3.141592653589793"); } diff --git a/cmake/platform_base.cmake b/cmake/platform_base.cmake index 1db1f607..847e68b8 100644 --- a/cmake/platform_base.cmake +++ b/cmake/platform_base.cmake @@ -31,6 +31,7 @@ function(set_source_files_base) Fleece/Support/FileUtils.cc Fleece/Support/FleeceException.cc Fleece/Support/InstanceCounted.cc + Fleece/Support/NumConversion.cc Fleece/Support/JSON5.cc Fleece/Support/JSONEncoder.cc Fleece/Support/LibC++Debug.cc @@ -47,6 +48,7 @@ function(set_source_files_base) vendor/jsonsl/jsonsl.c vendor/libb64/cdecode.c vendor/libb64/cencode.c + vendor/SwiftDtoa/SwiftDtoa.cc PARENT_SCOPE ) endfunction() diff --git a/vendor/SwiftDtoa/SwiftDtoa.cc b/vendor/SwiftDtoa/SwiftDtoa.cc new file mode 100644 index 00000000..3b019303 --- /dev/null +++ b/vendor/SwiftDtoa/SwiftDtoa.cc @@ -0,0 +1,2415 @@ +// +// SwiftDtoa.cc +// +// Copied into Fleece repository from commit 6370681 of +// https://github.com/apple/swift/blob/master/stdlib/public/runtime/SwiftDtoa.cpp +// Trivial changes made by Jens Alfke to glue it into the Fleece library. + +//===--- SwiftDtoa.c ---------------------------------------------*- c -*-===// +// +// This source file is part of the Swift.org open source project +// +// Copyright (c) 2018 Apple Inc. and the Swift project authors +// Licensed under Apache License v2.0 with Runtime Library Exception +// +// See https://swift.org/LICENSE.txt for license information +// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors +// +//===---------------------------------------------------------------------===// +// +// Note: This is really a C file, but Swift's build system for Linux is +// partially allergic to C, so it's being compiled as ".cpp" for now. Please +// don't infect it with C++-isms. +// +/// +/// The core algorithm here (see `swift_decompose_double` below) is a +/// modified form of the Grisu2 algorithm from Florian Loitsch; +/// "Printing Floating-Point Numbers Quickly and Accurately with +/// Integers", 2010. https://dl.acm.org/citation.cfm?id=1806623 +/// +/// This includes some improvements suggested by the "Errol paper": +/// Marc Andrysco, Ranjit Jhala, Sorin Lerner; "Printing +/// Floating-Point Numbers: A Faster, Always Correct Method", 2016. +/// https://dl.acm.org/citation.cfm?id=2837654 +/// +/// The following summary assumes you're familiar with Grisu-style +/// algorithms in general: +/// +/// Loitsch' original Grisu2 implementation guarantees round-trip +/// accuracy but only generates the shortest decimal expansion about 99% +/// of the time. Grisu3 is similar, but fails rather than producing +/// a result that is not the shortest possible. +/// +/// The Errol paper provides a deeper analysis of the cases where +/// Grisu2 fails to find the shortest decimal expansion. There +/// are two root causes of such failures: +/// +/// * Insufficient precision leads to scattered failures across the +/// entire range. The enumeration technique described in the Errol +/// paper shows a way to construct a superset of the numbers subject +/// to such failures. With this list, we can simply test whether we +/// have sufficient precision. +/// +/// For Double, the Errol3 algorithm uses double-double arithmetic +/// with about 106 bits precision. This turns out to be not quite +/// sufficient, requiring Errol3 to pre-screen the input against a +/// list of exceptions culled from the larger list of possible +/// failures. Using high-precision integers, we've discovered that +/// 110 bit precision is sufficient to satisfy the Errol test cases +/// without requiring any pre-screening. +/// +/// For Float and Float80, the same approach shows that we need 53 +/// and 135 bits, respectively. It is an interesting coincidence +/// that for all three cases, an n-bit significand can be formatted +/// optimally with no more than 2n+7 bits of intermediate precision. +/// +/// * Sometimes, the shortest value might occur exactly at the +/// midpoint between two adjacent binary floating-point values. +/// When converted back to binary, this will round to the adjacent +/// even significand. We handle this by widening the interval +/// whenever the significand is even in order to allow these +/// exact midpoints to be considered. +/// +/// In addition to addressing the shortness failures characterized in the Errol +/// paper, the implementation here also incorporates final-digit corrections +/// that allow it to produce the optimal decimal decomposition in all cases. +/// +/// In summary, this implementation is: +/// +/// * Fast. It uses only fixed-width integer arithmetic and has +/// constant memory requirements. +/// +/// * Simple. It is only a little more complex than Loitsch' original +/// implementation of Grisu2. The full digit decomposition for double +/// is less than 300 lines of standard C, including routine arithmetic +/// helper functions. +/// +/// * Always Accurate. Converting the decimal form back to binary +/// will always yield exactly the same value. For the IEEE 754 +/// formats, the round-trip will produce exactly the same bit +/// pattern in memory. +/// +/// * Always Short. This always selects an accurate result with the +/// minimum number of decimal digits. +/// +/// * Always Close. Among all accurate, short results, this always +/// chooses the result that is closest to the exact floating-point +/// value. (In case of an exact tie, it rounds the last digit even.) +/// +/// For single-precision Float, we can simply test all 2^32 values. +/// This requires only a few minutes on a mid-range modern laptop. The +/// Double and Float80 formatters rely on results from the Errol paper +/// to ensure correctness. In addition, we have verified more than +/// 10^14 randomly-chosen Double values by comparing the results to the +/// output of Grisu3 (where Grisu3 fails, we've compared to Errol4). +/// +// ---------------------------------------------------------------------------- + +#include +#include +#include +#include +#include +#include +#include +#include + +#include "SwiftDtoa.h" //Jens: Edited path + +namespace fleece { //Jens: Added namespace + + +#if defined(__SIZEOF_INT128__) + // We get a significant speed boost if we can use the __uint128_t + // type that's present in GCC and Clang on 64-bit architectures. In + // particular, we can do 128-bit arithmetic directly and can + // represent 192-bit integers as a collection of 64-bit elements. + #define HAVE_UINT128_T 1 +#else + // On 32-bit, we have to use slower code that manipulates 128-bit + // and 192-bit integers as collections of 32-bit elements. + #define HAVE_UINT128_T 0 +#endif + +// Try to verify that the system floating-point types really are what we +// expect. Note that the code below is specific to these exact +// floating-point representations. + +#if (FLT_RADIX != 2) +// Either you're using hexadecimal float format on S390, or you have a +// really broken C environment. +#error "This platform claims to not use binary floating point." +#endif + +#if SWIFT_DTOA_FLOAT_SUPPORT +#if (FLT_MANT_DIG != 24) || (FLT_MIN_EXP != -125) || (FLT_MAX_EXP != 128) +#error "Are you certain `float` on this platform is really IEEE 754 single-precision binary32 format?" +#endif +#endif + +#if SWIFT_DTOA_DOUBLE_SUPPORT +#if (DBL_MANT_DIG != 53) || (DBL_MIN_EXP != -1021) || (DBL_MAX_EXP != 1024) +#error "Are you certain `double` on this platform is really IEEE 754 double-precision binary64 format?" +#endif +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +#if (LDBL_MANT_DIG != 64) || (LDBL_MIN_EXP != -16381) || (LDBL_MAX_EXP != 16384) +#error "Are you certain `long double` on this platform is really Intel 80-bit extended precision?" +#endif +#endif + + +// See the implementations at the bottom of this file for detailed explanations +// of the purpose of each function. + +// +// Helper functions used by float, double, and float80 machinery. +// + +#if SWIFT_DTOA_FLOAT_SUPPORT || SWIFT_DTOA_DOUBLE_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT +static int binaryExponentFor10ToThe(int p); +static int decimalExponentFor2ToThe(int e); +#endif + +// +// Helper functions used only by the single-precision float formatter +// + +#if SWIFT_DTOA_FLOAT_SUPPORT +static uint64_t multiply64x32RoundingDown(uint64_t lhs, uint32_t rhs); +static uint64_t multiply64x32RoundingUp(uint64_t lhs, uint32_t rhs); +static uint64_t multiply64x64RoundingDown(uint64_t lhs, uint64_t rhs); +static uint64_t multiply64x64RoundingUp(uint64_t lhs, uint64_t rhs); +static void intervalContainingPowerOf10_Float(int p, uint64_t *lower, uint64_t *upper, int *exponent); +#endif + +// +// Helpers used by both the double-precision and float80 formatters +// + +#if SWIFT_DTOA_DOUBLE_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT +#if HAVE_UINT128_T +typedef __uint128_t swift_uint128_t; +#define initialize128WithHighLow64(dest, high64, low64) ((dest) = ((__uint128_t)(high64) << 64) | (low64)) +#else +typedef struct { + uint32_t low, b, c, high; +} swift_uint128_t; +#define initialize128WithHighLow64(dest, high64, low64) \ + ((dest).low = (uint32_t)(low64), \ + (dest).b = (uint32_t)((low64) >> 32), \ + (dest).c = (uint32_t)(high64), \ + (dest).high = (uint32_t)((high64) >> 32)) +#endif +#endif + + +// +// Helper functions used only by the double-precision formatter +// + +#if SWIFT_DTOA_DOUBLE_SUPPORT +#if HAVE_UINT128_T +#define increment128(dest) ((dest) += 1) +#define isLessThan128x128(lhs, rhs) ((lhs) < (rhs)) +#define subtract128x128(lhs, rhs) (*(lhs) -= (rhs)) +#define multiply128xi32(lhs, rhs) (*(lhs) *= (rhs)) +#define initialize128WithHigh64(dest, value) ((dest) = (__uint128_t)(value) << 64) +#define extractHigh64From128(arg) ((uint64_t)((arg) >> 64)) +static int extractIntegerPart128(__uint128_t *fixed128, int fractionBits) { + return (int)(*fixed128 >> fractionBits); +} +static void clearIntegerPart128(__uint128_t *fixed128, int fractionBits) { + const swift_uint128_t fixedPointMask = (((__uint128_t)1 << fractionBits) - 1); + *fixed128 &= fixedPointMask; +} +#else +#define increment128(dest) \ + do { \ + uint64_t t = (dest).low + 1; \ + (dest).low = (uint32_t)t; \ + t >>= 32; \ + t += (dest).b; \ + (dest).b = (uint32_t)t; \ + t >>= 32; \ + t += (dest).c; \ + (dest).c = (uint32_t)t; \ + t >>= 32; \ + (dest).high += (uint32_t)t; \ + } while (0) +static int isLessThan128x128(swift_uint128_t lhs, swift_uint128_t rhs); +static void subtract128x128(swift_uint128_t *lhs, swift_uint128_t rhs); +static void multiply128xi32(swift_uint128_t *lhs, uint32_t rhs); +#define initialize128WithHigh64(dest, value) \ + ((dest).low = (dest).b = 0, \ + (dest).c = (uint32_t)(value), \ + (dest).high = (uint32_t)((value) >> 32)) +#define extractHigh64From128(arg) (((uint64_t)(arg).high << 32)|((arg).c)) +static int extractIntegerPart128(swift_uint128_t *fixed128, int fractionBits) { + const int highFractionBits = fractionBits % 32; + return (int)(fixed128->high >> highFractionBits); +} +static void clearIntegerPart128(swift_uint128_t *fixed128, int fractionBits) { + const int highFractionBits = fractionBits % 32; + fixed128->high &= ((uint32_t)1 << highFractionBits) - 1; +} +#endif +static swift_uint128_t multiply128x64RoundingDown(swift_uint128_t lhs, uint64_t rhs); +static swift_uint128_t multiply128x64RoundingUp(swift_uint128_t lhs, uint64_t rhs); +static swift_uint128_t shiftRightRoundingDown128(swift_uint128_t lhs, int shift); +static swift_uint128_t shiftRightRoundingUp128(swift_uint128_t lhs, int shift); +static void intervalContainingPowerOf10_Double(int p, swift_uint128_t *lower, swift_uint128_t *upper, int *exponent); +#endif + +// +// Helper functions used only by the extended-precision long double formatter +// + +#if SWIFT_DTOA_FLOAT80_SUPPORT +#if HAVE_UINT128_T +// A 192-bit unsigned integer type stored as 3 64-bit words +typedef struct {uint64_t low, mid, high;} swift_uint192_t; +#define initialize192WithHighMidLow64(dest, high64, mid64, low64) \ + ((dest).low = (low64), \ + (dest).mid = (mid64), \ + (dest).high = (high64)) +#else +// A 192-bit unsigned integer type stored as 6 32-bit words +typedef struct {uint32_t low, b, c, d, e, high;} swift_uint192_t; +#define initialize192WithHighMidLow64(dest, high64, mid64, low64) \ + ((dest).low = (uint64_t)(low64), \ + (dest).b = (uint64_t)(low64) >> 32, \ + (dest).c = (uint64_t)(mid64), \ + (dest).d = (uint64_t)(mid64) >> 32, \ + (dest).e = (uint64_t)(high64), \ + (dest).high = (uint64_t)(high64) >> 32) +#endif +static void multiply192x64RoundingDown(swift_uint192_t *lhs, uint64_t rhs); +static void multiply192x64RoundingUp(swift_uint192_t *lhs, uint64_t rhs); +static void multiply192xi32(swift_uint192_t *lhs, uint32_t rhs); +static void multiply192x128RoundingDown(swift_uint192_t *lhs, swift_uint128_t rhs); +static void multiply192x128RoundingUp(swift_uint192_t *lhs, swift_uint128_t rhs); +static void subtract192x192(swift_uint192_t *lhs, swift_uint192_t rhs); +static int isLessThan192x192(swift_uint192_t lhs, swift_uint192_t rhs); +static void shiftRightRoundingDown192(swift_uint192_t *lhs, int shift); +static void shiftRightRoundingUp192(swift_uint192_t *lhs, int shift); +static void intervalContainingPowerOf10_Float80(int p, swift_uint192_t *lower, swift_uint192_t *upper, int *exponent); +#endif + +// +// --------------- Digit generation --------------------- +// + +// This is the interesting part. + +// These routines take a floating-point value and efficiently compute +// everything necessary to write an optimal base-10 representation of +// that value. In particular, they compute the base-10 exponent and +// corresponding digits. + +// swift_decompose_double is thoroughly commented; swift_decompose_float +// and swift_decompose_float80 are fundamentally the same algorithm, but +// adjusted to perform optimally for those types. + +#if SWIFT_DTOA_DOUBLE_SUPPORT +// Return raw bits encoding the double +static uint64_t bitPatternForDouble(double d) { + union { double d; uint64_t u; } converter; + converter.d = d; + return converter.u; +} + +int swift_decompose_double(double d, + int8_t *digits, size_t digits_length, int *decimalExponent) +{ + // Bits in raw significand (not including hidden bit, if present) + static const int significandBitCount = DBL_MANT_DIG - 1; + static const uint64_t significandMask + = ((uint64_t)1 << significandBitCount) - 1; + // Bits in raw exponent + static const int exponentBitCount = 11; + static const int exponentMask = (1 << exponentBitCount) - 1; + // Note: IEEE 754 conventionally uses 1023 as the exponent + // bias. That's because they treat the significand as a + // fixed-point number with one bit (the hidden bit) integer + // portion. The logic here reconstructs the significand as a + // pure fraction, so we need to accomodate that when + // reconstructing the binary exponent. + static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 1022 + + // Step 0: Deconstruct the target number + // Note: this strongly assumes IEEE 754 binary64 format + uint64_t raw = bitPatternForDouble(d); + int exponentBitPattern = (raw >> significandBitCount) & exponentMask; + uint64_t significandBitPattern = raw & significandMask; + + // Step 1: Handle the various input cases: + int binaryExponent; + uint64_t significand; + if (digits_length < 17) { + return 0; + } else if (exponentBitPattern == exponentMask) { // NaN or Infinity + // Return no digits + return 0; + } else if (exponentBitPattern == 0) { + if (significandBitPattern == 0) { // Zero + digits[0] = 0; + *decimalExponent = 0; + return 1; + } else { // subnormal + binaryExponent = 1 - exponentBias; + significand = significandBitPattern + << (64 - significandBitCount - 1); + } + } else { // normal + binaryExponent = exponentBitPattern - exponentBias; + uint64_t hiddenBit = (uint64_t)1 << significandBitCount; + uint64_t fullSignificand = significandBitPattern + hiddenBit; + significand = fullSignificand << (64 - significandBitCount - 1); + } + + // Step 2: Determine the exact unscaled target interval + + // Grisu-style algorithms construct the shortest decimal digit + // sequence within a specific interval. To build the appropriate + // interval, we start by computing the exact midpoints between + // this floating-point value and the adjacent ones. + + uint64_t halfUlp = (uint64_t)1 << (64 - significandBitCount - 2); + uint64_t quarterUlp = halfUlp >> 1; + uint64_t upperMidpointExact = significand + halfUlp; + + int isBoundary = significandBitPattern == 0; + uint64_t lowerMidpointExact + = significand - (isBoundary ? quarterUlp : halfUlp); + + // Step 3: Estimate the base 10 exponent + + // Grisu algorithms are based in part on a simple technique for + // generating a base-10 form for a binary floating-point number. + // Start with a binary floating-point number `f * 2^e` and then + // estimate the decimal exponent `p`. You can then rewrite your + // original number as: + // + // ``` + // f * 2^e * 10^-p * 10^p + // ``` + // + // The last term is part of our output, and a good estimate for + // `p` will ensure that `2^e * 10^-p` is going to be close to 1. + // So multiplying the first three terms yields a fraction suitable + // for producing the decimal digits. So we need to estimate `p`: + + int base10Exponent = decimalExponentFor2ToThe(binaryExponent); + + // Step 4: Compute a power-of-10 scale factor + // Compute `10^-p` to 128-bit precision. We generate + // both over- and under-estimates to ensure we can exactly + // bound the later use of these values. + swift_uint128_t powerOfTenRoundedDown; + swift_uint128_t powerOfTenRoundedUp; + int powerOfTenExponent = 0; + intervalContainingPowerOf10_Double(-base10Exponent, + &powerOfTenRoundedDown, + &powerOfTenRoundedUp, + &powerOfTenExponent); + const int extraBits = binaryExponent + powerOfTenExponent; + + // Step 5: Scale the interval (with rounding) + + // As mentioned above, the final digit generation works + // with an interval, so we actually apply the scaling + // to the upper and lower midpoint values separately. + + // As part of the scaling here, we'll switch from a pure + // fraction to a fixed-point form. Using 14 bit integer portion + // will allow us to compute four decimal digits at a time. + static const int integerBits = 14; + static const int fractionBits = 128 - integerBits; + + // We scale the interval in one of two different ways, + // depending on whether the significand is even or odd... + + swift_uint128_t u, l; + if (significandBitPattern & 1) { + // Case A: Narrow the interval (odd significand) + + // Loitsch' original Grisu2 always narrows the interval. + // Since our digit generation will select a value within + // the scaled interval, narrowing the interval guarantees + // that we will find a digit sequence that converts back + // to the original value. + + // This ensures accuracy but, as explained in Loitsch' paper, + // this carries a risk that there will be a shorter digit + // sequence outside of our narrowed interval that we will + // miss. This risk obviously gets lower with increased + // precision, but it wasn't until the Errol paper that anyone + // had a good way to test whether a particular implementation + // had sufficient precision. That paper shows a way to enumerate + // the worst-case numbers; those numbers that are extremely close + // to the mid-points between adjacent floating-point values. + // These are the values that might sit just outside of the + // narrowed interval. By testing these values, we can verify + // the correctness of our implementation. + + // Multiply out the upper midpoint, rounding down... + swift_uint128_t u1 = multiply128x64RoundingDown(powerOfTenRoundedDown, + upperMidpointExact); + // Account for residual binary exponent and adjust + // to the fixed-point format + u = shiftRightRoundingDown128(u1, integerBits - extraBits); + + // Conversely for the lower midpoint... + swift_uint128_t l1 = multiply128x64RoundingUp(powerOfTenRoundedUp, + lowerMidpointExact); + l = shiftRightRoundingUp128(l1, integerBits - extraBits); + + } else { + // Case B: Widen the interval (even significand) + + // As explained in Errol Theorem 6, in certain cases there is + // a short decimal representation at the exact boundary of the + // scaled interval. When such a number is converted back to + // binary, it will get rounded to the adjacent even + // significand. + + // So when the significand is even, we widen the interval in + // order to ensure that the exact midpoints are considered. + // Of couse, this ensures that we find a short result but + // carries a risk of selecting a result outside of the exact + // scaled interval (which would be inaccurate). + + // The same testing approach described above also applies + // to this case. + + swift_uint128_t u1 = multiply128x64RoundingUp(powerOfTenRoundedUp, + upperMidpointExact); + u = shiftRightRoundingUp128(u1, integerBits - extraBits); + + swift_uint128_t l1 = multiply128x64RoundingDown(powerOfTenRoundedDown, + lowerMidpointExact); + l = shiftRightRoundingDown128(l1, integerBits - extraBits); + } + + // Step 6: Align first digit, adjust exponent + + // This preps for digit generation. It just multiplies repeatedly + // by 10 until we have exactly one decimal digit in the integer + // part, adjusting the exponent as we go. + + // In particular, this prunes leading zeros from subnormals. + // Generate digits for `t` with interval width `delta` + swift_uint128_t t = u; + swift_uint128_t delta = u; + subtract128x128(&delta, l); // Explained below. + int exponent = base10Exponent + 1; + + // Except for subnormals, this loop should never run more than once. +#if HAVE_UINT128_T + static const swift_uint128_t fixedPointOne = (__uint128_t)1 << fractionBits; + while (t < fixedPointOne) +#else + // Because 1.0 in fixed point has a lot of zeros, it suffices + // to only compare the high-order word here. This is a minor + // performance win. + while (t.high < ((uint32_t)1 << (fractionBits % 32))) +#endif + { + exponent -= 1; + multiply128xi32(&delta, 10); + multiply128xi32(&t, 10); + } + + // Step 7: Generate digits + + // This is a common part of Grisu-style algorithms. The + // underlying idea is to generate digits for the scaled upper and + // lower boundaries, and stop when we hit the first different + // digit (at which point, the digit for the upper midpoint is the + // candidate final digit). To understand this, just note that + // 0.1234 is the shortest decimal between u = 0.123456 and l = + // 0.123345. + + // Grisu uses a slightly optimized technique: it generates digits + // for the upper bound (multiplying by 10 to isolate each digit) + // and multiplies the interval width `delta` at the same time. + // The `different digit` criteria above translates to a test for + // `delta` being larger than the remainder. + + int8_t *digit_p = digits; + + // Adjustment above already set up the first digit: + int nextDigit = extractIntegerPart128(&t, fractionBits); + clearIntegerPart128(&t, fractionBits); + + // Further optimization: Generating four digits at a time reduces + // the total arithmetic required per digit. Note: The following + // block can be entirely removed with no effect on the result. + // If you're trying to understand this algorithm, just skip this + // block on first reading. + swift_uint128_t d0 = delta; + multiply128xi32(&d0, 10000); + swift_uint128_t t0 = t; + multiply128xi32(&t0, 10000); + int fourDigits = extractIntegerPart128(&t0, fractionBits); // 4 digits + clearIntegerPart128(&t0, fractionBits); + while (isLessThan128x128(d0, t0)) { + *digit_p++ = nextDigit; + int d = fourDigits / 100; // top 2 digits + *digit_p++ = d / 10; + *digit_p++ = d % 10; + d = fourDigits % 100; // bottom 2 digits + *digit_p++ = d / 10; + nextDigit = d % 10; + t = t0; + delta = d0; + multiply128xi32(&d0, 10000); + multiply128xi32(&t0, 