diff --git a/notebooks/ML_meetup_NYC.ipynb b/notebooks/ML_meetup_NYC.ipynb index 8dd7abc..4111ea7 100644 --- a/notebooks/ML_meetup_NYC.ipynb +++ b/notebooks/ML_meetup_NYC.ipynb @@ -116,7 +116,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 67 + "prompt_number": 2 }, { "cell_type": "markdown", @@ -145,7 +145,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 5 + "prompt_number": 3 }, { "cell_type": "code", @@ -161,7 +161,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 6 + "prompt_number": 4 }, { "cell_type": "markdown", @@ -190,41 +190,25 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 7 + "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "mi = my_iter(5)\n", - "print mi.next()\n", - "print mi.next()\n", - "print mi.next()\n", - "print mi.next()\n", - "print mi.next()\n" + "\n" ], "language": "python", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], + "outputs": [], "prompt_number": 8 }, { "cell_type": "code", - "collapsed": false, + "collapsed": true, "input": [ - "print mi.next()" + "mi.next()" ], "language": "python", "metadata": {}, @@ -235,13 +219,13 @@ "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mStopIteration\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mmi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_iter\u001b[0;34m(N)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_iter\u001b[0;34m(N)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mStopIteration\u001b[0m: " ] } ], - "prompt_number": 9 + "prompt_number": 14 }, { "cell_type": "code", @@ -268,7 +252,7 @@ ] } ], - "prompt_number": 10 + "prompt_number": 15 }, { "cell_type": "markdown", @@ -287,7 +271,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 45 + "prompt_number": 16 }, { "cell_type": "code", @@ -302,13 +286,13 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 46, + "prompt_number": 17, "text": [ "generator" ] } ], - "prompt_number": 46 + "prompt_number": 17 }, { "cell_type": "markdown", @@ -319,7 +303,7 @@ }, { "cell_type": "code", - "collapsed": true, + "collapsed": false, "input": [ "#lets see what the .next() yields (and splitlines to make it more readable)\n", "simple_stream.next().splitlines()" @@ -330,90 +314,56 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 47, + "prompt_number": 18, "text": [ - "['CONFIDENTIAL',\n", + "['UNCLASSIFIED',\n", " '',\n", - " 'PAGE 01 YAOUND 00571 140711Z',\n", + " 'PAGE 01 ACCRA 01284 091110Z',\n", + " 'ACTION OCS-06',\n", " '',\n", - " '15',\n", - " 'ACTION EA-09',\n", + " 'INFO OCT-00 ADS-00 AF-10 AMAD-01 CA-01 /018 W',\n", + " ' ------------------203337 091121Z /38',\n", + " 'O 081104Z FEB 73',\n", + " 'FM AMEMBASSY ACCRA',\n", + " 'TO AMEMBASSY MONROVIA IMMEDIATE',\n", + " 'INFO SECSTATE WASHDC 4185',\n", + " 'AMEMBASSY ABIDJAN',\n", " '',\n", - " 'INFO OCT-01 AF-06 ISO-00 CPR-01 CIAE-00 DODE-00 PM-04 H-02',\n", + " 'UNCLAS ACCRA 01284',\n", " '',\n", - " ' INR-07 L-03 NSAE-00 NSC-05 PA-01 PRS-01 SP-02 SS-15',\n", + " 'E.O. 12356: N/A',\n", + " 'TAGS: CASC (AKINS, ESTHER)',\n", + " 'SUBJ: WELFARE/WHEREABOUTS: ESTHER AKINS',\n", " '',\n", - " ' USIA-06 /063 W',\n", - " ' --------------------- 091486',\n", - " 'R 131730Z FEB 76',\n", - " 'FM AMEMBASSY YAOUNDE',\n", - " 'TO SECSTATE WASHDC 7790',\n", + " 'REF: MONROVIA 01199 (NOTAL)',\n", " '',\n", - " 'C O N F I D E N T I A L YAOUNDE 0571',\n", + " '1. MS. AKINS LAST REGISTERED WITH THE EMBASSY ON MARCH 23,',\n", + " '1981. SHE LATER REPORTED SHE WAS DUE TO LEAVE GHANA ON',\n", + " 'MARCH 2, 1982.',\n", " '',\n", - " 'E.O.: 11652: GDS',\n", - " 'TAGS: PDIP, CH, US',\n", - " 'SUBJ: CONVERSATION WITH PRC AMBASSADOR WEI-PAO-SHAN',\n", + " '2. ATTEMPTS TO REACH HER BY PHONE THROUGH THE INSTITUTE',\n", + " 'OF LINGUISTICS, HER CONTACT ADDRESS AT THE TIME OF HER',\n", + " '1981-82 STAY IN GHANA AND OTHER MISSIONARIES HAS PROVED',\n", + " 'UNSUCCESSFUL. THE SOURCE OF LIGHT MISSION IS NOT, RPT NOT,',\n", + " 'KNOWN TO US.',\n", " '',\n", - " 'REFS: A) STATE 5740',\n", - " ' B) YAOUNDE 4267',\n", - " ' C) YAOUNDE 4235',\n", + " '3. WE WILL MAKE ADDITIONAL EFFORTS TO LOCATE MS. AKINS,',\n", + " 'AND WILL INFORM YOU IF WE HAVE ANY SUCCESS, BUT ADDITIONAL',\n", + " 'CONTACT ADDRESSES FOR HER WOULD BE HELPFUL. WRIGHT',\n", " '',\n", - " '1. SUMMARY: DURING FAREWELL DINNER GIVEN BY EUROPEAN DEVELOP-',\n", - " 'MENT FUND DELEGATE-GENERAL POERSCHMANN, AMBASSADOR SPIRO WAS',\n", - " 'SEATED NEXT TO PRC AMBASSADOR WEI PAO-SHAN. CONVERSATION TOUCHED',\n", - " \"ON CHOU EN LAI'S DEATH, FORMER PRESIDENT NIXON'S FORTHCOMING\",\n", - " 'VISIT, AND HAN HSU, DEPUTY CHIEF OF PRC LIAISON OFFICE IN WASH-',\n", - " 'INGTON, END SUMMARY.',\n", " '',\n", - " '2. I HAD HAD PREVIOUS CONVERSATIONS WITH CHINESE AMB, BUT NONE',\n", - " 'AS LONG OR AS WELL INTERPRETED AS THIS ONE, PARTLY DUE TO NEW',\n", - " 'INTERPRETER FROM PRC EMBASSY WHO, UNLIKE PREDECESSORS, GAVE',\n", - " 'GLIMMER OF SMILE WHENEVER I ASKED TOUCHY QUESTION. WEI EVADED',\n", - " 'ANSWERING SUCH BY REPEATING PREVIOUS ANSWER OR MAKING IRRELEVANT',\n", - " 'COMMENT. WHEN WIFE OF GURC MINISTER OF HOUSING AND EQUIPMENT,',\n", - " 'ON MY OTHER SIDE, DISCUSSED CHINESE MEDICAL TEAM WITH HIM, I',\n", - " 'COMMENTED ON PUBLISHED REFERENCE BY CHIEF OF TEAM TO NORMAN',\n", - " 'BETHUEN AS \"FAMOUS INTERNATIONAL DOCTOR\". I SAID AMERICAN',\n", - " 'BETHUEN WELL KNOWN IN US, BUT GOT NO RESPONSE.',\n", " '',\n", - " 'CONFIDENTIAL',\n", " '',\n", - " 'CONFIDENTIAL',\n", " '',\n", - " 'PAGE 02 YAOUND 00571 140711Z',\n", " '',\n", - " '3. TO MY REMARK THAT I HAD READ ABOUT CHANGE OF ACTING PREMIERS,',\n", - " 'WEI REPEATED HIS RESPONSE TO MY CONDOLENCES, EXPRESSED AT EARL-',\n", - " 'IER SOCIAL GATHERING: THE DEATH OF CHOU EN LAI WAS VERY PAIN-',\n", - " 'FUL FOR CHINESE PEOPLE AND THEY APPRECIATE CONDOLENCES. HE',\n", - " 'INDICATED HE KNEW OF MY PERSONAL HIGH REGARD FOR PRC LEADERSHIP',\n", - " 'FROM MY BOOK, \"POLITICS AS THE MASTER SCIENCE: FROM PLATO TO',\n", - " 'MAO,\" WHICH, IN RESPONSE TO MY KIDDING HIM ABOUT HIS UNDER-',\n", - " 'STANDING OF ENGLISH, HE INDICATED HE HAD BEEN WORKING AT READING.',\n", " '',\n", - " '4. UPON MY MENTION OF THE ANNOUNCEMENT OF THE FORTHCOMING