forked from tinkoff-ai/katakomba
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathiql_chaotic_lstm.py
517 lines (441 loc) · 19.3 KB
/
iql_chaotic_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import pyrallis
from dataclasses import dataclass, asdict
import random
import wandb
import os
import uuid
import torch
import torch.nn as nn
import torch.nn.functional as F
from gym.vector import AsyncVectorEnv
from concurrent.futures import ThreadPoolExecutor
from tqdm.auto import tqdm, trange
import numpy as np
from copy import deepcopy
from typing import Optional, Dict, Tuple, Any, List
from multiprocessing import set_start_method
from katakomba.env import NetHackChallenge, OfflineNetHackChallengeWrapper
from katakomba.nn.chaotic_dwarf import TopLineEncoder, BottomLinesEncoder, ScreenEncoder
from katakomba.utils.render import SCREEN_SHAPE, render_screen_image
from katakomba.utils.datasets import SequentialBuffer
from katakomba.utils.misc import Timeit, StatMean
LSTM_HIDDEN = Tuple[torch.Tensor, torch.Tensor]
UPDATE_INFO = Dict[str, Any]
torch.backends.cudnn.benchmark = True
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
@dataclass
class TrainConfig:
character: str = "mon-hum-neu"
data_mode: str = "compressed"
# Wandb logging
project: str = "NetHack"
group: str = "small_scale_iql"
name: str = "iql"
version: int = 0
# Model
rnn_hidden_dim: int = 2048
rnn_layers: int = 2
use_prev_action: bool = True
rnn_dropout: float = 0.0
clip_range: float = 10.0
tau: float = 0.005
gamma: float = 0.999
expectile_tau: float = 0.8
temperature: float = 1.0
# Training
update_steps: int = 500_000
batch_size: int = 64
seq_len: int = 16
learning_rate: float = 3e-4
weight_decay: float = 0.0
clip_grad_norm: Optional[float] = None
checkpoints_path: Optional[str] = None
eval_every: int = 10_000
eval_episodes: int = 50
eval_processes: int = 14
render_processes: int = 14
eval_seed: int = 50
train_seed: int = 42
def __post_init__(self):
self.group = f"{self.group}-v{str(self.version)}"
self.name = f"{self.name}-{self.character}-{str(uuid.uuid4())[:8]}"
if self.checkpoints_path is not None:
self.checkpoints_path = os.path.join(self.checkpoints_path, self.group, self.name)
def set_seed(seed: int):
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
@torch.no_grad()
def filter_wd_params(model: nn.Module) -> Tuple[List[nn.parameter.Parameter], List[nn.parameter.Parameter]]:
no_decay, decay = [], []
for name, param in model.named_parameters():
if hasattr(param, 'requires_grad') and not param.requires_grad:
continue
if 'weight' in name and 'norm' not in name and 'bn' not in name:
decay.append(param)
else:
no_decay.append(param)
assert len(no_decay) + len(decay) == len(list(model.parameters()))
return no_decay, decay
def dict_to_tensor(data: Dict[str, np.ndarray], device: str) -> Dict[str, torch.Tensor]:
return {k: torch.as_tensor(v, dtype=torch.float, device=device) for k, v in data.items()}
def soft_update(target: nn.Module, source: nn.Module, tau: float):
for tp, sp in zip(target.parameters(), source.parameters()):
tp.data.copy_((1 - tau) * tp.data + tau * sp.data)
def asymmetric_l2_loss(u: torch.Tensor, tau: float) -> torch.Tensor:
return torch.mean(torch.abs(tau - (u < 0).float()) * u ** 2)
class Critic(nn.Module):
def __init__(
self,
action_dim: int,
rnn_hidden_dim: int = 512,
rnn_layers: int = 1,
rnn_dropout: float = 0.0,
use_prev_action: bool = True
):
super().__init__()
self.num_actions = action_dim
self.use_prev_action = use_prev_action
self.prev_actions_dim = self.num_actions if self.use_prev_action else 0
# Encoders
self.topline_encoder = torch.jit.script(TopLineEncoder())
self.bottomline_encoder = torch.jit.script(BottomLinesEncoder())
screen_shape = (SCREEN_SHAPE[1], SCREEN_SHAPE[2])
self.screen_encoder = torch.jit.script(ScreenEncoder(screen_shape))
self.h_dim = sum(
[
self.topline_encoder.hidden_dim,
self.bottomline_encoder.hidden_dim,
self.screen_encoder.hidden_dim,
self.prev_actions_dim,
]
)
# networks
self.rnn = nn.LSTM(
self.h_dim,
rnn_hidden_dim,
num_layers=rnn_layers,
dropout=rnn_dropout,
batch_first=True
)
# in similar style to original:
# https://github.com/dungeonsdatasubmission/dungeonsdata-neurips2022/blob/ee72d6aac9df00a4a6ab1f501db37a632a75b952/experiment_code/hackrl/models/offline_chaotic_dwarf.py#L538
self.qf1 = nn.Linear(rnn_hidden_dim + self.num_actions, 1)
self.qf2 = nn.Linear(rnn_hidden_dim + self.num_actions, 1)
self.vf = nn.Linear(rnn_hidden_dim, 1)
self.policy = nn.Linear(rnn_hidden_dim, self.num_actions)
def forward(self, obs, state=None, actions=None):