10000); + fourDigits = extractIntegerPart128(&t0, fractionBits); + clearIntegerPart128(&t0, fractionBits); + } + + // Finish by generating one digit at a time. + while (isLessThan128x128(delta, t)) { + *digit_p++ = nextDigit; + multiply128xi32(&delta, 10); + multiply128xi32(&t, 10); + nextDigit = extractIntegerPart128(&t, fractionBits); + clearIntegerPart128(&t, fractionBits); + } + + // Adjust the final digit to be closer to the original value. It accounts + // for the fact that sometimes there is more than one shortest digit + // sequence. + + // For example, consider how the above would work if you had the + // value 0.1234 and computed u = 0.1257, l = 0.1211. The above + // digit generation works with `u`, so produces 0.125. But the + // values 0.122, 0.123, and 0.124 are just as short and 0.123 is + // the best choice, since it's closest to the original value. + + // If `delta <= t + 1.0`, then the interval is narrower than + // one decimal digit, so there is no other option. + + // Note: We've already consumed most of our available precision, + // so it's okay to just work in 64 bits here... + uint64_t deltaHigh64 = extractHigh64From128(delta); + uint64_t tHigh64 = extractHigh64From128(t); + if (deltaHigh64 > tHigh64 + ((uint64_t)1 << (fractionBits % 64))) { + // Note: 64-bit arithmetic is okay here + uint64_t skew; + if (isBoundary) { + // If we're at the boundary where the exponent shifts, + // then the original value is 1/3 of the way from + // the bottom of the interval ... + skew = deltaHigh64 - deltaHigh64 / 3 - tHigh64; + } else { + // ... otherwise it's exactly in the middle. + skew = deltaHigh64 / 2 - tHigh64; + } + + // The `skew` above is the difference between our + // computed digits and the original exact value. + // Use that to offset the final digit: + uint64_t one = (uint64_t)(1) << (64 - integerBits); + uint64_t fractionMask = one - 1; + uint64_t oneHalf = one >> 1; + if ((skew & fractionMask) == oneHalf) { + int adjust = (int)(skew >> (64 - integerBits)); + // If the skew is exactly integer + 1/2, round the + // last digit even after adjustment + nextDigit = (nextDigit - adjust) & ~1; + } else { + // Else round to nearest... + int adjust = (int)((skew + oneHalf) >> (64 - integerBits)); + nextDigit = (nextDigit - adjust); + } + } + *digit_p++ = nextDigit; // Store the final digit. + + *decimalExponent = exponent; + return digit_p - digits; +} +#endif + +#if SWIFT_DTOA_FLOAT_SUPPORT +// Return raw bits encoding the float +static uint64_t bitPatternForFloat(float f) { + union { float f; uint32_t u; } converter; + converter.f = f; + return converter.u; +} + +// Decompose an IEEE 754 binary32 single-precision float +// into decimal digits and a corresponding decimal exponent. + +// See swift_decompose_double for detailed comments on the algorithm here +int swift_decompose_float(float f, + int8_t *digits, size_t digits_length, int *decimalExponent) +{ + static const int significandBitCount = FLT_MANT_DIG - 1; + static const uint32_t significandMask + = ((uint32_t)1 << significandBitCount) - 1; + static const int exponentBitCount = 8; + static const int exponentMask = (1 << exponentBitCount) - 1; + // See comments in swift_decompose_double + static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 125 + + // Step 0: Deconstruct the target number + // Note: this strongly assumes IEEE 754 binary32 format + uint32_t raw = bitPatternForFloat(f); + int exponentBitPattern = (raw >> significandBitCount) & exponentMask; + uint32_t significandBitPattern = raw & significandMask; + + // Step 1: Handle the various input cases: + int binaryExponent; + uint32_t significand; + if (digits_length < 9) { + // Ensure we have space for 9 digits + return 0; + } else if (exponentBitPattern == exponentMask) { // NaN or Infinity + // Return no digits + return 0; + } else if (exponentBitPattern == 0) { + if (significandBitPattern == 0) { // Zero + // Return one zero digit and decimalExponent = 0. + digits[0] = 0; + *decimalExponent = 0; + return 1; + } else { // Subnormal + binaryExponent = 1 - exponentBias; + significand = significandBitPattern << (32 - significandBitCount - 1); + } + } else { // normal + binaryExponent = exponentBitPattern - exponentBias; + uint32_t hiddenBit = (uint32_t)1 << (uint32_t)significandBitCount; + uint32_t fullSignificand = significandBitPattern + hiddenBit; + significand = fullSignificand << (32 - significandBitCount - 1); + } + + // Step 2: Determine the exact unscaled target interval + static const uint32_t halfUlp = (uint32_t)1 << (32 - significandBitCount - 2); + uint32_t upperMidpointExact = significand + halfUlp; + + int isBoundary = significandBitPattern == 0; + static const uint32_t quarterUlp = halfUlp >> 1; + uint32_t lowerMidpointExact + = significand - (isBoundary ? quarterUlp : halfUlp); + + // Step 3: Estimate the base 10 exponent + int base10Exponent = decimalExponentFor2ToThe(binaryExponent); + + // Step 4: Compute a power-of-10 scale factor + uint64_t powerOfTenRoundedDown = 0; + uint64_t powerOfTenRoundedUp = 0; + int powerOfTenExponent = 0; + intervalContainingPowerOf10_Float(-base10Exponent, + &powerOfTenRoundedDown, + &powerOfTenRoundedUp, + &powerOfTenExponent); + const int extraBits = binaryExponent + powerOfTenExponent; + + // Step 5: Scale the interval (with rounding) + static const int integerBits = 5; + const int shift = integerBits - extraBits; + const int roundUpBias = (1 << shift) - 1; + static const int fractionBits = 64 - integerBits; + uint64_t u, l; + if (significandBitPattern & 1) { + // Narrow the interval (odd significand) + uint64_t u1 = multiply64x32RoundingDown(powerOfTenRoundedDown, + upperMidpointExact); + u = u1 >> shift; // Rounding down + + uint64_t l1 = multiply64x32RoundingUp(powerOfTenRoundedUp, + lowerMidpointExact); + l = (l1 + roundUpBias) >> shift; // Rounding Up + } else { + // Widen the interval (even significand) + uint64_t u1 = multiply64x32RoundingUp(powerOfTenRoundedUp, + upperMidpointExact); + u = (u1 + roundUpBias) >> shift; // Rounding Up + + uint64_t l1 = multiply64x32RoundingDown(powerOfTenRoundedDown, + lowerMidpointExact); + l = l1 >> shift; // Rounding down + } + + // Step 6: Align first digit, adjust exponent + // In particular, this prunes leading zeros from subnormals + static const uint64_t fixedPointOne = (uint64_t)1 << fractionBits; + static const uint64_t fixedPointMask = fixedPointOne - 1; + uint64_t t = u; + uint64_t delta = u - l; + int exponent = base10Exponent + 1; + + while (t < fixedPointOne) { + exponent -= 1; + delta *= 10; + t *= 10; + } + + // Step 7: Generate digits + int8_t *digit_p = digits; + int nextDigit = (int)(t >> fractionBits); + t &= fixedPointMask; + + // Generate one digit at a time... + while (t > delta) { + *digit_p++ = nextDigit; + delta *= 10; + t *= 10; + nextDigit = (int)(t >> fractionBits); + t &= fixedPointMask; + } + + // Adjust the final digit to be closer to the original value + if (delta > t + fixedPointOne) { + uint64_t skew; + if (isBoundary) { + skew = delta - delta / 3 - t; + } else { + skew = delta / 2 - t; + } + uint64_t one = (uint64_t)(1) << (64 - integerBits); + uint64_t lastAccurateBit = 1ULL << 24; + uint64_t fractionMask = (one - 1) & ~(lastAccurateBit - 1); + uint64_t oneHalf = one >> 1; + if (((skew + (lastAccurateBit >> 1)) & fractionMask) == oneHalf) { + // If the skew is exactly integer + 1/2, round the last + // digit even after adjustment + int adjust = (int)(skew >> (64 - integerBits)); + nextDigit = (nextDigit - adjust) & ~1; + } else { + // Else round to nearest... + int adjust = (int)((skew + oneHalf) >> (64 - integerBits)); + nextDigit = (nextDigit - adjust); + } + } + *digit_p++ = nextDigit; + + *decimalExponent = exponent; + return digit_p - digits; +} +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +// See `swift_decompose_double` for detailed comments on this implementatoin. +int swift_decompose_float80(long double d, + int8_t *digits, size_t digits_length, int *decimalExponent) +{ + static const int exponentBitCount = 15; + static const int exponentMask = (1 << exponentBitCount) - 1; + // See comments in swift_decompose_double to understand + // why we use 16,382 instead of 16,383 here. + static const int64_t exponentBias = (1 << (exponentBitCount - 1)) - 2; // 16,382 + + // Step 0: Deconstruct the target number + // Note: this strongly assumes Intel 80-bit extended format in LSB + // byte order + const uint64_t *raw_p = (const uint64_t *)&d; + int exponentBitPattern = raw_p[1] & exponentMask; + uint64_t significandBitPattern = raw_p[0]; + + // Step 1: Handle the various input cases: + int64_t binaryExponent; + uint64_t significand; + if (digits_length < 21) { + return 0; + } else if (exponentBitPattern == exponentMask) { // NaN or Infinity + // Return no digits + return 0; + } else if (exponentBitPattern == 0) { + if (significandBitPattern == 0) { // Zero + digits[0] = 0; + *decimalExponent = 0; + return 1; + } else { // subnormal + binaryExponent = 1 - exponentBias; + significand = significandBitPattern; + } + } else if (significandBitPattern >> 63) { // Normal + binaryExponent = exponentBitPattern - exponentBias; + significand = significandBitPattern; + } else { + // "Unnormal" values are rejected as invalid by 80387 and later. + // Treat them the same as NaNs here. + return 0; + } + + // Step 2: Determine the exact unscaled target interval + uint64_t halfUlp = (uint64_t)1 << 63; + uint64_t quarterUlp = halfUlp >> 1; + uint64_t threeQuarterUlp = halfUlp + quarterUlp; + swift_uint128_t upperMidpointExact, lowerMidpointExact; + initialize128WithHighLow64(upperMidpointExact, significand, halfUlp); + int isBoundary = (significandBitPattern & 0x7fffffffffffffff) == 0; + // Subtract 1/4 or 1/2 ULP by first subtracting 1 full ULP, then adding some back + initialize128WithHighLow64(lowerMidpointExact, significand - 1, isBoundary ? threeQuarterUlp : halfUlp); + + // Step 3: Estimate the base 10 exponent + int base10Exponent = decimalExponentFor2ToThe(binaryExponent); + + // Step 4: Compute a power-of-10 scale factor + swift_uint192_t powerOfTenRoundedDown; + swift_uint192_t powerOfTenRoundedUp; + int powerOfTenExponent = 0; + intervalContainingPowerOf10_Float80(-base10Exponent, + &powerOfTenRoundedDown, + &powerOfTenRoundedUp, + &powerOfTenExponent); + const int extraBits = binaryExponent + powerOfTenExponent; + + // Step 5: Scale the interval (with rounding) + static const int integerBits = 14; + static const int fractionBits = 192 - integerBits; +#if HAVE_UINT128_T + static const int highFractionBits = fractionBits % 64; +#else + static const int highFractionBits = fractionBits % 32; +#endif + swift_uint192_t u, l; + if (significandBitPattern & 1) { + // Narrow the interval (odd significand) + u = powerOfTenRoundedDown; + multiply192x128RoundingDown(&u, upperMidpointExact); + shiftRightRoundingDown192(&u, integerBits - extraBits); + + l = powerOfTenRoundedUp; + multiply192x128RoundingUp(&l, lowerMidpointExact); + shiftRightRoundingUp192(&l, integerBits - extraBits); + } else { + // Widen the interval (even significand) + u = powerOfTenRoundedUp; + multiply192x128RoundingUp(&u, upperMidpointExact); + shiftRightRoundingUp192(&u, integerBits - extraBits); + + l = powerOfTenRoundedDown; + multiply192x128RoundingDown(&l, lowerMidpointExact); + shiftRightRoundingDown192(&l, integerBits - extraBits); + } + + // Step 6: Align first digit, adjust exponent + // In particular, this prunes leading zeros from subnormals + static const uint64_t fixedPointOneHigh = (uint64_t)1 << highFractionBits; + static const uint64_t fixedPointMaskHigh = fixedPointOneHigh - 1; + swift_uint192_t t = u; + swift_uint192_t delta = u; + subtract192x192(&delta, l); + int exponent = base10Exponent + 1; + + while (t.high < fixedPointOneHigh) { + exponent -= 1; + multiply192xi32(&delta, 10); + multiply192xi32(&t, 10); + } + + // Step 7: Generate digits + int8_t *digit_p = digits; + + // Adjustment above already set up the first digit: + int nextDigit = (int)(t.high >> highFractionBits); + t.high &= fixedPointMaskHigh; + + // Generate four digits at a time ... + swift_uint192_t d0 = delta; + swift_uint192_t t0 = t; + multiply192xi32(&d0, 10000); + multiply192xi32(&t0, 10000); + int fourDigits = (int)(t0.high >> highFractionBits); + t0.high &= fixedPointMaskHigh; + while (isLessThan192x192(d0, t0)) { + *digit_p++ = nextDigit; + int d = fourDigits / 100; + *digit_p++ = d / 10; + *digit_p++ = d % 10; + d = fourDigits % 100; + *digit_p++ = d / 10; + nextDigit = d % 10; + t = t0; + delta = d0; + multiply192xi32(&d0, 10000); + multiply192xi32(&t0, 10000); + fourDigits = (int)(t0.high >> highFractionBits); + t0.high &= fixedPointMaskHigh; + } + + // Generate one digit at a time... + while (isLessThan192x192(delta, t)) { + *digit_p++ = nextDigit; + multiply192xi32(&delta, 10); + multiply192xi32(&t, 10); + nextDigit = (int)(t.high >> highFractionBits); + t.high &= fixedPointMaskHigh; + } + + // Adjust the final digit to be closer to the original value + // We've already consumed most of our available precision, so it's + // okay to just work in 64 bits here... +#if HAVE_UINT128_T + uint64_t deltaHigh64 = delta.high; + uint64_t tHigh64 = t.high; +#else + uint64_t deltaHigh64 = ((uint64_t)delta.high << 32) + delta.e; + uint64_t tHigh64 = ((uint64_t)t.high << 32) + t.e; +#endif + if (deltaHigh64 > tHigh64 + ((uint64_t)1 << (fractionBits % 64))) { + uint64_t skew; + if (isBoundary) { + skew = deltaHigh64 - deltaHigh64 / 3 - tHigh64; + } else { + skew = deltaHigh64 / 2 - tHigh64; + } + uint64_t one = (uint64_t)(1) << (64 - integerBits); + uint64_t fractionMask = one - 1; + uint64_t oneHalf = one >> 1; + if ((skew & fractionMask) == oneHalf) { + int adjust = (int)(skew >> (64 - integerBits)); + // If the skew is integer + 1/2, round the last digit even + // after adjustment + nextDigit = (nextDigit - adjust) & ~1; + } else { + // Else round to nearest... + int adjust = (int)((skew + oneHalf) >> (64 - integerBits)); + nextDigit = (nextDigit - adjust); + } + } + *digit_p++ = nextDigit; + + *decimalExponent = exponent; + return digit_p - digits; +} +#endif + +// +// ---------------- High-level API ----------------- +// +// Functions that format a Float/Double/Float80 +// directly into a buffer. +// +// These handle various exception cases (infinity, Nan, zero) +// before invoking the general base-10 conversion. + +#if SWIFT_DTOA_FLOAT_SUPPORT || SWIFT_DTOA_DOUBLE_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT +static size_t swift_format_constant(char *dest, size_t length, const char *s) { + const size_t l = strlen(s); + if (length <= l) { + return 0; + } + strcpy(dest, s); + return l; +} +#endif + +#if SWIFT_DTOA_FLOAT_SUPPORT +size_t swift_format_float(float d, char *dest, size_t length) +{ + if (!isfinite(d)) { + if (isinf(d)) { + // Infinity + if (signbit(d)) { + return swift_format_constant(dest, length, "-inf"); + } else { + return swift_format_constant(dest, length, "inf"); + } + } else { + // NaN + static const int significandBitCount = 23; + uint32_t raw = bitPatternForFloat(d); + const char *sign = signbit(d) ? "-" : ""; + const char *signaling = ((raw >> (significandBitCount - 1)) & 1) ? "" : "s"; + uint32_t payload = raw & ((1L << (significandBitCount - 2)) - 1); + char buff[32]; + if (payload != 0) { + snprintf(buff, sizeof(buff), "%s%snan(0x%x)", + sign, signaling, payload); + } else { + snprintf(buff, sizeof(buff), "%s%snan", + sign, signaling); + } + return swift_format_constant(dest, length, buff); + } + } + + // zero + if (d == 0.0) { + if (signbit(d)) { + return swift_format_constant(dest, length, "-0.0"); + } else { + return swift_format_constant(dest, length, "0.0"); + } + } + + // Decimal numeric formatting + int decimalExponent; + int8_t digits[9]; + int digitCount = + swift_decompose_float(d, digits, sizeof(digits), &decimalExponent); + // People use float to model integers <= 2^24, so we use that + // as a cutoff for decimal vs. exponential format. + if (decimalExponent < -3 || fabsf(d) > (1<<24)) { // Jens: Was "0x1.0p24F"; changed for MSVC + return swift_format_exponential(dest, length, signbit(d), + digits, digitCount, decimalExponent); + } else { + return swift_format_decimal(dest, length, signbit(d), + digits, digitCount, decimalExponent); + } +} +#endif + +#if SWIFT_DTOA_DOUBLE_SUPPORT +size_t swift_format_double(double d, char *dest, size_t length) +{ + if (!isfinite(d)) { + if (isinf(d)) { + // Infinity + if (signbit(d)) { + return swift_format_constant(dest, length, "-inf"); + } else { + return swift_format_constant(dest, length, "inf"); + } + } else { + // NaN + static const int significandBitCount = 52; + uint64_t raw = bitPatternForDouble(d); + const char *sign = signbit(d) ? "-" : ""; + const char *signaling = ((raw >> (significandBitCount - 1)) & 1) ? "" : "s"; + uint64_t payload = raw & ((1ull << (significandBitCount - 2)) - 1); + char buff[32]; + if (payload != 0) { + snprintf(buff, sizeof(buff), "%s%snan(0x%" PRIx64 ")", + sign, signaling, payload); + } else { + snprintf(buff, sizeof(buff), "%s%snan", + sign, signaling); + } + return swift_format_constant(dest, length, buff); + } + } + + // zero + if (d == 0.0) { + if (signbit(d)) { + return swift_format_constant(dest, length, "-0.0"); + } else { + return swift_format_constant(dest, length, "0.0"); + } + } + + // Decimal numeric formatting + int decimalExponent; + int8_t digits[17]; + int digitCount = + swift_decompose_double(d, digits, sizeof(digits), &decimalExponent); + // People use double to model integers <= 2^53, so we use that + // as a cutoff for decimal vs. exponential format. + if (decimalExponent < -3 || fabs(d) > (2LL<<53)) { // Jens: Was "0x1.0p53"; changed for MSVC + return swift_format_exponential(dest, length, signbit(d), + digits, digitCount, decimalExponent); + } else { + return swift_format_decimal(dest, length, signbit(d), + digits, digitCount, decimalExponent); + } +} +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +size_t swift_format_float80(long double d, char *dest, size_t length) +{ + if (!isfinite(d)) { + if (isinf(d)) { + // Infinity + if (signbit(d)) { + return swift_format_constant(dest, length, "-inf"); + } else { + return swift_format_constant(dest, length, "inf"); + } + } else { + // NaN + // Assumes Intel 80-bit extended format in LSB byte order: + uint64_t significandBitPattern = *(const uint64_t *)&d; + const char *sign = signbit(d) ? "-" : ""; + const char *signaling = ((significandBitPattern >> 62) & 1) ? "" : "s"; + uint64_t payload = significandBitPattern & (((uint64_t)1 << 61) - 1); + char buff[32]; + if (payload != 0) { + snprintf(buff, sizeof(buff), "%s%snan(0x%" PRIx64 ")", + sign, signaling, payload); + } else { + snprintf(buff, sizeof(buff), "%s%snan", + sign, signaling); + } + return swift_format_constant(dest, length, buff); + } + } + + // zero + if (d == 0.0) { + if (signbit(d)) { + return swift_format_constant(dest, length, "-0.0"); + } else { + return swift_format_constant(dest, length, "0.0"); + } + } + + // Decimal numeric formatting + int decimalExponent; + int8_t digits[21]; + int digitCount = + swift_decompose_float80(d, digits, sizeof(digits), &decimalExponent); + // People use long double to model integers <= 2^64, so we use that + // as a cutoff for decimal vs. exponential format. + // The constant is written out as a float80 (aka "long double") literal + // here since it can't be expressed as a 64-bit integer. + if (decimalExponent < -3 || fabsl(d) > 0x1.0p64L) { + return swift_format_exponential(dest, length, signbit(d), + digits, digitCount, decimalExponent); + } else { + return swift_format_decimal(dest, length, signbit(d), + digits, digitCount, decimalExponent); + } +} +#endif + +/** + * Routines to format a decomposed value into a standard string form. + */ + +// Format into exponential format: "1.234e+56" +// Returns number of characters actually written to `dest`. +// Returns zero if buffer is too small. +size_t swift_format_exponential(char *dest, size_t length, + bool negative, const int8_t *digits, int digit_count, int exponent) +{ + // Largest buffer we could possibly need: + size_t maximum_size = digit_count + 9; + if (length < maximum_size) { + // We only do the detailed check if the size is borderline. + size_t actual_size = + + (negative ? 1 : 0) // Leading minus + + digit_count // digits + + (digit_count > 1 ? 1 : 0) // decimal + + 1 // 'e' + + 1 // sign + + (exponent > 99 ? (exponent > 999 ? 4 : 3) : 2) // exponent + + 1; // trailing zero byte + if (length < actual_size) { + if (length > 0) { + dest[0] = 0; + } + return 0; + } + } + char *p = dest; + if (negative) { + *p++ = '-'; + } + + *p++ = digits[0] + '0'; + exponent -= 1; + if (digit_count > 1) { + *p++ = '.'; + for (int i = 1; i < digit_count; i++) { + *p++ = digits[i] + '0'; + } + } + *p++ = 'e'; + if (exponent < 0) { + *p++ = '-'; + exponent = -exponent; + } else { + *p++ = '+'; + } + if (exponent > 99) { + if (exponent > 999) { + *p++ = (exponent / 1000 % 10) + '0'; + } + *p++ = (exponent / 100 % 10) + '0'; + exponent %= 100; + } + *p++ = (exponent / 10) + '0'; + *p++ = (exponent % 10) + '0'; + *p = '\0'; + return p - dest; +} + +// Format into decimal form: "123456789000.0", "1234.5678", "0.0000001234" +// Returns number of bytes of `dest` actually used, or zero if +// provided buffer is too small. +size_t swift_format_decimal(char *dest, size_t length, + bool negative, const int8_t *digits, int digit_count, int exponent) +{ + // Largest buffer we could possibly need: + size_t maximum_size = + digit_count // All the digits + + (exponent > 0 ? exponent : -exponent) // Max # of extra zeros + + 4; // Max # of other items + if (length < maximum_size) { + // We only do the detailed check if the size is borderline. + if (exponent <= 0) { // "0.0000001234" + size_t actual_size = + (negative ? 1 : 0) // Leading minus + + 2 // Leading "0." + + (-exponent) // Leading zeros after decimal point + + digit_count + + 1; // Trailing zero byte + if (length < actual_size) { + if (length > 0) { + dest[0] = 0; + } + return 0; + } + } else if (exponent < digit_count) { // "123.45" + size_t actual_size = + (negative ? 1 : 0) // Leading minus + + digit_count + + 1 // embedded decimal point + + 1; // Trailing zero byte + if (length < actual_size) { + if (length > 0) { + dest[0] = 0; + } + return 0; + } + } else { // "12345000.0" + size_t actual_size = + (negative ? 