NIXON',\n", - " 'TRIP, HE ASKED WHETHER I WAS FAMILIAR WITH THE SHANGHAI COMMUNI-',\n", - " 'QUE. I WAS AND CALLED IT HISTORIC. HE AGREED AND SAID THAT INVI-',\n", - " 'TATION WAS INTENDED TO MARK ANNIVERSARY.',\n", + " 'UNCLASSIFIED',\n", + " '',\n", " '',\n", - " '5. WHEN I MENTIONED THAT I HAD MET HAN HAU, DEPUTY CHIEF OF PRC',\n", - " 'LIAISON OFFICE IN WASHINGTON A NUMBER OF TIMES, HIS FACE LIT UP,',\n", - " 'HE CALLED HAN HAU A PERSONAL FRIEND, AND MENTIONED THAT HSU HAD',\n", - " 'BEEN CHIEF OF PROTOCOL IN PEKING.',\n", " '',\n", - " '6. IN EARLIER CONVERSATION WITH MRS. SPIRO, WEI ALLOWED THAT HE',\n", - " 'HAS FOUR CHILDREN, WITH YOUNGEST IN GRADE SCHOOL, OLDEST AT',\n", - " 'UNIVERSITY.',\n", " '',\n", - " '7. COMMENT. WHILE MERELY CORRECT WHEN I FIRST ARRIVED IN YAOUNDE,',\n", - " 'WEI HAS RECENTLY BEEN WARMING UP WITHOUT BECOMING EXACTLY EF-',\n", - " 'FUSIVE. THIS DINNER WAS ATTNEDED ALSO BY TWO GURC MINISTERS AND',\n", - " 'EGYPTIAN AMBASSADOR, AND HE TREATED ALL WITH FINE UNPARTIALITY.',\n", - " 'SPIRO',\n", " '',\n", " '',\n", - " 'CONFIDENTIAL',\n", " '',\n", " '',\n", " '',\n", @@ -422,7 +372,7 @@ ] } ], - "prompt_number": 47 + "prompt_number": 18 }, { "cell_type": "markdown", @@ -444,7 +394,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 48 + "prompt_number": 19 }, { "cell_type": "code", @@ -455,11 +405,11 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 49 + "prompt_number": 20 }, { "cell_type": "code", - "collapsed": true, + "collapsed": false, "input": [ "stream.next()" ], @@ -469,478 +419,68 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 50, + "prompt_number": 21, "text": [ - "{'atime': 1392784110.0,\n", - " 'cached_path': '/Users/danielkrasner/DATA_master/prod/declass/cables_short/raw/1976YAOUND00757',\n", - " 'doc_id': '1976YAOUND00757',\n", + "{'atime': 1392907527.0,\n", + " 'cached_path': '/Users/danielkrasner/DATA_master/prod/declass/cables_short/raw/1976YAOUND02835',\n", + " 'doc_id': '1976YAOUND02835',\n", " 'mtime': 1383854248.0,\n", - " 'size': 5058,\n", - " 'text': \"LIMITED OFFICIAL USE\\n\\nPAGE 01 YAOUND 00757 010739Z\\n\\n17\\nACTION OES-05\\n\\nINFO OCT-01 AF-06 ISO-00 EB-07 AID-05 /024 W\\n --------------------- 068311\\nR 010645Z MAR 76\\nFM AMEMBASSY YAOUNDE\\nTO SECSTATE WASHDC 7910\\n\\n\\nLIMITED OFFICIAL USE YAOUNDE 0757\\n\\nE.O.: 11652: N/A\\nTAGS: SPOP\\nSUBJ: IMPLICATION OF WORLDWIDE POPULATION GROWTH FOR UNITED\\n STATES SECURITY AND OVERSEAS INTERESTS\\n\\nREFS: (A) STATE 301427 (B) STATE 297241\\n\\nCOMMENTS BELOW ARE KEYED TO LETTERED SECTIONS PARA 4 REF (A):\\n\\nA. CAMEROON'S BASIC POPULATION POLICY: CAMEROON HAS NO CLEARLY\\nSTATED POPULATION POLICY. CAMEROON'S PRESENT PRACTICE REFLECTS\\nTHE INFLUENCE OF OLD FRENCH LAW, TRADITIONAL DESIRE FOR LARGE\\nFAMILIES, AND INCREASING AWARENESS BY YOUNGER CAMEROONIANS OF\\nNEED FOR FAMILY PLANNING AND TO A CERTAIN EXTENT, BIRTH CONTROL.\\nTHERE IS NO CLEAR LEGAL PROHIBITION OF CONTRACEPTIVE PRACTICES,\\nYET REFERENCES TO EARLIER FRENCH LAWS LEAVE LOCAL LAWYERS IN\\nAGREEMENT THAT CAMEROON HAS NEITHER A PRO-FAMILY PLANNING POLICY\\nNOR A LEGISLATIVE ENVIRONMENT CONDUCIVE TO THE ESTABLISHMENT OF\\nFAMILY PLANNING SERVICES. NEVERTHELESS, CAMEROON IS NOT PRO-\\nNATALIST, AND LEADING GOVERNMENT OFFICIALS ARE INVOLVED IN\\nFAMILY PLANNING TRAINING AND THE DEVELOPMENT OF PILOT FAMILY\\nPLANNING SERVICE PROGRAMS. THE GOVERNMENT OF CAMEROON (GURC) IS\\nNOW IN THE FINAL STATES OF DRAFTING THE FOURTH FIVE-YEAR PLAN.\\nAT EARLIER STAGES IN THE DRAFTING, IT WAS DECIDED TO CREATE AN\\nINTERMINISTERIAL COMMISSION TO DEAL WITH POPULATION ISSUES. THE\\nFOURTH FIVE-YEAR PLAN, WHEN IT EMERGES IN FINAL, WILL REVEAL THE\\nDEGREE TO WHICH CAMEROON HAS BEEN ABLE TO DEFINE A POPULATION\\nPOLICY.\\n\\nLIMITED OFFICIAL USE\\n\\nLIMITED OFFICIAL USE\\n\\nPAGE 02 YAOUND 00757 010739Z\\n\\nB. CAMEROON'S POPULATION PROGRAM: DEFINED AS SUCH, CAMEROON DOES\\nNOT HAVE A POPULATION PROGRAM. HOWEVER, THERE ARE A NUMBER OF\\nCURRENT PROJECTS WHICH REFLECT THE PERMISSIVE STANCE OF THE GOV-\\nERNMENT TOWARD FAMILY PLANNING ACTIVITIES. AID IS SUPPORTING A\\nNUMBER OF THESE ACTIVITIES WHICH RELATE TO FERTILITY DECLINE:\\nTHESE INCLUDE THE TRAINING OF MIDWIVES IN FAMILY PLANNING SER-\\nVICE DEVELOPMENT AND ADMINISTRATION; ASSISTING WITH THE FIRST\\nNATIONAL CENSUS; SUPPORTING FAMILY PLANNING CLINICS AT URBAN\\nHEALTH CENTERS AND THE NATIONAL HOSPITAL (CUSS); AND THE DEVELOP-\\nMENT OF EDUCATIONAL MATERIALS AIMED AT INTEGRATING FAMILY PLAN-\\nNING INTO FAMILY HEALTH TRAINING PROGRAMS. THESE ACTIVITIES ARE\\nNOT COSTLY AND CONTRIBUTE SIGNIFICANTLY TO THE PROCESS WHICH\\nWILL EVENTUALLY REQUIRE GURC TO DEVELOP A POPULATION POLICY\\nFAVORING THE AVAILABILITY OF FAMILY PLANNING SERVICES. CONTINUED\\nSUPPORT IS JUSTIFIED IN ORDER TO SUSTAIN THESE FORCES UNTIL A\\nFAVORABLE GOVERNMENT POLICY OPENS THE DOOR FOR MUCH STRONGER\\nSUPPORT.\\n\\nC. POPULATION GROWTH IN CAMEROON IS AT AN ESTIMATED RATE OF 2.2\\nPERCENT WHICH IN URBAN AREAS IS AS HIGH AS 8 PERCENT BECAUSE OF\\nMIGRATION. THE INFLUENCE OF THIS GROWTH UPON NATIONAL DEVELOP-\\nMENT HAS TO DATE BEEN ONLY MARGINAL AT THE NATIONAL LEVEL. EX-\\nPENDITURES FOR SOCIAL SERVICES ARE STEADILY INCREASING, BUT THUS\\nFAR THERE HAVE BEEN NO SIGNIFICANT EFFORTS ON FOOD IMPORTS,\\nDOMESTIC SAVINGS AND THE BALANCE OF PAYMENTS.\\n\\nD. SOCIO-ECONOMIC DEVELOPMENT, ON THE OTHER HAND, HAS FELT THE\\nPRESSURE OF POPULATION GROWTH, PARTICULARLY IN THE RAPIDLY EX-\\nPANDING CITIES. UNEMPLOYMENT LEVELS ARE HIGH, THE PRICE OF FOOD\\nIN THE CITIES IS SOARING, SCHOOLS ARE UNABLE TO ABSORB THE YOUNG,\\nAND MINOR THEFT IS COMMONPLACE. TRADITIONAL FAMILY TIES ARE NOT\\nMAINTAINED BECAUSE OF THE INABILITY TO AFFORD THE EXCHANGE OF\\nGIFTS.\\n\\nE. THE URBAN ENVIRONMENT ALSO REFLECTS THE OVERCROWDED CONDI-\\nTIONS AS WASTE REMOVAL CANNOT KEEP PACE WITH THE NEED. IN NORTH\\nCAMEROON, WHICH HAS SOME OF THE MOST DENSELY POPULATED AREAS OF\\nTHE COUNTRY, THE COMBINATION OF OVERGRAZING AND THE DROUGHT HAS\\nLED TO A DEGENERATION OF LAND AND WATER RESOURCES TO A POINT\\nWHERE IT CAN BE SEEN THAT, IF THIS PROCESS IS NOT REVERSED, NORTH\\nCAMEROON WILL NOT BE ABLE TO SUPPORT ITS PEOPLE AFTER TEN TO\\nLIMITED OFFICIAL USE\\n\\nLIMITED OFFICIAL USE\\n\\nPAGE 03 YAOUND 00757 010739Z\\n\\nFIFTEEN YEARS.