-
Notifications
You must be signed in to change notification settings - Fork 2
/
mpc_v2.py
357 lines (289 loc) · 14.1 KB
/
mpc_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import fixed_env as env
import load_trace
import matplotlib.pyplot as plt
import itertools
import time
S_INFO = 5 # bit_rate, buffer_size, rebuffering_time, bandwidth_measurement, chunk_til_video_end
S_LEN = 8 # take how many frames in the past
A_DIM = 6
MPC_FUTURE_CHUNK_COUNT = 3
ACTOR_LR_RATE = 0.0001
CRITIC_LR_RATE = 0.001
VIDEO_BIT_RATE = [300,750,1200,1850,2850,4300] # Kbps
BITRATE_REWARD = [1, 2, 3, 12, 15, 20]
BUFFER_NORM_FACTOR = 10.0
CHUNK_TIL_VIDEO_END_CAP = 48.0
TOTAL_VIDEO_CHUNKS = 48
M_IN_K = 1000.0
# REBUF_PENALTY = 4.3 # 1 sec rebuffering -> 3 Mbps
SMOOTH_PENALTY = 1
DEFAULT_QUALITY = 1 # default video quality without agent
RANDOM_SEED = 42
RAND_RANGE = 1000000
# QOE_METRIC = 'results_lin' # QoE_lin
QOE_METRIC = 'results_log' # QoE_log
# DATASET = 'HSDPA' # HSDPA
# DATASET = 'fcc' # HSDPA
TEST_TRACES = './test_traces/'
SUMMARY_DIR = './Results/test'
LOG_FILE = './Results/test/log_test_mpc'
VIDEO_SIZE_FILE = './video_size/ori/video_size_'
# log in format of time_stamp bit_rate buffer_size rebuffer_time chunk_size download_time reward
# NN_MODEL = './models/nn_model_ep_5900.ckpt'
# past errors in bandwidth
past_errors = []
past_bandwidth_ests = []
class video_size(object):
def __init__(self):
self.video_sizes = {}
def store_size(self):
for bitrate in xrange(A_DIM):
self.video_sizes[bitrate] = []
with open(VIDEO_SIZE_FILE + str(bitrate)) as f:
for line in f:
self.video_sizes[bitrate].append(int(line.split()[0]))
def get_chunk_size(self, quality, index):
if ( index < 0 or index > 47 ):
return 0
# note that the quality and video labels are inverted (i.e., quality 4 is highest and this pertains to video1)
# sizes = {5: size_video1[index], 4: size_video2[index], 3: size_video3[index], 2: size_video4[index], 1: size_video5[index], 0:size_video6[index]}
return self.video_sizes[quality][index]
def main():
start = time.time()
np.random.seed(RANDOM_SEED)
assert len(VIDEO_BIT_RATE) == A_DIM
all_cooked_time, all_cooked_bw, all_file_names = load_trace.load_trace(TEST_TRACES)
net_env = env.Environment(all_cooked_time=all_cooked_time,
all_cooked_bw=all_cooked_bw)
log_path = LOG_FILE + '_' + all_file_names[net_env.trace_idx]
log_file = open(log_path, 'wb')
chunk_size_info = video_size()
chunk_size_info.store_size()
time_stamp = 0
last_bit_rate = DEFAULT_QUALITY
bit_rate = DEFAULT_QUALITY
harmonic_bandwidth = 0
future_bandwidth = 0
action_vec = np.zeros(A_DIM)
action_vec[bit_rate] = 1
s_batch = [np.zeros((S_INFO, S_LEN))]
a_batch = [action_vec]
r_batch = []
# entropy_record = []
video_count = 0
while True: # serve video forever
# the action is from the last decision
# this is to make the framework similar to the real
delay, sleep_time, buffer_size, rebuf, \
video_chunk_size, _,\
end_of_video, video_chunk_remain = \
net_env.get_video_chunk(bit_rate)
time_stamp += delay # in ms
time_stamp += sleep_time # in ms
# reward is video quality - rebuffer penalty
if QOE_METRIC == 'results_lin':
REBUF_PENALTY = 4.3
reward = VIDEO_BIT_RATE[bit_rate] / M_IN_K \
- REBUF_PENALTY * rebuf \
- SMOOTH_PENALTY * np.abs(VIDEO_BIT_RATE[bit_rate] -
VIDEO_BIT_RATE[last_bit_rate]) / M_IN_K
else:# log scale reward
REBUF_PENALTY = 2.66
log_bit_rate = np.log(VIDEO_BIT_RATE[bit_rate] / float(VIDEO_BIT_RATE[0]))
log_last_bit_rate = np.log(VIDEO_BIT_RATE[last_bit_rate] / float(VIDEO_BIT_RATE[0]))
reward = log_bit_rate \
- REBUF_PENALTY * rebuf \
- SMOOTH_PENALTY * np.abs(log_bit_rate - log_last_bit_rate)
# reward = BITRATE_REWARD[bit_rate] \
# - 8 * rebuf - np.abs(BITRATE_REWARD[bit_rate] - BITRATE_REWARD[last_bit_rate])
r_batch.append(reward)
last_bit_rate = bit_rate