1 : 0) // Leading minus + + digit_count + + (exponent - digit_count) // trailing zeros + + 2 // ".0" to mark this as floating point + + 1; // Trailing zero byte + if (length < actual_size) { + if (length > 0) { + dest[0] = 0; + } + return 0; + } + } + } + + char *p = dest; + if (negative) { + *p++ = '-'; + } + + if (exponent <= 0) { + *p++ = '0'; + *p++ = '.'; + while (exponent < 0) { + *p++ = '0'; + exponent += 1; + } + for (int i = 0; i < digit_count; ++i) { + *p++ = digits[i] + '0'; + } + } else if (exponent < digit_count) { + for (int i = 0; i < digit_count; i++) { + if (exponent == 0) { + *p++ = '.'; + } + *p++ = digits[i] + '0'; + exponent -= 1; + } + } else { + for (int i = 0; i < digit_count; i++) { + *p++ = digits[i] + '0'; + exponent -= 1; + } + while (exponent > 0) { + *p++ = '0'; + exponent -= 1; + } + *p++ = '.'; + *p++ = '0'; + } + *p = '\0'; + return p - dest; +} + +// +// ------------ Arithmetic helpers ---------------- +// + +// The core algorithm relies heavily on fraction and fixed-point +// arithmetic with 64-bit, 128-bit, and 192-bit integer values. (For +// float, double, and float80, respectively.) They also need precise +// control over all rounding. +// +// Note that most arithmetic operations are the same for integers and +// fractions, so we can just use the normal integer operations in most +// places. Multiplication however, is different for fixed-size +// fractions. Integer multiplication preserves the low-order part and +// discards the high-order part (ignoring overflow). Fraction +// multiplication preserves the high-order part and discards the +// low-order part (rounding). So most of the arithmetic helpers here +// are for multiplication. + +// Note: With 64-bit GCC and Clang, we get a noticable performance +// gain by using `__uint128_t`. Otherwise, we have to break things +// down into 32-bit chunks so we don't overflow 64-bit temporaries. + +#if SWIFT_DTOA_FLOAT_SUPPORT +// Multiply a 64-bit fraction by a 32-bit fraction, rounding down. +static uint64_t multiply64x32RoundingDown(uint64_t lhs, uint32_t rhs) { + static const uint64_t mask32 = UINT32_MAX; + uint64_t t = ((lhs & mask32) * rhs) >> 32; + return t + (lhs >> 32) * rhs; +} + +// Multiply a 64-bit fraction by a 32-bit fraction, rounding up. +static uint64_t multiply64x32RoundingUp(uint64_t lhs, uint32_t rhs) { + static const uint64_t mask32 = UINT32_MAX; + uint64_t t = (((lhs & mask32) * rhs) + mask32) >> 32; + return t + (lhs >> 32) * rhs; +} + +// Multiply a 64-bit fraction by a 64-bit fraction, rounding down. +static uint64_t multiply64x64RoundingDown(uint64_t lhs, uint64_t rhs) { +#if HAVE_UINT128_T + __uint128_t full = (__uint128_t)lhs * rhs; + return (uint64_t)(full >> 64); +#else + static const uint64_t mask32 = UINT32_MAX; + uint64_t t = (lhs & mask32) * (rhs & mask32); + t >>= 32; + uint64_t a = (lhs >> 32) * (rhs & mask32); + uint64_t b = (lhs & mask32) * (rhs >> 32); + // Useful: If w,x,y,z are all 32-bit values, then: + // w * x + y + z + // <= (2^64 - 2^33 + 1) + (2^32 - 1) + (2^32 - 1) + // <= 2^64 - 1 + // + // That is, a product of two 32-bit values plus two more 32-bit + // values can't overflow 64 bits. (But "three more" can, so be + // careful!) + // + // Here: t + a + (b & mask32) <= 2^64 - 1 + t += a + (b & mask32); + t >>= 32; + t += (b >> 32); + return t + (lhs >> 32) * (rhs >> 32); +#endif +} + +// Multiply a 64-bit fraction by a 64-bit fraction, rounding up. +static uint64_t multiply64x64RoundingUp(uint64_t lhs, uint64_t rhs) { +#if HAVE_UINT128_T + static const __uint128_t roundingUpBias = ((__uint128_t)1 << 64) - 1; + __uint128_t full = (__uint128_t)lhs * rhs; + return (uint64_t)((full + roundingUpBias) >> 64); +#else + static const uint64_t mask32 = UINT32_MAX; + uint64_t t = (lhs & mask32) * (rhs & mask32); + t = (t + mask32) >> 32; + uint64_t a = (lhs >> 32) * (rhs & mask32); + uint64_t b = (lhs & mask32) * (rhs >> 32); + t += (a & mask32) + (b & mask32) + mask32; + t >>= 32; + t += (a >> 32) + (b >> 32); + return t + (lhs >> 32) * (rhs >> 32); +#endif +} + +#endif + +#if SWIFT_DTOA_DOUBLE_SUPPORT +// Multiply a 128-bit fraction by a 64-bit fraction, rounding down. +static swift_uint128_t multiply128x64RoundingDown(swift_uint128_t lhs, uint64_t rhs) { +#if HAVE_UINT128_T + uint64_t lhsl = (uint64_t)lhs; + uint64_t lhsh = (uint64_t)(lhs >> 64); + swift_uint128_t h = (swift_uint128_t)lhsh * rhs; + swift_uint128_t l = (swift_uint128_t)lhsl * rhs; + return h + (l >> 64); +#else + swift_uint128_t result; + static const uint64_t mask32 = UINT32_MAX; + uint64_t rhs0 = rhs & mask32; + uint64_t rhs1 = rhs >> 32; + uint64_t t = (lhs.low) * rhs0; + t >>= 32; + uint64_t a = (lhs.b) * rhs0; + uint64_t b = (lhs.low) * rhs1; + t += a + (b & mask32); + t >>= 32; + t += (b >> 32); + a = lhs.c * rhs0; + b = lhs.b * rhs1; + t += (a & mask32) + (b & mask32); + result.low = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs.high * rhs0; + b = lhs.c * rhs1; + t += (a & mask32) + (b & mask32); + result.b = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + t += lhs.high * rhs1; + result.c = t; + result.high = t >> 32; + return result; +#endif +} + +// Multiply a 128-bit fraction by a 64-bit fraction, rounding up. +static swift_uint128_t multiply128x64RoundingUp(swift_uint128_t lhs, uint64_t rhs) { +#if HAVE_UINT128_T + uint64_t lhsl = (uint64_t)lhs; + uint64_t lhsh = (uint64_t)(lhs >> 64); + swift_uint128_t h = (swift_uint128_t)lhsh * rhs; + swift_uint128_t l = (swift_uint128_t)lhsl * rhs; + const static __uint128_t bias = ((__uint128_t)1 << 64) - 1; + return h + ((l + bias) >> 64); +#else + swift_uint128_t result; + static const uint64_t mask32 = UINT32_MAX; + uint64_t rhs0 = rhs & mask32; + uint64_t rhs1 = rhs >> 32; + uint64_t t = (lhs.low) * rhs0 + mask32; + t >>= 32; + uint64_t a = (lhs.b) * rhs0; + uint64_t b = (lhs.low) * rhs1; + t += (a & mask32) + (b & mask32) + mask32; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs.c * rhs0; + b = lhs.b * rhs1; + t += (a & mask32) + (b & mask32); + result.low = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs.high * rhs0; + b = lhs.c * rhs1; + t += (a & mask32) + (b & mask32); + result.b = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + t += lhs.high * rhs1; + result.c = t; + result.high = t >> 32; + return result; +#endif +} + +#if !HAVE_UINT128_T +// Multiply a 128-bit fraction by a 32-bit integer in a 32-bit environment. +// (On 64-bit, we use a fast inline macro.) +static void multiply128xi32(swift_uint128_t *lhs, uint32_t rhs) { + uint64_t t = (uint64_t)(lhs->low) * rhs; + lhs->low = (uint32_t)t; + t = (t >> 32) + (uint64_t)(lhs->b) * rhs; + lhs->b = (uint32_t)t; + t = (t >> 32) + (uint64_t)(lhs->c) * rhs; + lhs->c = (uint32_t)t; + t = (t >> 32) + (uint64_t)(lhs->high) * rhs; + lhs->high = (uint32_t)t; +} + +// Compare two 128-bit integers in a 32-bit environment +// (On 64-bit, we use a fast inline macro.) +static int isLessThan128x128(swift_uint128_t lhs, swift_uint128_t rhs) { + return ((lhs.high < rhs.high) + || ((lhs.high == rhs.high) + && ((lhs.c < rhs.c) + || ((lhs.c == rhs.c) + && ((lhs.b < rhs.b) + || ((lhs.b == rhs.b) + && (lhs.low < rhs.low))))))); +} + +// Subtract 128-bit values in a 32-bit environment +static void subtract128x128(swift_uint128_t *lhs, swift_uint128_t rhs) { + uint64_t t = (uint64_t)lhs->low + (~rhs.low) + 1; + lhs->low = (uint32_t)t; + t = (t >> 32) + lhs->b + (~rhs.b); + lhs->b = (uint32_t)t; + t = (t >> 32) + lhs->c + (~rhs.c); + lhs->c = (uint32_t)t; + t = (t >> 32) + lhs->high + (~rhs.high); + lhs->high = (uint32_t)t; +} +#endif + +// Shift a 128-bit integer right, rounding down. +static swift_uint128_t shiftRightRoundingDown128(swift_uint128_t lhs, int shift) { +#if HAVE_UINT128_T + return lhs >> shift; +#else + // Note: Shift is always less than 32 + swift_uint128_t result; + uint64_t t = (uint64_t)lhs.low >> shift; + t += ((uint64_t)lhs.b << (32 - shift)); + result.low = t; + t >>= 32; + t += ((uint64_t)lhs.c << (32 - shift)); + result.b = t; + t >>= 32; + t += ((uint64_t)lhs.high << (32 - shift)); + result.c = t; + t >>= 32; + result.high = t; + return result; +#endif +} + +// Shift a 128-bit integer right, rounding up. +static swift_uint128_t shiftRightRoundingUp128(swift_uint128_t lhs, int shift) { +#if HAVE_UINT128_T + uint64_t bias = ((uint64_t)1 << shift) - 1; + return ((lhs + bias) >> shift); +#else + swift_uint128_t result; + const uint64_t bias = (1 << shift) - 1; + uint64_t t = ((uint64_t)lhs.low + bias) >> shift; + t += ((uint64_t)lhs.b << (32 - shift)); + result.low = t; + t >>= 32; + t += ((uint64_t)lhs.c << (32 - shift)); + result.b = t; + t >>= 32; + t += ((uint64_t)lhs.high << (32 - shift)); + result.c = t; + t >>= 32; + result.high = t; + return result; +#endif +} +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +// Multiply a 192-bit fraction by a 64-bit fraction, rounding down. +static void multiply192x64RoundingDown(swift_uint192_t *lhs, uint64_t rhs) { +#if HAVE_UINT128_T + // Compute the three 128-bit cross-products + __uint128_t cd = (__uint128_t)lhs->low * rhs; + __uint128_t bc = (__uint128_t)lhs->mid * rhs; + __uint128_t ab = (__uint128_t)lhs->high * rhs; + // Add up the three 64-bit outputs (including carries) + __uint128_t c = (cd >> 64) + (uint64_t)bc; + __uint128_t b = (bc >> 64) + (uint64_t)ab + (c >> 64); + __uint128_t a = (ab >> 64) + (b >> 64); + lhs->high = a; + lhs->mid = b; + lhs->low = c; +#else + static const uint64_t mask32 = UINT32_MAX; + uint64_t rhs0 = rhs & mask32; + uint64_t rhs1 = rhs >> 32; + uint64_t t = lhs->low * rhs0; + t >>= 32; + uint64_t a = lhs->low * rhs1; + uint64_t b = lhs->b * rhs0; + t += a + (b & mask32); + t >>= 32; + t += (b >> 32); + a = lhs->b * rhs1; + b = lhs->c * rhs0; + t += (a & mask32) + (b & mask32); + lhs->low = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->c * rhs1; + b = lhs->d * rhs0; + t += (a & mask32) + (b & mask32); + lhs->b = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->d * rhs1; + b = lhs->e * rhs0; + t += (a & mask32) + (b & mask32); + lhs->c = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->e * rhs1; + b = lhs->high * rhs0; + t += (a & mask32) + (b & mask32); + lhs->d = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + t += lhs->high * rhs1; + lhs->e = t; + lhs->high = t >> 32; +#endif +} + +// Multiply a 192-bit fraction by a 64-bit fraction, rounding up. +static void multiply192x64RoundingUp(swift_uint192_t *lhs, uint64_t rhs) { +#if HAVE_UINT128_T + // Compute the three 128-bit cross-products + __uint128_t cd = (__uint128_t)lhs->low * rhs + UINT64_MAX; + __uint128_t bc = (__uint128_t)lhs->mid * rhs; + __uint128_t ab = (__uint128_t)lhs->high * rhs; + // Add up the three 64-bit outputs (including carries) + __uint128_t c = (cd >> 64) + (uint64_t)bc; + __uint128_t b = (bc >> 64) + (uint64_t)ab + (c >> 64); + __uint128_t a = (ab >> 64) + (b >> 64); + lhs->high = a; + lhs->mid = b; + lhs->low = c; +#else + static const uint64_t mask32 = UINT32_MAX; + static const uint64_t bias = mask32; + uint64_t rhs0 = rhs & mask32; + uint64_t rhs1 = rhs >> 32; + uint64_t t = lhs->low * rhs0 + bias; + t >>= 32; + uint64_t a = lhs->low * rhs1; + uint64_t b = lhs->b * rhs0; + t += (a & mask32) + (b & mask32) + bias; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->b * rhs1; + b = lhs->c * rhs0; + t += (a & mask32) + (b & mask32); + lhs->low = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->c * rhs1; + b = lhs->d * rhs0; + t += (a & mask32) + (b & mask32); + lhs->b = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->d * rhs1; + b = lhs->e * rhs0; + t += (a & mask32) + (b & mask32); + lhs->c = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = lhs->e * rhs1; + b = lhs->high * rhs0; + t += (a & mask32) + (b & mask32); + lhs->d = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + t += lhs->high * rhs1; + lhs->e = t; + lhs->high = t >> 32; +#endif +} + +// Multiply a 192-bit fraction by a 64-bit integer. +// This is used in the digit generation to multiply by ten or +// 10,000. Note that rounding never appliles here. +// As used below, this will never overflow. +static void multiply192xi32(swift_uint192_t *lhs, uint32_t rhs) { +#if HAVE_UINT128_T + __uint128_t t = (__uint128_t)lhs->low * rhs; + lhs->low = (uint64_t)t; + t = (t >> 64) + (__uint128_t)lhs->mid * rhs; + lhs->mid = (uint64_t)t; + t = (t >> 64) + (__uint128_t)lhs->high * rhs; + lhs->high = (uint64_t)t; +#else + uint64_t t = (uint64_t)lhs->low * rhs; + lhs->low = t; + t = (t >> 32) + (uint64_t)lhs->b * rhs; + lhs->b = t; + t = (t >> 32) + (uint64_t)lhs->c * rhs; + lhs->c = t; + t = (t >> 32) + (uint64_t)lhs->d * rhs; + lhs->d = t; + t = (t >> 32) + (uint64_t)lhs->e * rhs; + lhs->e = t; + t = (t >> 32) + (uint64_t)lhs->high * rhs; + lhs->high = t; +#endif +} + +// Multiply a 192-bit fraction by a 128-bit fraction, rounding down. +static void multiply192x128RoundingDown(swift_uint192_t *lhs, swift_uint128_t rhs) { +#if HAVE_UINT128_T + // A full multiply of three 64-bit values by two 64-bit values + // yields five such components. We discard the bottom two (except + // for carries) to get a rounded-down three-element result. + __uint128_t current = (__uint128_t)lhs->low * (uint64_t)rhs; + + current = (current >> 64); + __uint128_t t = (__uint128_t)lhs->low * (rhs >> 64); + current += (uint64_t)t; + __uint128_t next = t >> 64; + t = (__uint128_t)lhs->mid * (uint64_t)rhs; + current += (uint64_t)t; + next += t >> 64; + + current = next + (current >> 64); + t = (__uint128_t)lhs->mid * (rhs >> 64); + current += (uint64_t)t; + next = t >> 64; + t = (__uint128_t)lhs->high * (uint64_t)rhs; + current += (uint64_t)t; + next += t >> 64; + lhs->low = (uint64_t)current; + + current = next + (current >> 64); + t = (__uint128_t)lhs->high * (rhs >> 64); + current += t; + lhs->mid = (uint64_t)current; + lhs->high = (uint64_t)(current >> 64); +#else + uint64_t a, b, c, d; // temporaries + // Six 32-bit values multiplied by 4 32-bit values. Oh my. + static const uint64_t mask32 = UINT32_MAX; + uint64_t t = lhs->low * rhs.low; + t >>= 32; + a = (uint64_t)lhs->low * rhs.b; + b = (uint64_t)lhs->b * rhs.low; + t += a + (b & mask32); + t >>= 32; + t += (b >> 32); + a = (uint64_t)lhs->low * rhs.c; + b = (uint64_t)lhs->b * rhs.b; + c = (uint64_t)lhs->c * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32); + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32); + a = (uint64_t)lhs->low * rhs.high; + b = (uint64_t)lhs->b * rhs.c; + c = (uint64_t)lhs->c * rhs.b; + d = (uint64_t)lhs->d * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32); + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32); + a = (uint64_t)lhs->b * rhs.high; + b = (uint64_t)lhs->c * rhs.c; + c = (uint64_t)lhs->d * rhs.b; + d = (uint64_t)lhs->e * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32); + lhs->low = t; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32); + a = (uint64_t)lhs->c * rhs.high; + b = (uint64_t)lhs->d * rhs.c; + c = (uint64_t)lhs->e * rhs.b; + d = (uint64_t)lhs->high * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32); + lhs->b = t; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32); + a = (uint64_t)lhs->d * rhs.high; + b = (uint64_t)lhs->e * rhs.c; + c = (uint64_t)lhs->high * rhs.b; + t += (a & mask32) + (b & mask32) + (c & mask32); + lhs->c = t; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32); + a = (uint64_t)lhs->e * rhs.high; + b = (uint64_t)lhs->high * rhs.c; + t += (a & mask32) + (b & mask32); + lhs->d = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + t += (uint64_t)lhs->high * rhs.high; + lhs->e = t; + lhs->high = t >> 32; +#endif +} + +// Multiply a 192-bit fraction by a 128-bit fraction, rounding up. +static void multiply192x128RoundingUp(swift_uint192_t *lhs, swift_uint128_t rhs) { +#if HAVE_UINT128_T + // Same as the rounding-down version, but we add + // UINT128_MAX to the bottom two to force an extra + // carry if they are non-zero. + swift_uint128_t current = (swift_uint128_t)lhs->low * (uint64_t)rhs; + current += UINT64_MAX; + + current = (current >> 64); + swift_uint128_t t = (swift_uint128_t)lhs->low * (rhs >> 64); + current += (uint64_t)t; + swift_uint128_t next = t >> 64; + t = (swift_uint128_t)lhs->mid * (uint64_t)rhs; + current += (uint64_t)t; + next += t >> 64; + // Round up by adding UINT128_MAX (upper half) + current += UINT64_MAX; + + current = next + (current >> 64); + t = (swift_uint128_t)lhs->mid * (rhs >> 64); + current += (uint64_t)t; + next = t >> 64; + t = (swift_uint128_t)lhs->high * (uint64_t)rhs; + current += (uint64_t)t; + next += t >> 64; + lhs->low = (uint64_t)current; + + current = next + (current >> 64); + t = (swift_uint128_t)lhs->high * (rhs >> 64); + current += t; + lhs->mid = (uint64_t)current; + lhs->high = (uint64_t)(current >> 64); +#else + uint64_t a, b, c, d; // temporaries + // Six 32-bit values multiplied by 4 32-bit values. Oh my. + static const uint64_t mask32 = UINT32_MAX; + uint64_t t = (uint64_t)lhs->low * rhs.low + mask32; + t >>= 32; + a = (uint64_t)lhs->low * rhs.b; + b = (uint64_t)lhs->b * rhs.low; + t += (a & mask32) + (b & mask32) + mask32; + t >>= 32; + t += (a >> 32) + (b >> 32); + a = (uint64_t)lhs->low * rhs.c; + b = (uint64_t)lhs->b * rhs.b; + c = (uint64_t)lhs->c * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + mask32; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32); + a = (uint64_t)lhs->low * rhs.high; + b = (uint64_t)lhs->b * rhs.c; + c = (uint64_t)lhs->c * rhs.b; + d = (uint64_t)lhs->d * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32) + mask32; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32); + a = (uint64_t)lhs->b * rhs.high; + b = (uint64_t)lhs->c * rhs.c; + c = (uint64_t)lhs->d * rhs.b; + d = (uint64_t)lhs->e * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32); + lhs->low = t; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32); + a = (uint64_t)lhs->c * rhs.high; + b = (uint64_t)lhs->d * rhs.c; + c = (uint64_t)lhs->e * rhs.b; + d = (uint64_t)lhs->high * rhs.low; + t += (a & mask32) + (b & mask32) + (c & mask32) + (d & mask32); + lhs->b = t; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32) + (d >> 32); + a = (uint64_t)lhs->d * rhs.high; + b = (uint64_t)lhs->e * rhs.c; + c = (uint64_t)lhs->high * rhs.b; + t += (a & mask32) + (b & mask32) + (c & mask32); + lhs->c = t; + t >>= 32; + t += (a >> 32) + (b >> 32) + (c >> 32); + a = (uint64_t)lhs->e * rhs.high; + b = (uint64_t)lhs->high * rhs.c; + t += (a & mask32) + (b & mask32); + lhs->d = t; + t >>= 32; + t += (a >> 32) + (b >> 32); + t += (uint64_t)lhs->high * rhs.high; + lhs->e = t; + lhs->high = t >> 32; +#endif +} + +// Subtract two 192-bit integers or fractions. +static void subtract192x192(swift_uint192_t *lhs, swift_uint192_t rhs) { +#if HAVE_UINT128_T + swift_uint128_t t = (swift_uint128_t)lhs->low + (~rhs.low) + 1; + lhs->low = t; + t = (t >> 64) + lhs->mid + (~rhs.mid); + lhs->mid = t; + lhs->high += (t >> 64) + (~rhs.high); +#else + uint64_t t = (uint64_t)lhs->low + (~rhs.low) + 1; + lhs->low = t; + t = (t >> 32) + lhs->b + (~rhs.b); + lhs->b = t; + t = (t >> 32) + lhs->c + (~rhs.c); + lhs->c = t; + t = (t >> 32) + lhs->d + (~rhs.d); + lhs->d = t; + t = (t >> 32) + lhs->e + (~rhs.e); + lhs->e = t; + lhs->high += (t >> 32) + (~rhs.high); +#endif +} + +// Compare two 192-bit integers or fractions. +static int isLessThan192x192(swift_uint192_t lhs, swift_uint192_t rhs) { +#if HAVE_UINT128_T + return (lhs.high < rhs.high) + || (lhs.high == rhs.high + && (lhs.mid < rhs.mid + || (lhs.mid == rhs.mid + && lhs.low < rhs.low))); +#else + return (lhs.high < rhs.high + || (lhs.high == rhs.high + && (lhs.e < rhs.e + || (lhs.e == rhs.e + && (lhs.d < rhs.d + || (lhs.d == rhs.d + && (lhs.c < rhs.c + || (lhs.c == rhs.c + && (lhs.b < rhs.b + || (lhs.b == rhs.b + && (lhs.low < rhs.low))))))))))); +#endif +} + +// Shift a 192-bit integer right, rounding down. +static void shiftRightRoundingDown192(swift_uint192_t *lhs, int shift) { +#if HAVE_UINT128_T + __uint128_t t = (__uint128_t)lhs->low >> shift; + t += ((__uint128_t)lhs->mid << (64 - shift)); + lhs->low = t; + t >>= 64; + t += ((__uint128_t)lhs->high << (64 - shift)); + lhs->mid = t; + t >>= 64; + lhs->high = t; +#else + uint64_t t = (uint64_t)lhs->low >> shift; + t += ((uint64_t)lhs->b << (32 - shift)); + lhs->low = t; + t >>= 32; + t += ((uint64_t)lhs->c << (32 - shift)); + lhs->b = t; + t >>= 32; + t += ((uint64_t)lhs->d << (32 - shift)); + lhs->c = t; + t >>= 32; + t += ((uint64_t)lhs->e << (32 - shift)); + lhs->d = t; + t >>= 32; + t += ((uint64_t)lhs->high << (32 - shift)); + lhs->e = t; + t >>= 32; + lhs->high = t; +#endif +} + +// Shift a 192-bit integer right, rounding up. +// Note: The shift will always be less than 20. Someday, that +// might suggest a way to further optimize this. +static void shiftRightRoundingUp192(swift_uint192_t *lhs, int shift) { +#if HAVE_UINT128_T + const uint64_t bias = (1 << shift) - 1; + __uint128_t t = ((__uint128_t)lhs->low + bias) >> shift; + t += ((__uint128_t)lhs->mid << (64 - shift)); + lhs->low = t; + t >>= 64; + t += ((__uint128_t)lhs->high << (64 - shift)); + lhs->mid = t; + t >>= 64; + lhs->high = t; +#else + const uint64_t bias = (1 << shift) - 1; + uint64_t t = ((uint64_t)lhs->low + bias) >> shift; + t += ((uint64_t)lhs->b << (32 - shift)); + lhs->low = t; + t >>= 32; + t += ((uint64_t)lhs->c << (32 - shift)); + lhs->b = t; + t >>= 32; + t += ((uint64_t)lhs->d << (32 - shift)); + lhs->c = t; + t >>= 32; + t += ((uint64_t)lhs->e << (32 - shift)); + lhs->d = t; + t >>= 32; + t += ((uint64_t)lhs->high << (32 - shift)); + lhs->e = t; + t >>= 32; + lhs->high = t; +#endif +} +#endif + +// +// ------------ Power of 10 calculation ---------------- +// + +// +// ------------ Power-of-10 tables. -------------------------- +// +// Grisu-style algorithms rely on being able to rapidly +// find a high-precision approximation of any power of 10. +// These values were computed by a simple script that +// relied on Python's excellent variable-length +// integer support. + +#if SWIFT_DTOA_FLOAT_SUPPORT || SWIFT_DTOA_DOUBLE_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT +// Float table +// +// The constant powers of 10 here represent pure fractions +// with a binary point at the far left. (Each number in +// this first table is implicitly divided by 2^64.) +// +// Table size: 320 bytes +// +// A 64-bit significand allows us to exactly represent +// powers of 10 up to 10^27. For larger powers, the +// value here is rounded DOWN from the exact value. +// For those powers, the value here is less than the +// exact power of 10; adding one gives a value greater +// than the exact power of 10. +// +// For single-precision Float, we use these directly +// for positive powers of 10. For negative powers of +// ten, we multiply a value here by 10^-40. +// +// For Double and Float80, we use the 28 exact values +// here to help reduce the size of those tables. +static const uint64_t powersOf10_Float[40] = { + 0x8000000000000000, // x 2^1 == 10^0 exactly + 0xa000000000000000, // x 2^4 == 10^1 exactly + 0xc800000000000000, // x 2^7 == 10^2 exactly + 0xfa00000000000000, // x 2^10 == 10^3 exactly + 0x9c40000000000000, // x 2^14 == 10^4 exactly + 0xc350000000000000, // x 2^17 == 10^5 exactly + 0xf424000000000000, // x 2^20 == 10^6 exactly + 0x9896800000000000, // x 2^24 == 10^7 exactly + 0xbebc200000000000, // x 2^27 == 10^8 exactly + 0xee6b280000000000, // x 2^30 == 10^9 exactly + 0x9502f90000000000, // x 2^34 == 10^10 exactly + 0xba43b74000000000, // x 2^37 == 10^11 exactly + 0xe8d4a51000000000, // x 2^40 == 10^12 exactly + 0x9184e72a00000000, // x 2^44 == 10^13 exactly + 0xb5e620f480000000, // x 2^47 == 10^14 exactly + 0xe35fa931a0000000, // x 2^50 == 10^15 exactly + 0x8e1bc9bf04000000, // x 2^54 == 10^16 exactly + 0xb1a2bc2ec5000000, // x 2^57 == 10^17 exactly + 0xde0b6b3a76400000, // x 2^60 == 10^18 exactly + 0x8ac7230489e80000, // x 2^64 == 10^19 exactly + 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly + 0xd8d726b7177a8000, // x 2^70 == 10^21 exactly + 0x878678326eac9000, // x 2^74 == 10^22 exactly + 0xa968163f0a57b400, // x 2^77 == 10^23 exactly + 0xd3c21bcecceda100, // x 2^80 == 10^24 exactly + 0x84595161401484a0, // x 2^84 == 10^25 exactly + 0xa56fa5b99019a5c8, // x 2^87 == 10^26 exactly + 0xcecb8f27f4200f3a, // x 2^90 == 10^27 exactly + 0x813f3978f8940984, // x 2^94 ~= 10^28 + 0xa18f07d736b90be5, // x 2^97 ~= 10^29 + 0xc9f2c9cd04674ede, // x 2^100 ~= 10^30 + 0xfc6f7c4045812296, // x 2^103 ~= 10^31 + 0x9dc5ada82b70b59d, // x 2^107 ~= 10^32 + 0xc5371912364ce305, // x 2^110 ~= 10^33 + 0xf684df56c3e01bc6, // x 2^113 ~= 10^34 + 0x9a130b963a6c115c, // x 2^117 ~= 10^35 + 0xc097ce7bc90715b3, // x 2^120 ~= 10^36 + 0xf0bdc21abb48db20, // x 2^123 ~= 10^37 + 0x96769950b50d88f4, // x 2^127 ~= 10^38 + 0xbc143fa4e250eb31, // x 2^130 ~= 10^39 +}; +#endif + +#if SWIFT_DTOA_DOUBLE_SUPPORT +// As above, but with 128-bit fractions. +// +// Table size: 464 bytes +// +// We only store every 28th power of ten here. +// We can multiply by an exact 64-bit power of +// ten from the table above to reconstruct the +// significand for any power of 10. +static const uint64_t powersOf10_Double[] = { + // low-order