\\n\\nF. THE CURRENT POLITICAL CLIMATE IN CAMEROON IS STABLE AND NOT\\nLIKELY TO BE THREATENED BY POPULATION PRESSURE IN THE FORESEEABLE\\nFUTURE. UNEMPLOYMENT AND INFLATION HAVE RESULTED IN INCREASED\\nWORKER DEMANDS AND PETTY CRIME BUT THIS IS NOT LIKELY TO INVOLVE\\nOTHER CENTRAL AFRICAN COUNTRIES. PRESENT GURC THINKING ON POPU-\\nLATION PROBLEMS EMPHASIZES RESETTLEMENT IN NEW DEVELOPMENT AREAS\\nRATHER THAN LIMITATION OF GROWTH TO RELIEVE PRESSURE.\\n\\nG. THE UNITED STATES CAN BEST CONTRIBUTE TO THE EVOLUATION OF A\\nFAVORABLE POPULATION POLICY IN CAMEROON BY CONTINUING TO OFFER\\nA VARIETY OF TYPES OF ASSISTANCE THROUGH A COMBINATION OF GOVERN-\\nMENTAL AND PRIVATE ORGANIZATIONS. THIS APPROACH PERMITS THE APPLI-\\nCATION OF RESOURCES TO SMALL EFFORTS WHERE THE GREATEST POLITI-\\nCAL IMPACT CAN BE EXPECTED, WHILE RESERVING LARGE-SCALE SUPPORT\\nUNTIL SUCH TIME AS THERE IS AN OFFICIAL EFFORT TO DEVELOP NAT-\\nIONAL FAMILY PLANNING SERVICES.\\nSPIRO\\n\\n\\nLIMITED OFFICIAL USE\\n\\n\\n\\n\\nNNN\",\n", - " 'tokens': ['limited',\n", - " 'official',\n", - " 'use',\n", + " 'size': 629,\n", + " 'text': 'UNCLASSIFIED\\n\\nPAGE 01 YAOUND 02835 060848Z\\n\\n12\\nACTION AF-08\\n\\nINFO OCT-01 ISO-00 /009 W\\n --------------------- 028803\\nR 060750Z AUG 76\\nFM AMEMBASSY YAOUNDE\\nTO AMEMBASSY LAGOS\\nSECSTATE WASHDC 9238\\n\\nUNCLAS YAOUNDE 2835\\n\\nLAGOS FOR WACASC FILM OFFICER\\n\\nDEPT FOR AF/EX\\n\\nE.O. 11652: N/A\\nTAGS: AREC, CM\\nSUBJ: WEST AFRICAN FILM CIRCUIT\\n\\nFOLLOWING FILMS POUCHED TO DOUALA AUG. 3:\\n\\n REC D SENT REGISTRATION\\nTHE NEW LAND JULY 20 AUG 3 NO. 2671037\\nBUSTING JULY 30 AUG 3 NO. 2671038\\nSPIRO\\n\\n\\nUNCLASSIFIED\\n\\n\\n\\n\\nNNN',\n", + " 'tokens': ['unclassified',\n", " 'page',\n", " 'yaound',\n", " 'action',\n", - " 'oes',\n", + " 'af',\n", " 'info',\n", " 'oct',\n", - " 'af',\n", " 'iso',\n", - " 'eb',\n", - " 'aid',\n", - " 'mar',\n", + " 'aug',\n", " 'fm',\n", " 'amembassy',\n", " 'yaounde',\n", + " 'amembassy',\n", + " 'lagos',\n", " 'secstate',\n", " 'washdc',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", + " 'unclas',\n", " 'yaounde',\n", - " 'e.o.',\n", + " 'lagos',\n", + " 'wacasc',\n", + " 'film',\n", + " 'officer',\n", + " 'dept',\n", + " 'e.o',\n", " 'tags',\n", - " 'spop',\n", + " 'arec',\n", + " 'cm',\n", " 'subj',\n", - " 'implication',\n", - " 'worldwide',\n", - " 'population',\n", - " 'growth',\n", - " 'united',\n", - " 'states',\n", - " 'security',\n", - " 'overseas',\n", - " 'interests',\n", - " 'refs',\n", - " 'state',\n", - " 'state',\n", - " 'comments',\n", - " 'below',\n", - " 'keyed',\n", - " 'lettered',\n", - " 'sections',\n", - " 'para',\n", - " 'ref',\n", - " \"cameroon's\",\n", - " 'basic',\n", - " 'population',\n", - " 'policy',\n", - " 'cameroon',\n", - " 'clearly',\n", - " 'stated',\n", - " 'population',\n", - " 'policy',\n", - " \"cameroon's\",\n", - " 'present',\n", - " 'practice',\n", - " 'reflects',\n", - " 'influence',\n", - " 'old',\n", - " 'french',\n", - " 'law',\n", - " 'traditional',\n", - " 'desire',\n", - " 'large',\n", - " 'families',\n", - " 'increasing',\n", - " 'awareness',\n", - " 'younger',\n", - " 'cameroonians',\n", - " 'need',\n", - " 'family',\n", - " 'planning',\n", - " 'certain',\n", - " 'extent',\n", - " 'birth',\n", - " 'control',\n", - " 'clear',\n", - " 'legal',\n", - " 'prohibition',\n", - " 'contraceptive',\n", - " 'practices',\n", - " 'references',\n", - " 'earlier',\n", - " 'french',\n", - " 'laws',\n", - " 'leave',\n", - " 'local',\n", - " 'lawyers',\n", - " 'agreement',\n", - " 'cameroon',\n", - " 'pro',\n", - " 'family',\n", - " 'planning',\n", - " 'policy',\n", - " 'legislative',\n", - " 'environment',\n", - " 'conducive',\n", - " 'establishment',\n", - " 'family',\n", - " 'planning',\n", - " 'services',\n", - " 'nevertheless',\n", - " 'cameroon',\n", - " 'pro',\n", - " 'natalist',\n", - " 'leading',\n", - " 'government',\n", - " 'officials',\n", - " 'involved',\n", - " 'family',\n", - " 'planning',\n", - " 'training',\n", - " 'development',\n", - " 'pilot',\n", - " 'family',\n", - " 'planning',\n", - " 'service',\n", - " 'programs',\n", - " 'government',\n", - " 'cameroon',\n", - " 'gurc',\n", - " 'now',\n", - " 'final',\n", - " 'states',\n", - " 'drafting',\n", - " 'fourth',\n", - " 'five',\n", - " 'year',\n", - " 'plan',\n", - " 'earlier',\n", - " 'stages',\n", - " 'drafting',\n", - " 'decided',\n", - " 'create',\n", - " 'interministerial',\n", - " 'commission',\n", - " 'deal',\n", - " 'population',\n", - " 'issues',\n", - " 'fourth',\n", - " 'five',\n", - " 'year',\n", - " 'plan',\n", - " 'emerges',\n", - " 'final',\n", - " 'reveal',\n", - " 'degree',\n", - " 'cameroon',\n", - " 'define',\n", - " 'population',\n", - " 'policy',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'page',\n", - " 'yaound',\n", - " \"cameroon's\",\n", - " 'population',\n", - " 'program',\n", - " 'defined',\n", - " 'such',\n", - " 'cameroon',\n", - " 'population',\n", - " 'program',\n", - " 'number',\n", - " 'current',\n", - " 'projects',\n", - " 'reflect',\n", - " 'permissive',\n", - " 'stance',\n", - " 'gov',\n", - " 'ernment',\n", - " 'toward',\n", - " 'family',\n", - " 'planning',\n", - " 'activities',\n", - " 'aid',\n", - " 'supporting',\n", - " 'number',\n", - " 'activities',\n", - " 'relate',\n", - " 'fertility',\n", - " 'decline',\n", - " 'include',\n", - " 'training',\n", - " 'midwives',\n", - " 'family',\n", - " 'planning',\n", - " 'ser',\n", - " 'vice',\n", - " 'development',\n", - " 'administration',\n", - " 'assisting',\n", - " 'first',\n", - " 'national',\n", - " 'census',\n", - " 'supporting',\n", - " 'family',\n", - " 'planning',\n", - " 'clinics',\n", - " 'urban',\n", - " 'health',\n", - " 'centers',\n", - " 'national',\n", - " 'hospital',\n", - " 'cuss',\n", - " 'develop',\n", - " 'ment',\n", - " 'educational',\n", - " 'materials',\n", - " 'aimed',\n", - " 'integrating',\n", - " 'family',\n", - " 'plan',\n", - " 'ning',\n", - " 'family',\n", - " 'health',\n", - " 'training',\n", - " 