forked from omegalabsinc/omegalabs-anytoany-bittensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakefile
141 lines (112 loc) · 5.09 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
build-and-run: a2a sh-headless
sh:
docker run -it --rm \
--ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all \
--cap-add SYS_PTRACE --cap-add=SYS_ADMIN --ulimit core=0 \
-v $(shell pwd):/app \
-v ~/.bittensor:/root/.bittensor \
a2a
sh-headless:
docker run -it --rm --detach \
--ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all \
--cap-add SYS_PTRACE --cap-add=SYS_ADMIN --ulimit core=0 \
-v $(shell pwd):/app \
-v ~/.bittensor:/root/.bittensor \
--name a2a \
a2a
docker attach a2a
NETUID ?= 21
WALLET_NAME ?= $(error "Please specify WALLET_NAME=...")
WALLET_HOTKEY ?= $(error "Please specify WALLET_HOTKEY=...")
PORT ?= 8091
WANDB ?= on
WANDBOFF :=
ifeq ($(WANDB), off)
WANDBOFF := --wandb.off
endif
validator: a2a
docker run -it --detach --restart always \
--ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all \
--cap-add SYS_PTRACE --cap-add=SYS_ADMIN --ulimit core=0 \
-v $(shell pwd):/app \
-v ~/.bittensor:/root/.bittensor \
-e TQDM_DISABLE=True \
--env-file vali.env \
--name omega-a2a-validator \
a2a \
bash auto_updating_validator.sh --netuid $(NETUID) --wallet.name $(WALLET_NAME) --wallet.hotkey $(WALLET_HOTKEY) --port $(PORT) $(WANDBOFF) --logging.trace
manual-validator: a2a
docker run -it --detach --restart always \
--ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all \
--cap-add SYS_PTRACE --cap-add=SYS_ADMIN --ulimit core=0 \
-v $(shell pwd):/app \
-v ~/.bittensor:/root/.bittensor \
-e TQDM_DISABLE=True \
--env-file .env \
--name omega-a2a-validator \
a2a \
python neurons/validator.py --netuid $(NETUID) --wallet.name $(WALLET_NAME) --wallet.hotkey $(WALLET_HOTKEY) --port $(PORT) $(WANDBOFF) --logging.trace
check-vali-logs:
docker logs omega-a2a-validator --follow --tail 100
check-miner-logs:
docker logs a2a --follow --tail 100
a2a:
docker build -t $@ -f Dockerfile .
models: checkpoints/sd2-1/sd21-unclip-h.ckpt
checkpoints/sd2-1/%:
mkdir -p $(@D)
wget https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/resolve/main/$* -O $@
# ===== from within container ===== #
CKPT_OUTPUT ?= output_checkpoints/experiment_1
OPTIONS ?=
finetune-x1:
tune run tune_recipes/lora_finetune_single_device.py --config config/8B_lora.yaml \
checkpointer.output_dir=$(CKPT_OUTPUT) $(OPTIONS)
finetune-x%:
tune run --nnodes 1 --nproc_per_node $* \
tune_recipes/lora_finetune_distributed.py --config config/8B_lora.yaml \
checkpointer.output_dir=$(CKPT_OUTPUT) $(OPTIONS) \
gradient-accumulation-steps=32
# eg. make eval_baseline, or make eval_finetune
eval%:
tune run tune_recipes/eleuther_eval.py --config config/eleuther_eval$*.yaml
mm_eval:
tune run tune_recipes/mm_eval.py --config config/mm_eval.yaml
# included as an example: replace prompt as required
gen:
tune run tune_recipes/gen.py --config config/gen.yaml prompt="definition of inference in one word"
# included as an example: replace prompt as required
mmgen:
tune run tune_recipes/gen.py --config config/gen.yaml image="media/cactus.png" prompt="Caption the image\nImage:\n{image}"
# tune run tune_recipes/gen.py --config config/gen.yaml image="media/cactus.png" prompt="Image:\n{image}\nCaption the preceding image."
# download+process SAM dataset into imagebind+clip embeddings
sam_llava: ds/sam_llava/00.caption.pt
ds/sam_llava/00.caption.pt:
python ds/export_sam_llava.py --output-dir=$(@D)
coco_llava_instruct: ds/coco_llava_instruct/train2014/COCO_train2014_000000002270.jpg ds/coco_llava_instruct/llava_instruct_150k.json
ds/coco_llava_instruct/coco_train2014.zip:
mkdir -p $(@D)
wget https://huggingface.co/datasets/BAAI/DataOptim/resolve/main/images/coco/train2014.zip?download=true -O $@
ds/coco_llava_instruct/train2014/COCO_train2014_000000002270.jpg: ds/coco_llava_instruct/coco_train2014.zip
cd ds/coco_llava_instruct && unzip coco_train2014.zip
ds/coco_llava_instruct/llava_instruct_150k.json:
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_instruct_150k.json?download=true -O $@
vision_flan: ds/vision_flan/00.caption.pt
ds/vision_flan/00.caption.pt: ds/vision_flan/images_191task_1k/.done ds/vision_flan/annotation_191-task_1k.json
python ds/export_vision_flan.py --output-dir=$(@D)
ds/vision_flan/images_191task_1k/.done: ds/vision_flan/image_191-task_1k.zip
cd ds/vision_flan && unzip image_191-task_1k.zip
touch $@
ds/vision_flan/%:
wget https://huggingface.co/datasets/Vision-Flan/vision-flan_191-task_1k/resolve/main/$*?download=true -O $@
bagel: ds/bagel/bagel-input-output-v1.0.parquet
ds/bagel/bagel-%-v1.0.parquet:
mkdir -p ds/bagel
wget https://huggingface.co/datasets/jondurbin/bagel-llama-3-v1.0/resolve/main/bagel-$*-v1.0.parquet?download=true -O $@
download-base-model:
tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir checkpoints/Meta-Llama-3-8B-Instruct
download-datasets: download-sam_llava-dataset download-coco_llava_instruct-dataset download-vision_flan-dataset
download-%-dataset:
mkdir -p ds/$*
wget https://huggingface.co/datasets/xzistance/$*/resolve/main/output.parquet -O ds/$*/output.parquet
download-everything: download-base-model download-datasets