# log time_stamp, bit_rate, buffer_size, reward
log_file.write(str(time_stamp / M_IN_K) + '\t' +
str(VIDEO_BIT_RATE[bit_rate]) + '\t' +
str(buffer_size) + '\t' +
str(rebuf) + '\t' +
str(video_chunk_size) + '\t' +
str(delay) + '\t' +
str(reward) + '\n')
log_file.flush()
# retrieve previous state
if len(s_batch) == 0:
state = [np.zeros((S_INFO, S_LEN))]
else:
state = np.array(s_batch[-1], copy=True)
# dequeue history record
state = np.roll(state, -1, axis=1)
# this should be S_INFO number of terms
state[0, -1] = VIDEO_BIT_RATE[bit_rate] / float(np.max(VIDEO_BIT_RATE)) # last quality
state[1, -1] = buffer_size / BUFFER_NORM_FACTOR
state[2, -1] = rebuf
state[3, -1] = float(video_chunk_size) / float(delay) / M_IN_K # kilo byte / ms
state[4, -1] = np.minimum(video_chunk_remain, CHUNK_TIL_VIDEO_END_CAP) / float(CHUNK_TIL_VIDEO_END_CAP)
# state[5: 10, :] = future_chunk_sizes / M_IN_K / M_IN_K
# ================== MPC =========================
curr_error = 0 # defualt assumes that this is the first request so error is 0 since we have never predicted bandwidth
if ( len(past_bandwidth_ests) > 0 ):
curr_error = abs(past_bandwidth_ests[-1]-state[3,-1])/float(state[3,-1])
past_errors.append(curr_error)
# pick bitrate according to MPC
# first get harmonic mean of last 5 bandwidths
past_bandwidths = state[3,-5:]
while past_bandwidths[0] == 0.0:
past_bandwidths = past_bandwidths[1:]
#if ( len(state) < 5 ):
# past_bandwidths = state[3,-len(state):]
#else:
# past_bandwidths = state[3,-5:]
bandwidth_sum = 0
for past_val in past_bandwidths:
bandwidth_sum += (1/float(past_val))
harmonic_bandwidth = 1.0/(bandwidth_sum/len(past_bandwidths))
# future bandwidth prediction
# divide by 1 + max of last 5 (or up to 5) errors
max_error = 0
error_pos = -5
if ( len(past_errors) < 5 ):
error_pos = -len(past_errors)
max_error = float(max(past_errors[error_pos:]))
future_bandwidth = harmonic_bandwidth/(1+max_error) # robustMPC here
# past_bandwidth_ests.append(harmonic_bandwidth)
past_bandwidth_ests.append(future_bandwidth)
# future chunks length (try 4 if that many remaining)
last_index = int(CHUNK_TIL_VIDEO_END_CAP - video_chunk_remain -1)
future_chunk_length = MPC_FUTURE_CHUNK_COUNT
if ( TOTAL_VIDEO_CHUNKS - last_index < MPC_FUTURE_CHUNK_COUNT ):
future_chunk_length = TOTAL_VIDEO_CHUNKS - last_index
# all possible combinations of 5 chunk bitrates (9^5 options)
# iterate over list and for each, compute reward and store max reward combination
max_reward = -100000000
# best_combo = ()
start_buffer = buffer_size
#start = time.time()
download_time_every_step = []
for position in range(future_chunk_length):
download_time_current = []
for action in range(0, A_DIM):
index = last_index + position + 1 # e.g., if last chunk is 3, then first iter is 3+0+1=4
download_time = (chunk_size_info.get_chunk_size(action, index)/1000000.)/future_bandwidth # this is MB/MB/s --> seconds
download_time_current.append(download_time)
download_time_every_step.append(download_time_current)
reward_comparison = False
send_data = 0
parents_pool = [[0.0, start_buffer, int(bit_rate)]]
for position in range(future_chunk_length):
if position == future_chunk_length-1:
reward_comparison = True
children_pool = []
for parent in parents_pool:
action = 0
curr_buffer = parent[1]
last_quality = parent[-1]
curr_rebuffer_time = 0
chunk_quality = action
download_time = download_time_every_step[position][chunk_quality]
if ( curr_buffer < download_time ):
curr_rebuffer_time += (download_time - curr_buffer)
curr_buffer = 0.0
else:
curr_buffer -= download_time
curr_buffer += 4
# reward
bitrate_sum = VIDEO_BIT_RATE[chunk_quality]
smoothness_diffs = abs(VIDEO_BIT_RATE[chunk_quality] - VIDEO_BIT_RATE[last_quality])
reward = (bitrate_sum/1000.) - (REBUF_PENALTY*curr_rebuffer_time) - (SMOOTH_PENALTY*smoothness_diffs/1000.)