'programs',\n", - " 'activities',\n", - " 'costly',\n", - " 'contribute',\n", - " 'significantly',\n", - " 'process',\n", - " 'eventually',\n", - " 'require',\n", - " 'gurc',\n", - " 'develop',\n", - " 'population',\n", - " 'policy',\n", - " 'favoring',\n", - " 'availability',\n", - " 'family',\n", - " 'planning',\n", - " 'services',\n", - " 'continued',\n", - " 'support',\n", - " 'justified',\n", - " 'order',\n", - " 'sustain',\n", - " 'forces',\n", - " 'until',\n", - " 'favorable',\n", - " 'government',\n", - " 'policy',\n", - " 'opens',\n", - " 'door',\n", - " 'much',\n", - " 'stronger',\n", - " 'support',\n", - " 'population',\n", - " 'growth',\n", - " 'cameroon',\n", - " 'estimated',\n", - " 'rate',\n", - " 'percent',\n", - " 'urban',\n", - " 'areas',\n", - " 'high',\n", - " 'percent',\n", - " 'migration',\n", - " 'influence',\n", - " 'growth',\n", - " 'upon',\n", - " 'national',\n", - " 'develop',\n", - " 'ment',\n", - " 'date',\n", - " 'marginal',\n", - " 'national',\n", - " 'level',\n", - " 'ex',\n", - " 'penditures',\n", - " 'social',\n", - " 'services',\n", - " 'steadily',\n", - " 'increasing',\n", - " 'thus',\n", - " 'far',\n", - " 'significant',\n", - " 'efforts',\n", - " 'food',\n", - " 'imports',\n", - " 'domestic',\n", - " 'savings',\n", - " 'balance',\n", - " 'payments',\n", - " 'socio',\n", - " 'economic',\n", - " 'development',\n", - " 'hand',\n", - " 'felt',\n", - " 'pressure',\n", - " 'population',\n", - " 'growth',\n", - " 'particularly',\n", - " 'rapidly',\n", - " 'ex',\n", - " 'panding',\n", - " 'cities',\n", - " 'unemployment',\n", - " 'levels',\n", - " 'high',\n", - " 'price',\n", - " 'food',\n", - " 'cities',\n", - " 'soaring',\n", - " 'schools',\n", - " 'unable',\n", - " 'absorb',\n", - " 'young',\n", - " 'minor',\n", - " 'theft',\n", - " 'commonplace',\n", - " 'traditional',\n", - " 'family',\n", - " 'ties',\n", - " 'maintained',\n", - " 'inability',\n", - " 'afford',\n", - " 'exchange',\n", - " 'gifts',\n", - " 'urban',\n", - " 'environment',\n", - " 'reflects',\n", - " 'overcrowded',\n", - " 'condi',\n", - " 'tions',\n", - " 'waste',\n", - " 'removal',\n", - " 'keep',\n", - " 'pace',\n", - " 'need',\n", - " 'north',\n", - " 'cameroon',\n", - " 'densely',\n", - " 'populated',\n", - " 'areas',\n", - " 'country',\n", - " 'combination',\n", - " 'overgrazing',\n", - " 'drought',\n", - " 'led',\n", - " 'degeneration',\n", - " 'land',\n", - " 'water',\n", - " 'resources',\n", - " 'point',\n", - " 'seen',\n", - " 'process',\n", - " 'reversed',\n", - " 'north',\n", - " 'cameroon',\n", - " 'support',\n", - " 'people',\n", - " 'ten',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'page',\n", - " 'yaound',\n", - " 'fifteen',\n", - " 'years',\n", - " 'current',\n", - " 'political',\n", - " 'climate',\n", - " 'cameroon',\n", - " 'stable',\n", - " 'threatened',\n", - " 'population',\n", - " 'pressure',\n", - " 'foreseeable',\n", - " 'future',\n", - " 'unemployment',\n", - " 'inflation',\n", - " 'resulted',\n", - " 'increased',\n", - " 'worker',\n", - " 'demands',\n", - " 'petty',\n", - " 'crime',\n", - " 'involve',\n", - " 'central',\n", + " 'west',\n", " 'african',\n", - " 'countries',\n", - " 'present',\n", - " 'gurc',\n", - " 'thinking',\n", - " 'popu',\n", - " 'lation',\n", - " 'problems',\n", - " 'emphasizes',\n", - " 'resettlement',\n", + " 'film',\n", + " 'circuit',\n", + " 'following',\n", + " 'films',\n", + " 'pouched',\n", + " 'douala',\n", + " 'aug',\n", + " 'rec',\n", + " 'sent',\n", + " 'registration',\n", " 'new',\n", - " 'development',\n", - " 'areas',\n", - " 'limitation',\n", - " 'growth',\n", - " 'relieve',\n", - " 'pressure',\n", - " 'united',\n", - " 'states',\n", - " 'best',\n", - " 'contribute',\n", - " 'evoluation',\n", - " 'favorable',\n", - " 'population',\n", - " 'policy',\n", - " 'cameroon',\n", - " 'continuing',\n", - " 'offer',\n", - " 'variety',\n", - " 'types',\n", - " 'assistance',\n", - " 'through',\n", - " 'combination',\n", - " 'govern',\n", - " 'mental',\n", - " 'private',\n", - " 'organizations',\n", - " 'approach',\n", - " 'permits',\n", - " 'appli',\n", - " 'cation',\n", - " 'resources',\n", - " 'small',\n", - " 'efforts',\n", - " 'greatest',\n", - " 'politi',\n", - " 'cal',\n", - " 'impact',\n", - " 'expected',\n", - " 'reserving',\n", - " 'large',\n", - " 'scale',\n", - " 'support',\n", - " 'until',\n", - " 'such',\n", - " 'time',\n", - " 'official',\n", - " 'effort',\n", - " 'develop',\n", - " 'nat',\n", - " 'ional',\n", - " 'family',\n", - " 'planning',\n", - " 'services',\n", + " 'land',\n", + " 'july',\n", + " 'aug',\n", + " 'busting',\n", + " 'july',\n", + " 'aug',\n", " 'spiro',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", + " 'unclassified',\n", " 'nnn']}" ] } ], - "prompt_number": 50 + "prompt_number": 21 }, { "cell_type": "code", @@ -972,11 +512,11 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 51 + "prompt_number": 22 }, { "cell_type": "code", - "collapsed": true, + "collapsed": false, "input": [ "print text" ], @@ -989,56 +529,43 @@ "text": [ "CONFIDENTIAL\n", "\n", - "PAGE 01 YAOUND 03269 071404Z\n", + "PAGE 01 YAOUND 04345 121110Z\n", "\n", - "53\n", - "ACTION L-03\n", + "12-R\n", + "ACTION AF-08\n", "\n", - "INFO OCT-01 AF-08 ISO-00 SCS-03 /015 W\n", - " --------------------- 008845\n", - "R 071300Z SEP 76\n", + "INFO OCT-01 ISO-00 ONY-00 /009 W\n", + " --------------------- 076832\n", + "P 121015Z NOV 76\n", "FM AMEMBASSY YAOUNDE\n", - "TO SECSTATE WASHDC 9520\n", - "INFO AMEMBASSY ADDIS ABABA\n", - "AMEMBASSY ABIDJAN\n", - "AMEMBASSY BAMAKO\n", - "AMEMBASSY LIBREVILLE\n", - "AMEMBASSY LOME\n", - "AMEMBASSY NAIROBI\n", - "AMEMBASSY OUAGADOUGOU\n", + "TO SECSTATE WASHDC PRIORITY 206\n", "\n", - "C O N F I D E N T I A L YAOUNDE 3269\n", + "C O N F I D E N T I A L YAOUNDE 4345\n", "\n", - "E.O. 11652: GDS\n", - "TAGS: CFED\n", - "SUBJ: TAW TRANSFERS\n", + "FOR AF/C AND AF/EX\n", "\n", - "REF: (A) STATE 211431 (B) STATE 219012 (NOTAL)\n", + "E.O. 11652: GDS\n", + "TAGS: ACOM, EAIR, MILI, PFOR, CM, US\n", + "SUBJECT: BELLO ON WATTS AND AIRPORT SECURITY\n", "\n", - "1. PER REFTELS, EMBASSY CONTACTED GURC DIRECTOR ECON CONTROLS\n", - "AND EXTERNAL FINANCE BEKE RE POSSIBLE TAW TRANSFERS OVER LAST\n", - "MONTH AND HALF. BEKE SAID THAT THERE HAD BEEN NO ATTEMPTS\n", - "TRANSFER ANY FUNDS OUT OF CAMEROON SINCE OCT 75. HE ALSO\n", - "PROVIDED BREAKDOWN OF ALL TRANSFERS UP TO THAT DATE, LISTED\n", - "AS FOLLOWS:\n", + "REF: (A) STATE 275884; (B) YAOUNDE 4344; (C) STATE 266432\n", "\n", - "5 JUNE 75 99,000 CFA\n", - "9 JULY 75 108,642 CFA\n", - "10 OC 75 100,446 CFA\n", + "1. IN NOV 11 MEETING WTH BOUBA BELLO, PRESIDENCY ASSISTANT\n", + "SECRETARY GENERAL, DCM INQUIRED ABOUT STATUS WATTS REQUEST.