-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
115 lines (95 loc) · 2.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import scipy as sp
from collections import Counter
from sklearn.metrics import confusion_matrix
from functools import lru_cache
from scipy.spatial.distance import cdist
from sklearn.metrics.pairwise import pairwise_kernels
## imbalanced classification
## balanced accuracy
def bacc(y_true, y_pred, verbose = False):
C = confusion_matrix(y_true, y_pred)
if verbose:
print("bacc", Counter(y_true), Counter(y_pred))
print(C)
counts = C.sum(axis=1)
positives = C.diagonal()
res = np.mean(positives / counts)
return res
## kmeans++ initialisations
def kmeanspp(X, n_clusters, dist = 'euclidean', seed = 0):
c_idxs = [np.random.RandomState(seed).randint(X.shape[0])]
for i in range(1, n_clusters):
D_x2 = cdist(X, X[c_idxs], metric = dist).min(axis = 1) ** 2
p_x = D_x2 / np.sum(D_x2)
c_idxs.append(p_x.argmax())
return c_idxs
## wrapper for kernel matrix
## nothing special, helps in modular code
class Kernel(object):
"""
A kernel matrix that memorizes the mean of rows
"""
def __init__(self, K, verbose = False):
self.__data = K
self.__sum = K.sum()
self.verbose = verbose
def __repr__(self):
return "[{:.4f}, {:.4f}, {:4f}]".format(self.__data.min(), np.median(self.__data), self.__data.max())
def __getitem__(self, index):
return Kernel(self.__data[index])
def __call__(self, index = None):
if index is None:
return self.__data
else:
return self[index]
def __len__(self):
return len(self.__data)
@property
def sum(self):
return self.__sum
@property
def avg(self):
return 1.0 * self.__sum / ( len(self) * len(self) )
def __del__(self):
del self.__data
def regularize(self, alpha):
self.__data = self.__data + alpha * np.eye(self.__data.shape[0])
@lru_cache(maxsize=10)
def __compute__mean(self, rows = []):
N = len(rows)
if self.verbose:
print("caching mean for {} rows".format(len(self) if N == 0 else N))
if N == 0:
return self.__data.mean(axis = 0)
else:
return self.__data[rows, :].mean(axis = 0)
def mean(self, rows = []):
return self.__compute__mean(tuple(rows))
def diagonal(self):
return self.__data.diagonal()
@staticmethod
def create(X, verbose = False, **kernelargs):
# temp = np.exp(-kernelargs.get("gamma") * sp.spatial.distance.cdist(X, X, 'euclidean'))
# return Kernel(temp)
return Kernel(pairwise_kernels(X, **kernelargs), verbose)
def main():
np.random.seed(31)
from itertools import chain
ns = [30, 10]
data = np.vstack([
np.random.normal(loc = [0, 0], scale = 6.0, size = (ns[0], 2)),
np.random.normal(loc = [10, 10], scale = 4.0, size = (ns[1], 2))
])
print(data.sum(axis=0))
labels = np.array(list(chain(*[[i +1] * n for i, n in enumerate(ns)])))
K1 = Kernel.create(data, metric = 'rbf', gamma = 0.1)
K2 = Kernel.create(data, metric = 'rbf', gamma = 0.01)
V = list(range(sum(ns)))
print(K1.mean(rows = V))
print(kmeanspp(data, n_clusters = 4))
y1 = np.random.randint(0, 2, 10)
y2 = np.random.randint(0, 2, 10)
print(bacc(y1, y2))
if __name__ == "__main__":
main()