reward += parent[0]
children = parent[:]
children[0] = reward
children[1] = curr_buffer
children.append(action)
children_pool.append(children)
if (reward >= max_reward) and reward_comparison:
if send_data > children[3] and reward == max_reward:
send_data = send_data
else:
send_data = children[3]
max_reward = reward
# criterion terms
# theta = SMOOTH_PENALTY * (VIDEO_BIT_RATE[action+1]/1000. - VIDEO_BIT_RATE[action]/1000.)
rebuffer_term = REBUF_PENALTY * (max(download_time_every_step[position][action+1] - parent[1], 0) - max(download_time_every_step[position][action] - parent[1], 0))
if (action + 1 <= parent[-1]):
High_Maybe_Superior = ((1.0 + 2 * SMOOTH_PENALTY)*(VIDEO_BIT_RATE[action]/1000. - VIDEO_BIT_RATE[action+1]/1000.) + rebuffer_term < 0.0)
else:
High_Maybe_Superior = ((VIDEO_BIT_RATE[action]/1000. - VIDEO_BIT_RATE[action+1]/1000.) + rebuffer_term < 0.0)
# while REBUF_PENALTY*(download_time_every_step[position][action+1] - parent[1]) <= ((VIDEO_BIT_RATE[action+1]/1000. - VIDEO_BIT_RATE[action]/1000.)-(abs(VIDEO_BIT_RATE[action+1] - VIDEO_BIT_RATE[parent[-1]]) - abs(VIDEO_BIT_RATE[action] - VIDEO_BIT_RATE[parent[-1]]))/1000.):
while High_Maybe_Superior:
curr_buffer = parent[1]
last_quality = parent[-1]
curr_rebuffer_time = 0
chunk_quality = action + 1
download_time = download_time_every_step[position][chunk_quality]
if ( curr_buffer < download_time ):
curr_rebuffer_time += (download_time - curr_buffer)
curr_buffer = 0
else:
curr_buffer -= download_time
curr_buffer += 4
# reward
bitrate_sum = VIDEO_BIT_RATE[chunk_quality]
smoothness_diffs = abs(VIDEO_BIT_RATE[chunk_quality] - VIDEO_BIT_RATE[last_quality])
reward = (bitrate_sum/1000.) - (REBUF_PENALTY*curr_rebuffer_time) - (SMOOTH_PENALTY*smoothness_diffs/1000.)
reward += parent[0]
children = parent[:]
children[0] = reward
children[1] = curr_buffer
children.append(chunk_quality)
children_pool.append(children)
if (reward >= max_reward) and reward_comparison:
if send_data > children[3] and reward == max_reward:
send_data = send_data
else:
send_data = children[3]
max_reward = reward
action += 1
if action + 1 == A_DIM:
break
# criterion terms
# theta = SMOOTH_PENALTY * (VIDEO_BIT_RATE[action+1]/1000. - VIDEO_BIT_RATE[action]/1000.)
rebuffer_term = REBUF_PENALTY * (max(download_time_every_step[position][action+1] - parent[1], 0) - max(download_time_every_step[position][action] - parent[1], 0))
if (action + 1 <= parent[-1]):
High_Maybe_Superior = ((1.0 + 2 * SMOOTH_PENALTY)*(VIDEO_BIT_RATE[action]/1000. - VIDEO_BIT_RATE[action+1]/1000.) + rebuffer_term < 0)
else:
High_Maybe_Superior = ((VIDEO_BIT_RATE[action]/1000. - VIDEO_BIT_RATE[action+1]/1000.) + rebuffer_term < 0)
parents_pool = children_pool
bit_rate = send_data
# hack
# if bit_rate == 1 or bit_rate == 2:
# bit_rate = 0
# ================================================
# Note: we need to discretize the probability into 1/RAND_RANGE steps,
# because there is an intrinsic discrepancy in passing single state and batch states
s_batch.append(state)
if end_of_video:
log_file.write('\n')
log_file.close()
last_bit_rate = DEFAULT_QUALITY
bit_rate = DEFAULT_QUALITY # use the default action here
del s_batch[:]
del a_batch[:]
del r_batch[:]
del past_bandwidth_ests[:]
time_stamp = 0
action_vec = np.zeros(A_DIM)
action_vec[bit_rate] = 1
s_batch.append(np.zeros((S_INFO, S_LEN)))
a_batch.append(action_vec)
entropy_record = []
print "video count", video_count
video_count += 1
if video_count >= len(all_file_names):
end = time.time()
print(end - start)
break
log_path = LOG_FILE + '_' + all_file_names[net_env.trace_idx]
log_file = open(log_path, 'wb')
end = time.time()
print(end - start)
if __name__ == '__main__':
main()