\n", + "BELLO SAID EBOUA WAS HANDLING MATTER, BUT HE WOULD ATTEMPT\n", + "OBTAIN PROGRESS REPORT.\n", "\n", - "THESE TRANSFERS FROM TAW ACCOUNT 1209 A SOCIETE GENERALE DE\n", - "BANQUE CAMEROUNAISE IN CAMEROON TO ACCT 35,706-001 P,\n", - "BANQUE INTERNATIONALE DE L'AFRIQUE OCCIDENTALE, IN PARIS.\n", + "2. ON AIRPORT SECURITY, BELLO GAVE DCM COPY CONFIDENTIAL\n", + "LBTTER OF SAME DATE FROM HIM TO FOREIGN MINISTER REFERRING TO\n", + "OFFER OF AIRPORT SECURITY SURVEY AND TRAINING OF CAMEROONIANS\n", + "IN AIRPORT SECURITY. LETTER INDICATES PRESIDENT AHIDJO'S\n", + "INTEREST IN THIS PROJECT AND INSTRUCTS FOREIGN MINISTER TO\n", + "FOLLOW THROUGH.\n", "\n", - "2. WHEREABOUTS THREE INDIVIDUALS MENTIONED REFTEL A\n", - "UNKNOWN.\n", - "CONFIDENTIAL\n", + "3. BELLO INVITED LUNCH 13TH AND IF HE COMES, OPPORTUNITY\n", "\n", - "CONFIDENTIAL\n", - "\n", - "PAGE 02 YAOUND 03269 071404Z\n", - "\n", - "MITHEOEFER\n", + "WILL PRESENT ITSELF FOR FOLLOW THROUGH ON WATTS.\n", + "SPIRO\n", "\n", "\n", "CONFIDENTIAL\n", @@ -1050,7 +577,7 @@ ] } ], - "prompt_number": 53 + "prompt_number": 23 }, { "cell_type": "markdown", @@ -1070,11 +597,11 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 54 + "prompt_number": 24 }, { "cell_type": "code", - "collapsed": false, + "collapsed": true, "input": [ "token_stream.next() # this is what our basic tokenizer returns (we are skipping stop words and numerics by default)" ], @@ -1084,472 +611,62 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 55, + "prompt_number": 25, "text": [ - "['limited',\n", - " 'official',\n", - " 'use',\n", + "['unclassified',\n", " 'page',\n", " 'yaound',\n", " 'action',\n", - " 'oes',\n", + " 'af',\n", " 'info',\n", " 'oct',\n", - " 'af',\n", " 'iso',\n", - " 'eb',\n", - " 'aid',\n", - " 'mar',\n", + " 'aug',\n", " 'fm',\n", " 'amembassy',\n", " 'yaounde',\n", + " 'amembassy',\n", + " 'lagos',\n", " 'secstate',\n", " 'washdc',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", + " 'unclas',\n", " 'yaounde',\n", - " 'e.o.',\n", + " 'lagos',\n", + " 'wacasc',\n", + " 'film',\n", + " 'officer',\n", + " 'dept',\n", + " 'e.o',\n", " 'tags',\n", - " 'spop',\n", + " 'arec',\n", + " 'cm',\n", " 'subj',\n", - " 'implication',\n", - " 'worldwide',\n", - " 'population',\n", - " 'growth',\n", - " 'united',\n", - " 'states',\n", - " 'security',\n", - " 'overseas',\n", - " 'interests',\n", - " 'refs',\n", - " 'state',\n", - " 'state',\n", - " 'comments',\n", - " 'below',\n", - " 'keyed',\n", - " 'lettered',\n", - " 'sections',\n", - " 'para',\n", - " 'ref',\n", - " \"cameroon's\",\n", - " 'basic',\n", - " 'population',\n", - " 'policy',\n", - " 'cameroon',\n", - " 'clearly',\n", - " 'stated',\n", - " 'population',\n", - " 'policy',\n", - " \"cameroon's\",\n", - " 'present',\n", - " 'practice',\n", - " 'reflects',\n", - " 'influence',\n", - " 'old',\n", - " 'french',\n", - " 'law',\n", - " 'traditional',\n", - " 'desire',\n", - " 'large',\n", - " 'families',\n", - " 'increasing',\n", - " 'awareness',\n", - " 'younger',\n", - " 'cameroonians',\n", - " 'need',\n", - " 'family',\n", - " 'planning',\n", - " 'certain',\n", - " 'extent',\n", - " 'birth',\n", - " 'control',\n", - " 'clear',\n", - " 'legal',\n", - " 'prohibition',\n", - " 'contraceptive',\n", - " 'practices',\n", - " 'references',\n", - " 'earlier',\n", - " 'french',\n", - " 'laws',\n", - " 'leave',\n", - " 'local',\n", - " 'lawyers',\n", - " 'agreement',\n", - " 'cameroon',\n", - " 'pro',\n", - " 'family',\n", - " 'planning',\n", - " 'policy',\n", - " 'legislative',\n", - " 'environment',\n", - " 'conducive',\n", - " 'establishment',\n", - " 'family',\n", - " 'planning',\n", - " 'services',\n", - " 'nevertheless',\n", - " 'cameroon',\n", - " 'pro',\n", - " 'natalist',\n", - " 'leading',\n", - " 'government',\n", - " 'officials',\n", - " 'involved',\n", - " 'family',\n", - " 'planning',\n", - " 'training',\n", - " 'development',\n", - " 'pilot',\n", - " 'family',\n", - " 'planning',\n", - " 'service',\n", - " 'programs',\n", - " 'government',\n", - " 'cameroon',\n", - " 'gurc',\n", - " 'now',\n", - " 'final',\n", - " 'states',\n", - " 'drafting',\n", - " 'fourth',\n", - " 'five',\n", - " 'year',\n", - " 'plan',\n", - " 'earlier',\n", - " 'stages',\n", - " 'drafting',\n", - " 'decided',\n", - " 'create',\n", - " 'interministerial',\n", - " 'commission',\n", - " 'deal',\n", - " 'population',\n", - " 'issues',\n", - " 'fourth',\n", - " 'five',\n", - " 'year',\n", - " 'plan',\n", - " 'emerges',\n", - " 'final',\n", - " 'reveal',\n", - " 'degree',\n", - " 'cameroon',\n", - " 'define',\n", - " 'population',\n", - " 'policy',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'page',\n", - " 'yaound',\n", - " \"cameroon's\",\n", - " 'population',\n", - " 'program',\n", - " 'defined',\n", - " 'such',\n", - " 'cameroon',\n", - " 'population',\n", - " 'program',\n", - " 'number',\n", - " 'current',\n", - " 'projects',\n", - " 'reflect',\n", - " 'permissive',\n", - " 'stance',\n", - " 'gov',\n", - " 'ernment',\n", - " 'toward',\n", - " 'family',\n", - " 'planning',\n", - " 'activities',\n", - " 'aid',\n", - " 'supporting',\n", - " 'number',\n", - " 'activities',\n", - " 'relate',\n", - " 'fertility',\n", - " 'decline',\n", - " 'include',\n", - " 'training',\n", - " 'midwives',\n", - " 'family',\n", - " 'planning',\n", - " 'ser',\n", - " 'vice',\n", - " 'development',\n", - " 'administration',\n", - " 'assisting',\n", - " 'first',\n", - " 'national',\n", - " 'census',\n", - " 'supporting',\n", - " 'family',\n", - " 'planning',\n", - " 'clinics',\n", - " 'urban',\n", - " 'health',\n", - " 'centers',\n", - " 