half, high-order half + 0x3931b850df08e738, 0x95fe7e07c91efafa, // x 2^-1328 ~= 10^-400 + 0xba954f8e758fecb3, 0x9774919ef68662a3, // x 2^-1235 ~= 10^-372 + 0x9028bed2939a635c, 0x98ee4a22ecf3188b, // x 2^-1142 ~= 10^-344 + 0x47b233c92125366e, 0x9a6bb0aa55653b2d, // x 2^-1049 ~= 10^-316 + 0x4ee367f9430aec32, 0x9becce62836ac577, // x 2^-956 ~= 10^-288 + 0x6f773fc3603db4a9, 0x9d71ac8fada6c9b5, // x 2^-863 ~= 10^-260 + 0xc47bc5014a1a6daf, 0x9efa548d26e5a6e1, // x 2^-770 ~= 10^-232 + 0x80e8a40eccd228a4, 0xa086cfcd97bf97f3, // x 2^-677 ~= 10^-204 + 0xb8ada00e5a506a7c, 0xa21727db38cb002f, // x 2^-584 ~= 10^-176 + 0xc13e60d0d2e0ebba, 0xa3ab66580d5fdaf5, // x 2^-491 ~= 10^-148 + 0xc2974eb4ee658828, 0xa54394fe1eedb8fe, // x 2^-398 ~= 10^-120 + 0xcb4ccd500f6bb952, 0xa6dfbd9fb8e5b88e, // x 2^-305 ~= 10^-92 + 0x3f2398d747b36224, 0xa87fea27a539e9a5, // x 2^-212 ~= 10^-64 + 0xdde50bd1d5d0b9e9, 0xaa242499697392d2, // x 2^-119 ~= 10^-36 + 0xfdc20d2b36ba7c3d, 0xabcc77118461cefc, // x 2^-26 ~= 10^-8 + 0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly + 0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly + 0x3b25a55f43294bcb, 0xb0de65388cc8ada8, // x 2^253 ~= 10^76 + 0x58edec91ec2cb657, 0xb2977ee300c50fe7, // x 2^346 ~= 10^104 + 0x29babe4598c311fb, 0xb454e4a179dd1877, // x 2^439 ~= 10^132 + 0x577b986b314d6009, 0xb616a12b7fe617aa, // x 2^532 ~= 10^160 + 0x0c11ed6d538aeb2f, 0xb7dcbf5354e9bece, // x 2^625 ~= 10^188 + 0x6d953e2bd7173692, 0xb9a74a0637ce2ee1, // x 2^718 ~= 10^216 + 0x9d6d1ad41abe37f1, 0xbb764c4ca7a4440f, // x 2^811 ~= 10^244 + 0x4b2d8644d8a74e18, 0xbd49d14aa79dbc82, // x 2^904 ~= 10^272 + 0xe0470a63e6bd56c3, 0xbf21e44003acdd2c, // x 2^997 ~= 10^300 + 0x505f522e53053ff2, 0xc0fe908895cf3b44, // x 2^1090 ~= 10^328 + 0xcca845ab2beafa9a, 0xc2dfe19c8c055535, // x 2^1183 ~= 10^356 + 0x1027fff56784f444, 0xc4c5e310aef8aa17, // x 2^1276 ~= 10^384 +}; +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +// Every 83rd power of 10 across the range of Float80 +// +// Table size: 2,928 bytes +// +// Note: We could cut this in half at the cost of one additional +// 192-bit multiply by only storing the positive values and +// multiplying by 10^-5063 to obtain the negative ones, similar +// to how we handle Float above. +static const uint64_t powersOf10_Float80[] = { + // low 64 bits, middle 64 bits, high 64 bits + 0x56825ada98468526, 0x0abc23fcfda07e29, 0x871db786569ca2dd, // x 2^-16818 ~= 10^-5063 + 0xe3885beff5ee930d, 0xd1e638f68c97f0e5, 0xde90d1b113564507, // x 2^-16543 ~= 10^-4980 + 0x5a7d22b5236bcad4, 0xbab3a28a6f0a489c, 0xb74ea21ab2946479, // x 2^-16267 ~= 10^-4897 + 0x7d1f78bf0f4e2878, 0xcf4aea39615ffe6e, 0x96f9351fcfdd2686, // x 2^-15991 ~= 10^-4814 + 0xad725c0d6c214314, 0x5bd5c19f18bd2857, 0xf8afafd6ef185238, // x 2^-15716 ~= 10^-4731 + 0xe418e9217ce83755, 0x801e38463183fc88, 0xccd1ffc6bba63e21, // x 2^-15440 ~= 10^-4648 + 0x4dcd52747e029d0c, 0x867b3096b1619df8, 0xa8b11ff4721d92fb, // x 2^-15164 ~= 10^-4565 + 0xed2903f7e1df2b78, 0xc846664fe1364ee8, 0x8aefaaae9060380f, // x 2^-14888 ~= 10^-4482 + 0xed7a7f4e1e171498, 0x7da1a627b88527f1, 0xe4dbb751faa311b0, // x 2^-14613 ~= 10^-4399 + 0x320796dc9b1a158c, 0x2a11a871597b8012, 0xbc7d620092481a7e, // x 2^-14337 ~= 10^-4316 + 0x796014ec6f4c0dcb, 0xcfa99f62903708d7, 0x9b3dee433c1311e9, // x 2^-14061 ~= 10^-4233 + 0x08920ae76bdb8282, 0x952b06c385a08ff6, 0xffb7a402531fd4c9, // x 2^-13786 ~= 10^-4150 + 0x18faa162f2c4d6b9, 0x050be8c5d21c6db6, 0xd29c7528965ae5bd, // x 2^-13510 ~= 10^-4067 + 0x576a6c1abab7f7e7, 0xc05fb0b5c550f28d, 0xad7617610634129e, // x 2^-13234 ~= 10^-3984 + 0x6cc3b2fb9cae4875, 0xe1bd5b09b7202157, 0x8edd4417ae3dc210, // x 2^-12958 ~= 10^-3901 + 0xfafc1dc8fd12a6f8, 0xc3f29d230036529b, 0xeb542860da9bc7d8, // x 2^-12683 ~= 10^-3818 + 0x9d198c56bc799f35, 0x42960adf9591f02a, 0xc1d1a4b6bc2eafc8, // x 2^-12407 ~= 10^-3735 + 0x1803d096e43ff4bc, 0xdef9759d6432dab7, 0x9fa18c5de65a16fb, // x 2^-12131 ~= 10^-3652 + 0x74872779576a577c, 0x9150140eb5101a96, 0x83793dfc83fd2f9b, // x 2^-11855 ~= 10^-3569 + 0x415d0667f0f88262, 0x4898d98d1314d99f, 0xd890d45a257f4644, // x 2^-11580 ~= 10^-3486 + 0x30a5256a610c1c72, 0x6ebca4d0365d504d, 0xb25d93f98145bdab, // x 2^-11304 ~= 10^-3403 + 0xfb149b1f86a46376, 0xb5143323a7f8e16c, 0x92e74be10524c389, // x 2^-11028 ~= 10^-3320 + 0x7b7532e25fead4c8, 0x0df6ab8ac6a0ec2f, 0xf1fb6e82e4df4a77, // x 2^-10753 ~= 10^-3237 + 0x3b738d6a3caae67a, 0x346b2dd31826cfed, 0xc74c79bce7fe949f, // x 2^-10477 ~= 10^-3154 + 0x22d3a12777cee527, 0xe185ac46f6ef1993, 0xa424ef0bb5ad3129, // x 2^-10201 ~= 10^-3071 + 0xb7b6bccb9f60adec, 0x30ad7df78fe30cc8, 0x8730d40821cd89f3, // x 2^-9925 ~= 10^-2988 + 0x21049149d72d44d5, 0x1e86debc54dd290d, 0xdeb04cb82aec22cb, // x 2^-9650 ~= 10^-2905 + 0xeb69d287f5e7f920, 0x8d7e84a13801d034, 0xb7688f9800d26b3a, // x 2^-9374 ~= 10^-2822 + 0x47b3da9aeff7df71, 0x82678774d6c0ac59, 0x970e8fd25ead01e3, // x 2^-9098 ~= 10^-2739 + 0x50d3e92e2e4f8210, 0x9492db3d978aaca8, 0xf8d2dcaf37504b51, // x 2^-8823 ~= 10^-2656 + 0xf4ce72058f777a4c, 0xb9eb2c585e924efe, 0xcceef83fdedcc506, // x 2^-8547 ~= 10^-2573 + 0xb0e624a35b791884, 0x7104a98dbbb38b94, 0xa8c8fc3b03c3d1ed, // x 2^-8271 ~= 10^-2490 + 0x6c94ecd8291e2ac9, 0x978b03821014b68c, 0x8b03518396007c08, // x 2^-7995 ~= 10^-2407 + 0x96475208daa03ee3, 0x10eaa1481b149e5a, 0xe4fc163319551441, // x 2^-7720 ~= 10^-2324 + 0xd709a820ff4ac847, 0x75aab7cb5cb15414, 0xbc980b270680156a, // x 2^-7444 ~= 10^-2241 + 0xf273bca6b4de9e24, 0xb5025d88d4b252e1, 0x9b53e384eccabcf7, // x 2^-7168 ~= 10^-2158 + 0x6c55a0603a928f40, 0x9e20db16dfb6b461, 0xffdbcf7251089796, // x 2^-6893 ~= 10^-2075 + 0x9006db4d43cffe42, 0x9b4bca4cd6cec2db, 0xd2ba3f510a3aa638, // x 2^-6617 ~= 10^-1992 + 0xa6b3c457fd0cd4d6, 0x28a4de91ba868fbf, 0xad8ea05a5f27642a, // x 2^-6341 ~= 10^-1909 + 0xe7b14ed140f8d98e, 0x7b2f7d61ce5d426c, 0x8ef179291b6f5424, // x 2^-6065 ~= 10^-1826 + 0x4a964d052fd03e10, 0x06897060bf491e6e, 0xeb75718d285cd8bf, // x 2^-5790 ~= 10^-1743 + 0x22b2270f0e8dd87c, 0xa8510fa2f5a9e4de, 0xc1ed0ed498f7c54c, // x 2^-5514 ~= 10^-1660 + 0x09102915726a9905, 0x5a0eb896edc89b54, 0x9fb8208d65ea5eda, // x 2^-5238 ~= 10^-1577 + 0xb80d5f481d01deb9, 0x673f2aa50486f5ba, 0x838bd699b7c539e6, // x 2^-4962 ~= 10^-1494 + 0x668b62b20ec2633b, 0x8682604c7123f859, 0xd8af761f94d2db2c, // x 2^-4687 ~= 10^-1411 + 0xb2adaed8559cc199, 0x712339ba54f12372, 0xb276ce87987995d5, // x 2^-4411 ~= 10^-1328 + 0x6beb873308685711, 0xac1ce34246ed56ad, 0x92fc133455668c02, // x 2^-4135 ~= 10^-1245 + 0x593293d68a2261bc, 0x3c368f9497ca075d, 0xf21da89a29fa1c61, // x 2^-3860 ~= 10^-1162 + 0x854051f9f0e4ca66, 0x8c5d5a234eda57f7, 0xc768aa46d6d1b675, // x 2^-3584 ~= 10^-1079 + 0x333d09b2299c5e6b, 0xcf1f49c33399c5ac, 0xa43c26a751d4f7e7, // x 2^-3308 ~= 10^-996 + 0x25a440d8b1620532, 0x274ebc67c3e21943, 0x8743f33df0feed29, // x 2^-3032 ~= 10^-913 + 0x3ca95e3deb5be648, 0x52d18ccca1c558c2, 0xdecfcc3329238dd8, // x 2^-2757 ~= 10^-830 + 0x59d1a7704af3acd7, 0xfae7722c6af19467, 0xb78280c024488353, // x 2^-2481 ~= 10^-747 + 0x78813f3e80148049, 0x73b2baf13aa1c233, 0x9723ed8a28baf5ac, // x 2^-2205 ~= 10^-664 + 0xf296a8198aa40fb8, 0x235532b08487fe6a, 0xf8f60e812de0cd7d, // x 2^-1930 ~= 10^-581 + 0xa7fbdcb40b4f648f, 0x4f20ba9a64a7f6e7, 0xcd0bf4d206072167, // x 2^-1654 ~= 10^-498 + 0x8dbf63ea468c724f, 0xa0e25c08b5c189d6, 0xa8e0dbe18ffb82cf, // x 2^-1378 ~= 10^-415 + 0x765995c6cfd406ce, 0x4c3bcb5021afcc31, 0x8b16fb203055ac76, // x 2^-1102 ~= 10^-332 + 0xe1d09ab6fb409872, 0x82b7e12780e7401a, 0xe51c79a85916f484, // x 2^-827 ~= 10^-249 + 0x89cbe2422f9e1df9, 0x7415d448f6b6f0e7, 0xbcb2b812db11a5de, // x 2^-551 ~= 10^-166 + 0x605fe83842e4d290, 0xc986afbe3ee11aba, 0x9b69dbe1b548ce7c, // x 2^-275 ~= 10^-83 + 0x0000000000000000, 0x0000000000000000, 0x8000000000000000, // x 2^1 == 10^0 exactly + 0x0d6953169e1c7a1e, 0xf50a3fa490c30190, 0xd2d80db02aabd62b, // x 2^276 ~= 10^83 + 0x3720b80c7d8ee39d, 0xaf561aa79a10ae6a, 0xada72ccc20054ae9, // x 2^552 ~= 10^166 + 0x7cb3f026a212df74, 0x29cb4d87f2a7400e, 0x8f05b1163ba6832d, // x 2^828 ~= 10^249 + 0x7dda22f9451d28a4, 0xe41c5bd18c57e88f, 0xeb96bf6ebadf77d8, // x 2^1103 ~= 10^332 + 0xd5da00e6e2d05e5d, 0x5e510c5a752f0f8e, 0xc2087cd3215a16ad, // x 2^1379 ~= 10^415 + 0x5603ba353e0b2fac, 0x48bbddc4d7359e49, 0x9fceb7ee780436f0, // x 2^1655 ~= 10^498 + 0x15ceea8df15e47c7, 0x6a83c85cf158c652, 0x839e71d847c1779e, // x 2^1931 ~= 10^581 + 0x514478d1fcd48eea, 0x3a4181cdda0d6e24, 0xd8ce1c3a2fffaea7, // x 2^2206 ~= 10^664 + 0xe8b634620f1062be, 0x7304c7fb8a2f8a8a, 0xb2900ca735bdf121, // x 2^2482 ~= 10^747 + 0xc3ec2fd9302c9bda, 0x729a6a7e830e1cf2, 0x9310dd78089bd66f, // x 2^2758 ~= 10^830 + 0x1750ef5f751be079, 0x52ccabc96fc88a23, 0xf23fe788c763dffa, // x 2^3033 ~= 10^913 + 0xaa80925ec1c80b65, 0x97681c548ff6c12f, 0xc784decd820a6180, // x 2^3309 ~= 10^996 + 0xb4212d4b435a2317, 0x8df0a55abbb2c99a, 0xa453618b9dfd92db, // x 2^3585 ~= 10^1079 + 0x939c2fedd434642a, 0x7d7de34bf5aa96b4, 0x875715282612729b, // x 2^3861 ~= 10^1162 + 0xb7d9a0e46bbebb36, 0x3b2057dea52d686b, 0xdeef5022af37f1f6, // x 2^4136 ~= 10^1245 + 0x931a74148ea64e59, 0xfe7fe67bd1074d0c, 0xb79c7593a1c17df0, // x 2^4412 ~= 10^1328 + 0xabd20df0f1f1ad54, 0x0fff83cc7fa6b77b, 0x97394e479b6573b1, // x 2^4688 ~= 10^1411 + 0x25f2467421674b7a, 0x828ff55a248bc026, 0xf919454d86f16685, // x 2^4963 ~= 10^1494 + 0xe32dbd7131e6ab7d, 0xf674dd4821982084, 0xcd28f57dc585d094, // x 2^5239 ~= 10^1577 + 0x866ab816a532b07d, 0xdc567471f9639b4e, 0xa8f8bee890f905c7, // x 2^5515 ~= 10^1660 + 0xaca3a975993a2626, 0xc41cf207a71d87e4, 0x8b2aa784c405e2f1, // x 2^5791 ~= 10^1743 + 0x731f0b7d820918bd, 0x355fde18e8448607, 0xe53ce1b25fb31788, // x 2^6066 ~= 10^1826 + 0x0be7c29568db3f20, 0xc1328a3f1bf4d2b8, 0xbccd68c49888be61, // x 2^6342 ~= 10^1909 + 0x9c6e0b1b927b7d3f, 0xffc9b96619da642a, 0x9b7fd75a060350cd, // x 2^6618 ~= 10^1992 + 0x2a84c8fb4bd2edc9, 0xa679df45d339389b, 0x80121ad60ca2c518, // x 2^6894 ~= 10^2075 + 0x0d4648d0876cf1c3, 0x48c67661c087fb5a, 0xd2f5e0469040e0eb, // x 2^7169 ~= 10^2158 + 0xfe2d99a281a011ac, 0x65c13361e6b2c078, 0xadbfbcb6c676a69b, // x 2^7445 ~= 10^2241 + 0xf4ec157aa4147562, 0xac89bfa5e79484a6, 0x8f19ebdf7661e3e9, // x 2^7721 ~= 10^2324 + 0xe945f8c80090be1f, 0x9b8672e64aadbed2, 0xebb812063c9e01db, // x 2^7996 ~= 10^2407 + 0xca12d8ad3b36d2e4, 0xd252322ea50ad274, 0xc223eeb2e1bde452, // x 2^8272 ~= 10^2490 + 0xf554fb41e5b3e384, 0x977acb4d4af624fc, 0x9fe55281904ba38b, // x 2^8548 ~= 10^2573 + 0xf3f69093398e2573, 0x111ae5735ec0e878, 0x83b10fb893300cde, // x 2^8824 ~= 10^2656 + 0x30f65a8da0d10429, 0x1eecf4cf8a0b25f5, 0xd8ecc6aa93e876fc, // x 2^9099 ~= 10^2739 + 0xa577f5f0c9f1e5a7, 0x91a5430ed623abf0, 0xb2a94e58da4930c3, // x 2^9375 ~= 10^2822 + 0x202d2f87585ec0d7, 0x7a63589863efd480, 0x9325aaac89304b57, // x 2^9651 ~= 10^2905 + 0x049544fbba3c01a1, 0x53accb0f60ac6095, 0xf2622b4f6c68d6ce, // x 2^9926 ~= 10^2988 + 0x268a0d5f9d5ce861, 0xfe40703e1a91de57, 0xc7a117517a09153b, // x 2^10202 ~= 10^3071 + 0xb6cd470a2a3b1d63, 0x5f963916b20ea587, 0xa46a9fb9111003bc, // x 2^10478 ~= 10^3154 + 0xa3101c09fd8e6e96, 0xa2c6328011db5211, 0x876a39c722f798a7, // x 2^10754 ~= 10^3237 + 0x8507e5fdb0ec5d83, 0x7ce93cc7f8feeed4, 0xdf0ed8875e7b8914, // x 2^11029 ~= 10^3320 + 0xe19b7ebe4c7bfbca, 0x40930d1129943838, 0xb7b66e12fe1af499, // x 2^11305 ~= 10^3403 + 0xc90c4ec15c21a357, 0xd91c86512d147305, 0x974eb20b241a65f6, // x 2^11581 ~= 10^3486 + 0xb90341199c02a4eb, 0x69e684f53db6e8ce, 0xf93c8114f6c31f8a, // x 2^11856 ~= 10^3569 + 0xa873f1318cef91cb, 0xbf8718466b31a7ca, 0xcd45fa43b1ce4c8e, // x 2^12132 ~= 10^3652 + 0xacfe0dcc5262e273, 0x6e1bbb68662fd27a, 0xa910a550810203f8, // x 2^12408 ~= 10^3735 + 0x59e7c8921bbe3758, 0x834743c5eab7dcea, 0x8b3e56b1b5c57589, // x 2^12684 ~= 10^3818 + 0x145eed64fda2e6af, 0x1c605bdcc764238f, 0xe55d4e51d30b5592, // x 2^12959 ~= 10^3901 + 0xb747164b17268ea2, 0xd8aa19f1d85da07d, 0xbce81d3cc784a1ca, // x 2^13235 ~= 10^3984 + 0x3666af1cb2f0356b, 0xc8dd55687a68bb70, 0x9b95d5ee4f80366d, // x 2^13511 ~= 10^4067 + 0x70d67261b5bde1e9, 0x1d76f2d15166ec20, 0x8024383bab19730d, // x 2^13787 ~= 10^4150 + 0x084a3ba0b748546a, 0xc67f9026f83dca47, 0xd313b714d3a1c65e, // x 2^14062 ~= 10^4233 + 0x4411a8127eea085e, 0x441eb397ffcdab0d, 0xadd8501ad0361d15, // x 2^14338 ~= 10^4316 + 0x7b62a54ed6233032, 0x75458a1c8300e014, 0x8f2e2985332eae98, // x 2^14614 ~= 10^4399 + 0x162d5b51a1dd9594, 0x655bb1b7aa4e8196, 0xebd96954582af06f, // x 2^14889 ~= 10^4482 + 0x55e6c62f920d3682, 0x79fd57cf7c37941c, 0xc23f6474669f4abe, // x 2^15165 ~= 10^4565 + 0x19482fa0ac45669c, 0x803c1cd864033781, 0x9ffbf04722750449, // x 2^15441 ~= 10^4648 + 0xa412d1f95f4624cd, 0xc95abe9ce589e048, 0x83c3b03af95c9674, // x 2^15717 ~= 10^4731 + 0xc1207e487c57b4e1, 0xf93dd2c7669a8ed1, 0xd90b75715d861b38, // x 2^15992 ~= 10^4814 + 0xeb20d9a25e0372bd, 0xb5073df6adc221b4, 0xb2c2939d0763fcac, // x 2^16268 ~= 10^4897 + 0x1a648c339e28cc45, 0xbd14f0fa3e24b6ae, 0x933a7ad2419ea0b5, // x 2^16544 ~= 10^4980 +}; +#endif + +#if SWIFT_DTOA_FLOAT_SUPPORT || SWIFT_DTOA_DOUBLE_SUPPORT || SWIFT_DTOA_FLOAT80_SUPPORT +// The power-of-10 tables do not directly store the associated binary +// exponent. That's because the binary exponent is a simple linear +// function of the decimal power (and vice versa), so it's just as +// fast (and uses much less memory) to compute it: + +// The binary exponent corresponding to a particular power of 10. +// This matches the power-of-10 tables across the full range of Float80. +static int binaryExponentFor10ToThe(int p) { + return (int)(((((int64_t)p) * 55732705) >> 24) + 1); +} + +// A decimal exponent that approximates a particular binary power. +static int decimalExponentFor2ToThe(int e) { + return (int)(((int64_t)e * 20201781) >> 26); +} +#endif + +#if SWIFT_DTOA_FLOAT_SUPPORT +// Given a power `p`, this returns three values: +// * 64-bit fractions `lower` and `upper` +// * integer `exponent` +// +// The returned values satisty the following: +// ``` +// lower * 2^exponent <= 10^p <= upper * 2^exponent +// ``` +// +// Note: Max(*upper - *lower) = 3 +static void intervalContainingPowerOf10_Float(int p, uint64_t *lower, uint64_t *upper, int *exponent) { + if (p < 0) { + uint64_t base = powersOf10_Float[p + 40]; + int baseExponent = binaryExponentFor10ToThe(p + 40); + uint64_t tenToTheMinus40 = 0x8b61313bbabce2c6; // x 2^-132 ~= 10^-40 + *upper = multiply64x64RoundingUp(base + 1, tenToTheMinus40 + 1); + *lower = multiply64x64RoundingDown(base, tenToTheMinus40); + *exponent = baseExponent - 132; + } else { + uint64_t base = powersOf10_Float[p]; + *upper = base + 1; + *lower = base; + *exponent = binaryExponentFor10ToThe(p); + } +} +#endif + +#if SWIFT_DTOA_DOUBLE_SUPPORT +// As above, but returning 128-bit fractions suitable for +// converting doubles. +static void intervalContainingPowerOf10_Double(int p, swift_uint128_t *lower, swift_uint128_t *upper, int *exponent) { + if (p >= 0 && p <= 54) { + if (p <= 27) { + // Use one 64-bit exact value + swift_uint128_t exact; + initialize128WithHigh64(exact, powersOf10_Float[p]); + *upper = exact; + *lower = exact; + *exponent = binaryExponentFor10ToThe(p); + return; + } else { + // Multiply two 64-bit exact values to get a 128-bit exact value + swift_uint128_t base; + initialize128WithHigh64(base, powersOf10_Float[p - 27]); + int baseExponent = binaryExponentFor10ToThe(p - 27); + uint64_t extra = powersOf10_Float[27]; + int extraExponent = binaryExponentFor10ToThe(27); + swift_uint128_t exact = multiply128x64RoundingDown(base, extra); + *upper = exact; + *lower = exact; + *exponent = baseExponent + extraExponent; + return; + } + } + + // Multiply a 128-bit approximate value with a 64-bit exact value + int index = p + 400; + // Copy a pair of uint64_t into a swift_uint128_t + const uint64_t *base_p = powersOf10_Double + (index / 28) * 2; + swift_uint128_t base; + initialize128WithHighLow64(base, base_p[1], base_p[0]); + int extraPower = index % 28; + int baseExponent = binaryExponentFor10ToThe(p - extraPower); + + int e = baseExponent; + if (extraPower > 0) { + int64_t extra = powersOf10_Float[extraPower]; + e += binaryExponentFor10ToThe(extraPower); + *lower = multiply128x64RoundingDown(base, extra); + increment128(base); + *upper = multiply128x64RoundingUp(base, extra); + } else { + *lower = base; + increment128(base); + *upper = base; + } + *exponent = e; +} +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +// As above, but returning 192-bit fractions suitable for +// converting float80. +static void intervalContainingPowerOf10_Float80(int p, swift_uint192_t *lower, swift_uint192_t *upper, int *exponent) { + if (p >= 0 && p <= 27) { + // We have an exact form, return a zero-width interval. + uint64_t exact = powersOf10_Float[p]; + initialize192WithHighMidLow64(*upper, exact, 0, 0); + initialize192WithHighMidLow64(*lower, exact, 0, 0); + *exponent = binaryExponentFor10ToThe(p); + return; + } + + int index = p + 5063; + const uint64_t *base_p = powersOf10_Float80 + (index / 83) * 3; + // Note: The low-order value in the Float80 table above + // is never UINT64_MAX, so there's never a carry from + // the increment here. + initialize192WithHighMidLow64(*upper, base_p[2], base_p[1], base_p[0] + 1); + initialize192WithHighMidLow64(*lower, base_p[2], base_p[1], base_p[0]); + int extraPower = index % 83; + int e = binaryExponentFor10ToThe(p - extraPower); + + while (extraPower > 27) { + uint64_t power27 = powersOf10_Float[27]; + multiply192x64RoundingDown(lower, power27); + multiply192x64RoundingUp(upper, power27); + e += binaryExponentFor10ToThe(27); + extraPower -= 27; + } + if (extraPower > 0) { + uint64_t extra = powersOf10_Float[extraPower]; + multiply192x64RoundingDown(lower, extra); + multiply192x64RoundingUp(upper, extra); + e += binaryExponentFor10ToThe(extraPower); + } + *exponent = e; +} +#endif + +} //Jens: End namespace diff --git a/vendor/SwiftDtoa/SwiftDtoa.h b/vendor/SwiftDtoa/SwiftDtoa.h new file mode 100644 index 00000000..0b9d925b --- /dev/null +++ b/vendor/SwiftDtoa/SwiftDtoa.h @@ -0,0 +1,155 @@ +// +// SwiftDtoa.h +// +// Copied into Fleece repository from commit 6370681 of +// https://github.com/apple/swift/blob/master/include/swift/Runtime/SwiftDtoa.h +// Trivial changes made by Jens Alfke to glue it into the Fleece library. + +//===--- SwiftDtoa.h ---------------------------------------------*- c -*-===// +// +// This source file is part of the Swift.org open source project +// +// Copyright (c) 2018 Apple Inc. and the Swift project authors +// Licensed under Apache License v2.0 with Runtime Library Exception +// +// See https://swift.org/LICENSE.txt for license information +// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors +// +//===---------------------------------------------------------------------===// + +#ifndef SWIFT_DTOA_H +#define SWIFT_DTOA_H + +#include +#include +#include + +// This implementation strongly assumes that `float` is +// IEEE 754 single-precision binary32 format and that +// `double` is IEEE 754 double-precision binary64 format. + +// Essentially all modern platforms use IEEE 754 floating point +// types now, so enable these by default: +#define SWIFT_DTOA_FLOAT_SUPPORT 1 +#define SWIFT_DTOA_DOUBLE_SUPPORT 1 + +// This implementation assumes `long double` is Intel 80-bit extended format. +#if defined(_WIN32) + // Windows has `long double` == `double` on all platforms, so disable this. + #undef SWIFT_DTOA_FLOAT80_SUPPORT +#elif defined(__ANDROID__) + // At least for now Float80 is disabled. See: https://github.com/apple/swift/pull/25502 +#elif defined(__APPLE__) || defined(__linux__) + // macOS and Linux support Float80 on X86 hardware but not on ARM + #if defined(__x86_64__) || defined(__i386) + #define SWIFT_DTOA_FLOAT80_SUPPORT 1 + #endif +#endif + +#ifdef __cplusplus +extern "C" { + namespace fleece { //Jens: Added namespace +#endif + +#if SWIFT_DTOA_DOUBLE_SUPPORT +// Compute the optimal decimal digits and exponent for a double. +// +// Input: +// * `d` is the number to be decomposed +// * `digits` is an array of `digits_length` +// * `decimalExponent` is a pointer to an `int` +// +// Ouput: +// * `digits` will receive the decimal digits +// * `decimalExponent` will receive the decimal exponent +// * function returns the number of digits generated +// * the sign of the input number is ignored +// +// Guarantees: +// +// * Accurate. If you parse the result back to a double via an accurate +// algorithm (such as Clinger's algorithm), the resulting double will +// be exactly equal to the original value. On most systems, this +// implies that using `strtod` to parse the output of +// `swift_format_double` will yield exactly the original value. +// +// * Short. No other accurate result will have fewer digits. +// +// * Close. If there are multiple possible decimal forms that are +// both accurate and short, the form computed here will be +// closest to the original binary value. +// +// Notes: +// +// If the input value is infinity or NaN, or `digits_length < 17`, the +// function returns zero and generates no ouput. +// +// If the input value is zero, it will return `decimalExponent = 0` and +// a single digit of value zero. +// +int swift_decompose_double(double d, + int8_t *digits, size_t digits_length, int *decimalExponent); + +// Format a double as an ASCII string. +// +// For infinity, it outputs "inf" or "-inf". +// +// For NaN, it outputs a Swift-style detailed dump, including +// sign, signaling/quiet, and payload (if any). Typical output: +// "nan", "-nan", "-snan(0x1234)". +// +// For zero, it outputs "0.0" or "-0.0" depending on the sign. +// +// For other values, it uses `swift_decompose_double` to compute the +// digits, then uses either `swift_format_decimal` or +// `swift_format_exponential` to produce an ASCII string depending on +// the magnitude of the value. +// +// In all cases, it returns the number of ASCII characters actually +// written, or zero if the buffer was too small. +size_t swift_format_double(double, char *dest, size_t length); +#endif + +#if SWIFT_DTOA_FLOAT_SUPPORT +// See swift_decompose_double. `digits_length` must be at least 9. +int swift_decompose_float(float f, + int8_t *digits, size_t digits_length, int *decimalExponent); +// See swift_format_double. +size_t swift_format_float(float, char *dest, size_t length); +#endif + +#if SWIFT_DTOA_FLOAT80_SUPPORT +// See swift_decompose_double. `digits_length` must be at least 21. +int swift_decompose_float80(long double f, + int8_t *digits, size_t digits_length, int *decimalExponent); +// See swift_format_double. +size_t swift_format_float80(long double, char *dest, size_t length); +#endif + +// Generate an ASCII string from the raw exponent and digit information +// as generated by `swift_decompose_double`. Returns the number of +// bytes actually used. If `dest` was not big enough, these functions +// return zero. The generated string is always terminated with a zero +// byte unless `length` was zero. + +// "Exponential" form uses common exponential format, e.g., "-1.234e+56" +// The exponent always has a sign and at least two digits. The +// generated string is never longer than `digits_count + 9` bytes, +// including the trailing zero byte. +size_t swift_format_exponential(char *dest, size_t length, + bool negative, const int8_t *digits, int digits_count, int decimalExponent); + +// "Decimal" form writes the value without using exponents. This +// includes cases such as "0.000001234", "123.456", and "123456000.0". +// Note that the result always has a decimal point with at least one +// digit before and one digit after. The generated string is never +// longer than `digits_count + abs(exponent) + 4` bytes, including the +// trailing zero byte. +size_t swift_format_decimal(char *dest, size_t length, + bool negative, const int8_t *digits, int digits_count, int decimalExponent); + +#ifdef __cplusplus + } //Jens: End namespace +} +#endif +#endif