-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcryogan.py
111 lines (74 loc) · 3.8 KB
/
cryogan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.fft
from torch import nn
from modules import Discriminator, weights_init
from writer_utils import writer_update_weight, writer_scalar_add_dict
from loss_utils import calculate_loss_dis, calculate_loss_gen, dict_to_loss, dict_to_loss_dis
from utils import get_samps_simulator
from src.simulator_utils import LinearSimulator
class CryoGAN(nn.Module):
def __init__(self, config):
super(CryoGAN, self).__init__()
self.config = config
def init_dis(self):
self.dis = Discriminator(self.config)
self.dis.apply(lambda m: weights_init(m, self.config))
self.dis_optim = torch.optim.Adam(self.dis.parameters(),
lr=self.config.dis_lr,
betas=(self.config.dis_beta_1, self.config.dis_beta_2),
eps=self.config.dis_eps,
weight_decay=self.config.dis_weight_decay)
def init_gen(self):
self.gen = LinearSimulator(self.config)
self.gen_optim = torch.optim.Adam(self.gen.parameters(),
lr=self.config.gen_lr,
betas=(self.config.gen_beta_1, self.config.gen_beta_2),
eps=self.config.gen_eps,
weight_decay=self.config.gen_weight_decay)
def train(self, real_data, params, max_iter, iteration, writer, train_all=True):
config=self.config
rec_data=None
loss_dict={}
loss_dis_dict={}
loss_unsup_dict={}
loss_supervised_dict={}
fake_data=get_samps_simulator(self.gen, params, grad=train_all)
loss_dis_dict = calculate_loss_dis(self.dis, real_data, fake_data, self.config)
loss_dis=dict_to_loss_dis(loss_dis_dict, self.config)
loss_dis.backward(retain_graph=True)
self.train_dis()
self.zero_grad()
loss_dict.update( ** loss_dis_dict)
if train_all:
loss_gen_dict=calculate_loss_gen(self.dis, self.gen,real_data, fake_data, self.config )
weight_dict_gen={"weight_loss_gen": 1
}
loss_gen=dict_to_loss(loss_gen_dict, weight_dict_gen)
loss_gen.backward()
if iteration%10==0:
writer=writer_update_weight(self.gen, writer, iteration)
self.train_gen()
self.train_enc()
self.zero_grad()
loss_dict={**loss_dis_dict, **loss_gen_dict}
writer=writer_scalar_add_dict(writer, loss_dict, iteration, prefix="loss/")
writer=writer_scalar_add_dict(writer, weight_dict_gen, iteration, prefix="coefficients/")
writer.add_scalar("sigma_snr", torch.exp(-self.gen.proj_scalar.data[0]), iteration)
return loss_dict, fake_data, writer
def train_dis(self):
if self.config.dis_clip_grad == True:
torch.nn.utils.clip_grad_norm_(self.dis.parameters(), max_norm=self.config.dis_clip_norm_value)
self.dis_optim.step()
def train_gen(self):
if self.config.gen_clip_grad == True:
torch.nn.utils.clip_grad_norm_(self.gen.projector.parameters(), max_norm=self.config.gen_clip_norm_value)
#torch.nn.utils.clip_grad_norm_(self.gen.noise.parameters(), max_norm=self.config.scalar_clip_norm_value)
self.gen_optim.step()
self.constraint()
def zero_grad(self):
self.dis_optim.zero_grad()
self.gen_optim.zero_grad()
def constraint(self):
if self.config.positivity:
with torch.no_grad():
self.gen.projector.vol.clamp_(min=0)