'national',\n", - " 'hospital',\n", - " 'cuss',\n", - " 'develop',\n", - " 'ment',\n", - " 'educational',\n", - " 'materials',\n", - " 'aimed',\n", - " 'integrating',\n", - " 'family',\n", - " 'plan',\n", - " 'ning',\n", - " 'family',\n", - " 'health',\n", - " 'training',\n", - " 'programs',\n", - " 'activities',\n", - " 'costly',\n", - " 'contribute',\n", - " 'significantly',\n", - " 'process',\n", - " 'eventually',\n", - " 'require',\n", - " 'gurc',\n", - " 'develop',\n", - " 'population',\n", - " 'policy',\n", - " 'favoring',\n", - " 'availability',\n", - " 'family',\n", - " 'planning',\n", - " 'services',\n", - " 'continued',\n", - " 'support',\n", - " 'justified',\n", - " 'order',\n", - " 'sustain',\n", - " 'forces',\n", - " 'until',\n", - " 'favorable',\n", - " 'government',\n", - " 'policy',\n", - " 'opens',\n", - " 'door',\n", - " 'much',\n", - " 'stronger',\n", - " 'support',\n", - " 'population',\n", - " 'growth',\n", - " 'cameroon',\n", - " 'estimated',\n", - " 'rate',\n", - " 'percent',\n", - " 'urban',\n", - " 'areas',\n", - " 'high',\n", - " 'percent',\n", - " 'migration',\n", - " 'influence',\n", - " 'growth',\n", - " 'upon',\n", - " 'national',\n", - " 'develop',\n", - " 'ment',\n", - " 'date',\n", - " 'marginal',\n", - " 'national',\n", - " 'level',\n", - " 'ex',\n", - " 'penditures',\n", - " 'social',\n", - " 'services',\n", - " 'steadily',\n", - " 'increasing',\n", - " 'thus',\n", - " 'far',\n", - " 'significant',\n", - " 'efforts',\n", - " 'food',\n", - " 'imports',\n", - " 'domestic',\n", - " 'savings',\n", - " 'balance',\n", - " 'payments',\n", - " 'socio',\n", - " 'economic',\n", - " 'development',\n", - " 'hand',\n", - " 'felt',\n", - " 'pressure',\n", - " 'population',\n", - " 'growth',\n", - " 'particularly',\n", - " 'rapidly',\n", - " 'ex',\n", - " 'panding',\n", - " 'cities',\n", - " 'unemployment',\n", - " 'levels',\n", - " 'high',\n", - " 'price',\n", - " 'food',\n", - " 'cities',\n", - " 'soaring',\n", - " 'schools',\n", - " 'unable',\n", - " 'absorb',\n", - " 'young',\n", - " 'minor',\n", - " 'theft',\n", - " 'commonplace',\n", - " 'traditional',\n", - " 'family',\n", - " 'ties',\n", - " 'maintained',\n", - " 'inability',\n", - " 'afford',\n", - " 'exchange',\n", - " 'gifts',\n", - " 'urban',\n", - " 'environment',\n", - " 'reflects',\n", - " 'overcrowded',\n", - " 'condi',\n", - " 'tions',\n", - " 'waste',\n", - " 'removal',\n", - " 'keep',\n", - " 'pace',\n", - " 'need',\n", - " 'north',\n", - " 'cameroon',\n", - " 'densely',\n", - " 'populated',\n", - " 'areas',\n", - " 'country',\n", - " 'combination',\n", - " 'overgrazing',\n", - " 'drought',\n", - " 'led',\n", - " 'degeneration',\n", - " 'land',\n", - " 'water',\n", - " 'resources',\n", - " 'point',\n", - " 'seen',\n", - " 'process',\n", - " 'reversed',\n", - " 'north',\n", - " 'cameroon',\n", - " 'support',\n", - " 'people',\n", - " 'ten',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", - " 'page',\n", - " 'yaound',\n", - " 'fifteen',\n", - " 'years',\n", - " 'current',\n", - " 'political',\n", - " 'climate',\n", - " 'cameroon',\n", - " 'stable',\n", - " 'threatened',\n", - " 'population',\n", - " 'pressure',\n", - " 'foreseeable',\n", - " 'future',\n", - " 'unemployment',\n", - " 'inflation',\n", - " 'resulted',\n", - " 'increased',\n", - " 'worker',\n", - " 'demands',\n", - " 'petty',\n", - " 'crime',\n", - " 'involve',\n", - " 'central',\n", + " 'west',\n", " 'african',\n", - " 'countries',\n", - " 'present',\n", - " 'gurc',\n", - " 'thinking',\n", - " 'popu',\n", - " 'lation',\n", - " 'problems',\n", - " 'emphasizes',\n", - " 'resettlement',\n", + " 'film',\n", + " 'circuit',\n", + " 'following',\n", + " 'films',\n", + " 'pouched',\n", + " 'douala',\n", + " 'aug',\n", + " 'rec',\n", + " 'sent',\n", + " 'registration',\n", " 'new',\n", - " 'development',\n", - " 'areas',\n", - " 'limitation',\n", - " 'growth',\n", - " 'relieve',\n", - " 'pressure',\n", - " 'united',\n", - " 'states',\n", - " 'best',\n", - " 'contribute',\n", - " 'evoluation',\n", - " 'favorable',\n", - " 'population',\n", - " 'policy',\n", - " 'cameroon',\n", - " 'continuing',\n", - " 'offer',\n", - " 'variety',\n", - " 'types',\n", - " 'assistance',\n", - " 'through',\n", - " 'combination',\n", - " 'govern',\n", - " 'mental',\n", - " 'private',\n", - " 'organizations',\n", - " 'approach',\n", - " 'permits',\n", - " 'appli',\n", - " 'cation',\n", - " 'resources',\n", - " 'small',\n", - " 'efforts',\n", - " 'greatest',\n", - " 'politi',\n", - " 'cal',\n", - " 'impact',\n", - " 'expected',\n", - " 'reserving',\n", - " 'large',\n", - " 'scale',\n", - " 'support',\n", - " 'until',\n", - " 'such',\n", - " 'time',\n", - " 'official',\n", - " 'effort',\n", - " 'develop',\n", - " 'nat',\n", - " 'ional',\n", - " 'family',\n", - " 'planning',\n", - " 'services',\n", + " 'land',\n", + " 'july',\n", + " 'aug',\n", + " 'busting',\n", + " 'july',\n", + " 'aug',\n", " 'spiro',\n", - " 'limited',\n", - " 'official',\n", - " 'use',\n", + " 'unclassified',\n", " 'nnn']" ] } ], - "prompt_number": 55 + "prompt_number": 25 }, { "cell_type": "markdown", @@ -1571,7 +688,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 57 + "prompt_number": 26 }, { "cell_type": "code", @@ -1582,11 +699,11 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 58 + "prompt_number": 27 }, { "cell_type": "code", - "collapsed": false, + "collapsed": true, "input": [ "stream_nltk.next()" ], @@ -1596,21 +713,27 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 59, + "prompt_number": 28, "text": [ - "['UNCLASSIFIED',\n", + "['CONFIDENTIAL',\n", " 'PAGE',\n", " '01',\n", - " 'ZAGREB',\n", - " '00168',\n", - " '060727Z',\n", - " '11',\n", + " 'ZURICH',\n", + " '00021',\n", + " '141459Z',\n", + " '42',\n", " 'ACTION',\n", - " 'VO-03',\n", + " 'MC-02',\n", " 'INFO',\n", " 'OCT-01',\n", + " 'EUR-12',\n", " 'ISO-00',\n", - " '/004',\n", + " 'PM-04',\n", + " 'SS-15',\n", + " 'SP-02',\n", + " 'EB-07',\n", + " 'AF-06',\n", + " '/049',\n", " 'W',\n", " '--',\n", " '--',\n", @@ -1623,67 +746,316 @@ " '--',\n", " '--',\n", " '-',\n", - " '027431',\n", + " '093901',\n", " 'R',\n", - " '051100Z',\n", - " 'MAR',\n", + " '141030Z',\n", + " 