# [batch_size, seq_len, ...]
B, T, C, H, W = obs["screen_image"].shape
topline = obs["tty_chars"][..., 0, :]
bottom_line = obs["tty_chars"][..., -2:, :]
encoded_state = [
self.topline_encoder(
topline.float(memory_format=torch.contiguous_format).view(T * B, -1)
),
self.bottomline_encoder(
bottom_line.float(memory_format=torch.contiguous_format).view(T * B, -1)
),
self.screen_encoder(
obs["screen_image"]
.float(memory_format=torch.contiguous_format)
.view(T * B, C, H, W)
),
]
if self.use_prev_action:
encoded_state.append(
F.one_hot(obs["prev_actions"], self.num_actions).view(T * B, -1)
)
encoded_state = torch.cat(encoded_state, dim=1)
core_output, new_state = self.rnn(encoded_state.view(B, T, -1), state)
# policy
logits = self.policy(core_output)
vf = self.vf(core_output).squeeze(-1)
if actions is not None:
# state action value function
core_output_actions = torch.cat([
core_output, F.one_hot(actions, self.num_actions)
], dim=-1)
q1 = self.qf1(core_output_actions).squeeze(-1)
q2 = self.qf2(core_output_actions).squeeze(-1)
return logits, vf, q1, q2, new_state
return logits, vf, None, None, new_state
@torch.no_grad()
def vec_act(self, obs, state=None, device="cpu"):
inputs = {
"tty_chars": torch.tensor(obs["tty_chars"][:, None], device=device),
"screen_image": torch.tensor(obs["screen_image"][:, None], device=device),
"prev_actions": torch.tensor(obs["prev_actions"][:, None], dtype=torch.long, device=device)
}
logits, *_, new_state = self(inputs, state=state)
actions = torch.argmax(logits.squeeze(1), dim=-1)
return actions.cpu().numpy(), new_state
def iql_loss(
critic: Critic,
target_critic: Critic,
obs: Dict[str, torch.Tensor],
next_obs: Dict[str, torch.Tensor],
actions: torch.Tensor,
rewards: torch.Tensor,
dones: torch.Tensor,
rnn_states: LSTM_HIDDEN,
target_rnn_states: LSTM_HIDDEN,
next_rnn_states: LSTM_HIDDEN,
gamma: float,
expectile_tau: float,
temperature: float
) -> Tuple[torch.Tensor, LSTM_HIDDEN, LSTM_HIDDEN, LSTM_HIDDEN, UPDATE_INFO]:
# state value function loss
with torch.no_grad():
_, _, target_q1, target_q2, new_target_rnn_states = target_critic(obs, actions=actions.long(), state=target_rnn_states)
target_q = torch.minimum(target_q1, target_q2)
logits, v_pred, q1_pred, q2_pred, new_rnn_states = critic(obs, actions=actions.long(), state=rnn_states)
assert target_q.shape == v_pred.shape
advantage = target_q - v_pred
value_loss = asymmetric_l2_loss(advantage, expectile_tau)
# state action value function loss
with torch.no_grad():
_, next_v, _, _, new_next_rnn_states = critic(next_obs, state=next_rnn_states)
next_q = rewards + (1 - dones) * gamma * next_v
assert q1_pred.shape == q2_pred.shape == next_q.shape
td_loss = (F.mse_loss(q1_pred, next_q) + F.mse_loss(q2_pred, next_q)) / 2
# actor loss
weights = torch.exp(temperature * advantage.clamp(max=100.0))
log_probs = torch.distributions.Categorical(logits=logits).log_prob(actions)
actor_loss = torch.mean(-log_probs * weights.detach())
loss = value_loss + td_loss + actor_loss
loss_info = {
"td_loss": td_loss.item(),
"value_loss": value_loss.item(),
"actor_loss": actor_loss.item(),
"loss": loss,
"next_v": next_v.mean().item(),
"q_target": next_q.mean().item()
}
return loss, new_rnn_states, new_target_rnn_states, new_next_rnn_states, loss_info
@torch.no_grad()
def vec_evaluate(
vec_env: AsyncVectorEnv,
actor: Critic,
num_episodes: int,
seed: int = 0,
device: str = "cpu"
) -> Dict[str, np.ndarray]:
actor.eval()
# set seed for reproducibility (reseed=False by default)
vec_env.seed(seed)
# all this work is needed to mitigate bias for shorter
# episodes during vectorized evaluation, for more see:
# https://github.com/DLR-RM/stable-baselines3/issues/402
n_envs = vec_env.num_envs
episode_rewards = []
episode_lengths = []
episode_depths = []
episode_counts = np.zeros(n_envs, dtype="int")