'JAN',\n", " '76',\n", " 'FM',\n", " 'AMCONSUL',\n", - " 'ZAGREB',\n", + " 'ZURICH',\n", " 'TO',\n", " 'SECSTATE',\n", " 'WASHDC',\n", - " '3607',\n", - " 'UNCLAS',\n", - " 'ZAGREB',\n", - " '168',\n", + " '2221',\n", + " 'INFO',\n", + " 'AMEMBASSY',\n", + " 'BERN',\n", + " 'AMEMBASSY',\n", + " 'NOUAKCHOTT',\n", + " 'C',\n", + " 'O',\n", + " 'N',\n", + " 'F',\n", + " 'I',\n", + " 'D',\n", + " 'E',\n", + " 'N',\n", + " 'T',\n", + " 'I',\n", + " 'A',\n", + " 'L',\n", + " 'ZURICH',\n", + " '0021',\n", + " 'STADIS//////////////////////////////////////////',\n", " 'E.O.',\n", " '11652',\n", " ':',\n", - " 'N/A',\n", + " 'GDS',\n", " 'TAGS',\n", " ':',\n", - " 'CVIS',\n", - " 'YO',\n", + " 'MASS',\n", + " ',',\n", + " 'MR',\n", " 'SUBJECT',\n", " ':',\n", - " 'FS-258',\n", - " '(',\n", - " 'PART',\n", - " 'I',\n", - " ')',\n", - " 'REF',\n", - " ':',\n", - " 'STATE',\n", - " '48781',\n", - " 'FS-258',\n", - " 'PART',\n", - " 'I',\n", - " '(',\n", - " 'SEMIANNUAL',\n", - " 'REPORT',\n", + " 'REQUEST',\n", + " 'FOR',\n", + " 'INFORMATION',\n", + " 'ON',\n", + " 'PURCHASE',\n", " 'OF',\n", - " 'NONIMMIGRANT',\n", - " 'VISAS',\n", - " 'ISSUED',\n", + " 'ARMS',\n", " 'AND',\n", - " 'REFUSED',\n", + " 'WEAPONS',\n", + " 'IN',\n", + " 'U.S',\n", + " '1.',\n", + " 'MR.',\n", + " 'WERNER',\n", + " 'ALTENBACH',\n", + " ',',\n", + " 'WHO',\n", + " 'IDENTIFIED',\n", + " 'HIMSELF',\n", + " 'AS',\n", + " 'A',\n", + " 'SWISS',\n", + " 'NATIONAL',\n", + " 'AND',\n", + " 'A',\n", + " 'REPRESENTATIVE',\n", + " 'OF',\n", + " 'THE',\n", + " 'ZURICH',\n", + " 'OFFICE',\n", + " 'OF',\n", + " 'SOCIETE',\n", + " 'NATIONALE',\n", + " 'INDUSTRIELLE',\n", + " 'ET',\n", + " 'MINIERE',\n", + " 'DE',\n", + " 'LA',\n", + " 'REPUBLIQUE',\n", + " 'ISLAMIQUE',\n", + " 'DE',\n", + " 'MAURITANI',\n", + " '(',\n", + " 'SNIM',\n", " ')',\n", + " ',',\n", + " 'CALLED',\n", + " 'AT',\n", + " 'CONGEN',\n", + " 'JANUARY',\n", + " '13.',\n", + " 'ALTENBACH',\n", + " 'INDICATED',\n", + " 'THAT',\n", + " 'HIS',\n", + " 'OFFICE',\n", + " 'IS',\n", + " 'LOCATED',\n", + " 'AT',\n", + " '15',\n", + " 'WITIKONERSTRASSE',\n", + " 'AND',\n", + " 'HEADED',\n", + " 'BY',\n", + " 'SIEGFRIED',\n", + " 'WEISSKOPF',\n", + " ',',\n", + " 'ALSO',\n", + " 'A',\n", + " 'SWISS',\n", + " 'NATIONAL.',\n", + " '2.',\n", + " 'ALTENBACH',\n", + " 'STATED',\n", + " 'THAT',\n", + " 'THE',\n", + " 'OFFICE',\n", + " 'NORMALLY',\n", + " 'IS',\n", + " 'A',\n", + " 'MINING',\n", + " 'EQUIPMENT',\n", + " 'PURCHASING',\n", + " 'AGENCY',\n", + " 'FOR',\n", + " 'THE',\n", + " 'GOVERNMENT',\n", + " 'CONTROLLED',\n", + " 'SNIM',\n", + " ',',\n", + " 'BUT',\n", " 'HAS',\n", + " 'RECENTLY',\n", " 'BEEN',\n", - " 'SENT',\n", - " 'MARCH',\n", - " '5',\n", + " 'INSTRUCTED',\n", + " 'TO',\n", + " 'ARRANGE',\n", + " 'FOR',\n", + " 'CONFIDENTIAL',\n", + " 'PURCHASE',\n", + " 'OF',\n", + " 'SEVERAL',\n", + " 'HUNDRED',\n", + " 'MACHINE',\n", + " 'GUNS',\n", + " 'AND',\n", + " 'MORTARS',\n", + " 'WITH',\n", + " 'APPROPRIATE',\n", + " 'AMMUNITION',\n", + " 'FOR',\n", + " 'THE',\n", + " 'MAURITANIAN',\n", + " 'GOVERNMENT.',\n", + " 'ARMS',\n", + " 'ALLEGEDLY',\n", + " 'REQUIRED',\n", + " 'BECAUSE',\n", + " 'OF',\n", + " 'QUOTE',\n", + " 'DANGEROUS',\n", + " 'SITUATION',\n", + " 'UNQUOTE',\n", + " 'CURRENTLY',\n", + " 'EXISTING',\n", + " 'IN',\n", + " 'MAURITANIA.',\n", + " 'ALTENBACH',\n", + " 'WAS',\n", + " 'VAGUE',\n", + " 'ABOUT',\n", + " 'EXACT',\n", + " 'NUMBERS',\n", " ',',\n", - " '1976.',\n", - " 'KAISER',\n", - " 'UNCLASSIFIED',\n", + " 'CALIBER',\n", + " 'TYPE',\n", + " ',',\n", + " 'ETC.',\n", + " 'OF',\n", + " 'WEAPONS',\n", + " 'AND',\n", + " 'AMMUNITION',\n", + " 'REQUIRED',\n", + " 'AND',\n", + " 'STRESSED',\n", + " 'DESIRE',\n", + " 'THAT',\n", + " 'INQUIRY',\n", + " 'BE',\n", + " 'TREATED',\n", + " 'IN',\n", + " 'CONFIDENCE.',\n", + " '3.',\n", + " 'COMMERCIAL',\n", + " 'OFFICER',\n", + " 'EXPLAINED',\n", + " 'THAT',\n", + " 'THIS',\n", + " 'CONGEN',\n", + " 'IS',\n", + " 'NOT',\n", + " 'NORMALLY',\n", + " 'INVOLVED',\n", + " 'IN',\n", + " 'ARMS',\n", + " 'TRANSACTIONS',\n", + " 'AND',\n", + " 'THAT',\n", + " 'THEREFORE',\n", + " 'WE',\n", + " 'CONFIDENTIAL',\n", + " 'CONFIDENTIAL',\n", + " 'PAGE',\n", + " '02',\n", + " 'ZURICH',\n", + " '00021',\n", + " '141459Z',\n", + " 'WOULD',\n", + " 'HAVE',\n", + " 'TO',\n", + " 'LOOK',\n", + " 'INTO',\n", + " 'HOW',\n", + " 'SUCH',\n", + " 'MATTERS',\n", + " 'ARE',\n", + " 'HANDLED.',\n", + " 'HE',\n", + " 'ADDED',\n", + " 'COMMENT',\n", + " 'THAT',\n", + " 'ALL',\n", + " 'ARMS',\n", + " 'AND',\n", + " 'WEAPONS',\n", + " 'EXPORTED',\n", + " 'FROM',\n", + " 'U.S.',\n", + " 'ARE',\n", + " 'SUBJECT',\n", + " 'TO',\n", + " 'MUNITIONS',\n", + " 'CONTROL',\n", + " 'REGULATIONS.',\n", + " 'ALTENBACH',\n", + " 'INDICATED',\n", + " 'HE',\n", + " 'WILL',\n", + " 'CALL',\n", + " 'AGAIN',\n", + " 'IN',\n", + " 'A',\n", + " 'FEW',\n", + " 'DAYS',\n", + " 'FOR',\n", + " 'ADDITIONAL',\n", + " 'INFORMATION.',\n", + " '4.',\n", + " 'CONGEN',\n", + " 'HAS',\n", + " 'NO',\n", + " 'ADDITIONAL',\n", + " 'INFORMATION',\n", + " 'ON',\n", + " 'SNIM',\n", + " ',',\n", + " 'WEISSKOPF',\n", + " ',',\n", + " 'OR',\n", + " 'ALTEN-',\n", + " 'BACH.',\n", + " 'SNIM',\n", + " 'OFFICE',\n", + " 'IS',\n", + " 'NOT',\n", + " 'LISTED',\n", + " 'IN',\n", + " 'LOCAL',\n", + " 'TELEPHONE',\n", + " 'DIRECTORY',\n", + " 'THOUGH',\n", + " 'THERE',\n", + " 'IS',\n", + " 'A',\n", + " 'LISTING',\n", + " 'FOR',\n", + " 'SIEGFRIED',\n", + " 'WEISSKOPF-PURCHASING',\n", + " 'AGENCY.',\n", + " '5.',\n", + " 'WOULD',\n", + " 'APPRECIATE',\n", + " 'DEPARTMENT',\n", + " \"'S\",\n", + " 'GUIDANCE',\n", + " 'ON',\n", + " 'FURTHER',\n", + " 'RESPONSE',\n", + " 'TO',\n", + " 'ALTENBACH.',\n", + " 'NELSON',\n", + " 'CONFIDENTIAL',\n", " 'NNN']" ] } ], - "prompt_number": 59 + "prompt_number": 28 }, { "cell_type": "markdown", @@ -1719,7 +1091,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 62 + "prompt_number": 29 }, { "cell_type": "code", @@ -1733,7 +1105,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 69 + "prompt_number": 41 }, { "cell_type": "code", @@ -1759,7 +1131,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 