# Divides episodes among different sub environments in the vector as evenly as possible
episode_count_targets = np.array([(num_episodes + i) // n_envs for i in range(n_envs)], dtype="int")
current_rewards = np.zeros(n_envs)
current_lengths = np.zeros(n_envs, dtype="int")
observations = vec_env.reset()
observations["prev_actions"] = np.zeros(n_envs, dtype=float)
rnn_states = None
pbar = tqdm(total=num_episodes)
while (episode_counts < episode_count_targets).any():
# faster to do this here for entire batch, than in wrappers for each env
observations["screen_image"] = render_screen_image(
tty_chars=observations["tty_chars"][:, np.newaxis, ...],
tty_colors=observations["tty_colors"][:, np.newaxis, ...],
tty_cursor=observations["tty_cursor"][:, np.newaxis, ...],
)
observations["screen_image"] = np.squeeze(observations["screen_image"], 1)
actions, rnn_states = actor.vec_act(observations, rnn_states, device=device)
observations, rewards, dones, infos = vec_env.step(actions)
observations["prev_actions"] = actions
current_rewards += rewards
current_lengths += 1
for i in range(n_envs):
if episode_counts[i] < episode_count_targets[i]:
if dones[i]:
episode_rewards.append(current_rewards[i])
episode_lengths.append(current_lengths[i])
episode_depths.append(infos[i]["current_depth"])
episode_counts[i] += 1
pbar.update(1)
current_rewards[i] = 0
current_lengths[i] = 0
pbar.close()
result = {
"reward_median": np.median(episode_rewards),
"reward_mean": np.mean(episode_rewards),
"reward_std": np.std(episode_rewards),
"reward_min": np.min(episode_rewards),
"reward_max": np.max(episode_rewards),
"reward_raw": np.array(episode_rewards),
# depth
"depth_median": np.median(episode_depths),
"depth_mean": np.mean(episode_depths),
"depth_std": np.std(episode_depths),
"depth_min": np.min(episode_depths),
"depth_max": np.max(episode_depths),
"depth_raw": np.array(episode_depths),
}
actor.train()
return result
@pyrallis.wrap()
def train(config: TrainConfig):
print(f"Device: {DEVICE}")
wandb.init(
config=asdict(config),
project=config.project,
group=config.group,
name=config.name,
id=str(uuid.uuid4()),
save_code=True,
)
if config.checkpoints_path is not None:
print(f"Checkpoints path: {config.checkpoints_path}")
os.makedirs(config.checkpoints_path, exist_ok=True)
with open(os.path.join(config.checkpoints_path, "config.yaml"), "w") as f:
pyrallis.dump(config, f)
set_seed(config.train_seed)
def env_fn():
env = NetHackChallenge(
character=config.character,
observation_keys=["tty_chars", "tty_colors", "tty_cursor"]
)
env = OfflineNetHackChallengeWrapper(env)
return env
tmp_env = env_fn()
eval_env = AsyncVectorEnv(
env_fns=[env_fn for _ in range(config.eval_processes)],
copy=False
)
buffer = SequentialBuffer(
dataset=tmp_env.get_dataset(mode=config.data_mode, scale="small"),
seq_len=config.seq_len,
batch_size=config.batch_size,
seed=config.train_seed,
add_next_step=True # true as this is needed for next_obs
)
tp = ThreadPoolExecutor(max_workers=config.render_processes)
critic = Critic(
action_dim=eval_env.single_action_space.n,
use_prev_action=config.use_prev_action,
rnn_hidden_dim=config.rnn_hidden_dim,
rnn_layers=config.rnn_layers,
rnn_dropout=config.rnn_dropout,
).to(DEVICE)
with torch.no_grad():
target_critic = deepcopy(critic)
no_decay_params, decay_params = filter_wd_params(critic)
optim = torch.optim.AdamW([
{"params": no_decay_params, "weight_decay": 0.0},
{"params": decay_params, "weight_decay": config.weight_decay}
], lr=config.learning_rate)
print("Number of parameters:", sum(p.numel() for p in critic.parameters()))
scaler = torch.cuda.amp.GradScaler()
rnn_state, target_rnn_state, next_rnn_state = None, None, None
prev_actions = torch.zeros((config.batch_size, 1), dtype=torch.long, device=DEVICE)
# For reward normalization
reward_stats = StatMean(cumulative=True)
running_rewards = 0.0
for step in trange(1, config.update_steps + 1, desc="Training"):
with Timeit() as timer:
batch = buffer.sample()
screen_image = render_screen_image(
tty_chars=batch["tty_chars"],
tty_colors=batch["tty_colors"],
tty_cursor=batch["tty_cursor"],
threadpool=tp,
)
batch["screen_image"] = screen_image
# Update reward statistics (as in the original nle implementation)
running_rewards *= config.gamma
running_rewards += batch["rewards"]
reward_stats += running_rewards ** 2
running_rewards *= (~batch["dones"]).astype(float)
# Normalize the reward
reward_std = reward_stats.mean() ** 0.5
batch["rewards"] = batch["rewards"] / max(0.01, reward_std)
batch["rewards"] = np.clip(batch["rewards"], -config.clip_range, config.clip_range)
batch = dict_to_tensor(batch, device=DEVICE)
wandb.log(
{
"times/batch_loading_cpu": timer.elapsed_time_cpu,
"times/batch_loading_gpu": timer.elapsed_time_gpu,
},
step=step,
)
with Timeit() as timer:
with torch.cuda.amp.autocast():
obs = {
"screen_image": batch["screen_image"][:, :-1].contiguous(),
"tty_chars": batch["tty_chars"][:, :-1].contiguous(),
"prev_actions": torch.cat([prev_actions.long(), batch["actions"][:, :-2].long()], dim=1)
}
next_obs = {
"screen_image": batch["screen_image"][:, 1:].contiguous(),
"tty_chars": batch["tty_chars"][:, 1:].contiguous(),
"prev_actions": batch["actions"][:, :-1].long()
}
loss, rnn_state, target_rnn_state, next_rnn_state, loss_info = iql_loss(
critic=critic,
target_critic=target_critic,
obs=obs,
next_obs=next_obs,
actions=batch["actions"][:, :-1],
rewards=batch["rewards"][:, :-1],
dones=batch["dones"][:, :-1],
rnn_states=rnn_state,
target_rnn_states=target_rnn_state,
next_rnn_states=next_rnn_state,
expectile_tau=config.expectile_tau,
temperature=config.temperature,
gamma=config.gamma
)
# detaching rnn hidden states for the next iteration
rnn_state = [a.detach() for a in rnn_state]
target_rnn_state = [a.detach() for a in target_rnn_state]
next_rnn_state = [a.detach() for a in next_rnn_state]
# update prev_actions for next iteration (-1 is seq_len + 1, so -2)
prev_actions = batch["actions"][:, -2].unsqueeze(-1)
wandb.log({"times/forward_pass": timer.elapsed_time_gpu}, step=step)
with Timeit() as timer:
scaler.scale(loss).backward()
if config.clip_grad_norm is not None:
scaler.unscale_(optim)
torch.nn.utils.clip_grad_norm_(critic.parameters(), config.clip_grad_norm)
scaler.step(optim)
scaler.update()
optim.zero_grad(set_to_none=True)
soft_update(target_critic, critic, tau=config.tau)
wandb.log({"times/backward_pass": timer.elapsed_time_gpu}, step=step)
wandb.log({"transitions": config.batch_size * config.seq_len * step, **loss_info}, step=step)
if step % config.eval_every == 0:
with Timeit() as timer:
eval_stats = vec_evaluate(
eval_env, critic, config.eval_episodes, config.eval_seed, device=DEVICE
)
raw_returns = eval_stats.pop("reward_raw")
raw_depths = eval_stats.pop("depth_raw")
normalized_scores = tmp_env.get_normalized_score(raw_returns)
wandb.log({
"times/evaluation_gpu": timer.elapsed_time_gpu,
"times/evaluation_cpu": timer.elapsed_time_cpu,
}, step=step)
wandb.log({"transitions": config.batch_size * config.seq_len * step, **eval_stats}, step=step)
if config.checkpoints_path is not None:
torch.save(critic.state_dict(), os.path.join(config.checkpoints_path, f"{step}.pt"))
# saving raw logs
np.save(os.path.join(config.checkpoints_path, f"{step}_returns.npy"), raw_returns)
np.save(os.path.join(config.checkpoints_path, f"{step}_depths.npy"), raw_depths)
np.save(os.path.join(config.checkpoints_path, f"{step}_normalized_scores.npy"), normalized_scores)
# also saving to wandb files for easier use in the future
np.save(os.path.join(wandb.run.dir, f"{step}_returns.npy"), raw_returns)
np.save(os.path.join(wandb.run.dir, f"{step}_depths.npy"), raw_depths)
np.save(os.path.join(wandb.run.dir, f"{step}_normalized_scores.npy"), normalized_scores)
buffer.close()
if __name__ == "__main__":
set_start_method("spawn")
train()