70 + "prompt_number": 42 }, { "cell_type": "code", @@ -1777,16 +1149,16 @@ "stream": "stdout", "text": [ "Compactification done. self.bit_precision_required = 14\n", - "collisions = 0, vocab_size = 14469\n", + "collisions = 0, vocab_size = 14476\n", "All collisions resolved\n" ] } ], - "prompt_number": 71 + "prompt_number": 43 }, { "cell_type": "code", - "collapsed": true, + "collapsed": false, "input": [ "sff.to_frame().sort_index(by='doc_fraction', ascending=False).head(10)" ], @@ -1814,63 +1186,63 @@ " \n", " \n", " fm\n", - " 828\n", - " 844\n", - " 0.849231\n", + " 829\n", + " 845\n", + " 0.849385\n", " \n", " \n", - " page\n", - " 828\n", - " 1324\n", - " 0.849231\n", + " action\n", + " 829\n", + " 907\n", + " 0.849385\n", " \n", " \n", - " info\n", - " 828\n", - " 1430\n", - " 0.849231\n", + " page\n", + " 829\n", + " 1325\n", + " 0.849385\n", " \n", " \n", - " iso\n", - " 828\n", - " 852\n", - " 0.849231\n", + " oct\n", + " 829\n", + " 973\n", + " 0.849385\n", " \n", " \n", - " action\n", - " 828\n", - " 906\n", - " 0.849231\n", + " info\n", + " 829\n", + " 1432\n", + " 0.849385\n", " \n", " \n", - " oct\n", + " iso\n", " 828\n", - " 972\n", - " 0.849231\n", + " 852\n", + " 0.848361\n", " \n", " \n", " secstate\n", - " 826\n", - " 853\n", - " 0.847179\n", + " 827\n", + " 854\n", + " 0.847336\n", " \n", " \n", " washdc\n", - " 823\n", - " 906\n", - " 0.844103\n", + " 824\n", + " 907\n", + " 0.844262\n", " \n", " \n", " nnn\n", - " 818\n", - " 829\n", - " 0.838974\n", + " 819\n", + " 830\n", + " 0.839139\n", " \n", " \n", " tags\n", - " 781\n", - " 784\n", - " 0.801026\n", + " 782\n", + " 785\n", + " 0.801230\n", " \n", " \n", "\n", @@ -1879,26 +1251,26 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 74, + "prompt_number": 44, "text": [ " doc_freq token_score doc_fraction\n", "token \n", - "fm 828 844 0.849231\n", - "page 828 1324 0.849231\n", - "info 828 1430 0.849231\n", - "iso 828 852 0.849231\n", - "action 828 906 0.849231\n", - "oct 828 972 0.849231\n", - "secstate 826 853 0.847179\n", - "washdc 823 906 0.844103\n", - "nnn 818 829 0.838974\n", - "tags 781 784 0.801026\n", + "fm 829 845 0.849385\n", + "action 829 907 0.849385\n", + "page 829 1325 0.849385\n", + "oct 829 973 0.849385\n", + "info 829 1432 0.849385\n", + "iso 828 852 0.848361\n", + "secstate 827 854 0.847336\n", + "washdc 824 907 0.844262\n", + "nnn 819 830 0.839139\n", + "tags 782 785 0.801230\n", "\n", "[10 rows x 3 columns]" ] } ], - "prompt_number": 74 + "prompt_number": 44 }, { "cell_type": "markdown", @@ -1918,11 +1290,11 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 78 + "prompt_number": 45 }, { "cell_type": "code", - "collapsed": true, + "collapsed": false, "input": [ "#look at some of the words\n", "topic_words = lda.pr_token_g_topic.loc[:,'topic_12'].order(ascending=False).index[:10]\n", @@ -1951,64 +1323,64 @@ " \n", " \n", " \n", - " dans\n", - " 2\n", - " 4\n", - " 0.002051\n", - " \n", - " \n", - " phon\n", + " organism.\n", " 1\n", " 1\n", - " 0.001026\n", + " 0.001025\n", " \n", " \n", - " fallout\n", - " 2\n", - " 2\n", - " 0.002051\n", - " \n", - " \n", - " lagdo\n", + " awacas\n", " 1\n", " 1\n", - " 0.001026\n", + " 0.001025\n", " \n", " \n", - " concocted\n", + " disgrace\n", " 1\n", " 1\n", - " 0.001026\n", + " 0.001025\n", " \n", " \n", - " magistrate\n", + " believer\n", " 1\n", " 1\n", - " 0.001026\n", + " 0.001025\n", " \n", " \n", - " inks\n", - " 1\n", - " 1\n", - " 0.001026\n", + " solicited\n", + " 2\n", + " 2\n", + " 0.002049\n", " \n", " \n", - " twisting\n", + " middle\n", + " 7\n", + " 9\n", + " 0.007172\n", + " \n", + " \n", + " perisin\n", " 1\n", " 1\n", - " 0.001026\n", + " 0.001025\n", " \n", " \n", - " centralized\n", - " 1\n", + " idi\n", + " 2\n", + " 2\n", + " 0.002049\n", + " \n", + " \n", + " ''cameroon\n", " 1\n", - " 0.001026\n", + " 2\n", + " 0.001025\n", " \n", " \n", - " rates\n", + " commemorative\n", + " 3\n", " 4\n", - " 4\n", - " 0.004103\n", + " 0.003074\n", " \n", " \n", "\n", @@ -2017,26 +1389,26 @@ ], "metadata": {}, "output_type": "pyout", - "prompt_number": 80, + "prompt_number": 46, "text": [ - " doc_freq token_score doc_fraction\n", - "token \n", - "dans 2 4 0.002051\n", - "phon 1 1 0.001026\n", - "fallout 2 2 0.002051\n", - "lagdo 1 1 0.001026\n", - "concocted 1 1 0.001026\n", - "magistrate 1 1 0.001026\n", - "inks 1 1 0.001026\n", - "twisting 1 1 0.001026\n", - "centralized 1 1 0.001026\n", - "rates 4 4 0.004103\n", + " doc_freq token_score doc_fraction\n", + "token \n", + "organism. 1 1 0.001025\n", + "awacas 1 1 0.001025\n", + "disgrace 1 1 0.001025\n", + "believer 1 1 0.001025\n", + "solicited 2 2 0.002049\n", + "middle 7 9 0.007172\n", + "perisin 1 1 0.001025\n", + "idi 2 2 0.002049\n", + "''cameroon 1 2 0.001025\n", + "commemorative 3 4 0.003074\n", "\n", "[10 rows x 3 columns]" ] } ], - "prompt_number": 80 + "prompt_number": 46 }, { "cell_type": "code", @@ -2054,308 +1426,308 @@ "text": [ "========== Printing top 10 tokens in every topic==========\n", "------------------------------\n", - "Topic name: topic_00. P[topic_00] = 0.0275\n", - " topic_00 doc_freq\n", - "token \n", - "reactio 0.000416 1\n", - "shovels 0.000317 1\n", - "swallowed 0.000235 1\n", - "hidroelektra 0.000206 1\n", - "raise 0.000205 18\n", - "braille 0.000190 2\n", - "rhone 0.000182 1\n", - "commodity 0.000176 3\n", - "notion 0.000175 1\n", - "equip 0.000173 1\n", + "Topic name: topic_00. P[topic_00] = 0.0271\n", + " topic_00 doc_freq\n", + "token \n", + "protection. 0.020413 1\n", + "genoa 0.019496 2\n", + "device 0.001991 3\n", + "glebe 0.001038 1\n", + "uninformed 0.000777 1\n", + "keen 0.000718 3\n", + "forgiving 0.000718 1\n", + "premature 0.000718 6\n", + "columbia 0.000718 3\n", + "assit 0.000718 1\n", "\n", "------------------------------\n", - "Topic name: topic_01. P[topic_01] = 0.0274\n", - " topic_01 doc_freq\n", - "token \n", - "braille 0.000417 2\n", - "swallowed 0.000241 1\n", - "hidroelektra 0.000212 1\n", - "raise 0.000209 18\n", - "reactio 0.000194 1\n", - "rhone 0.000187 1\n", - "commodity 0.000183 3\n", - "notion 0.000178 1\n", - "compli 0.000175 1\n", - "congratulating 0.000168 2\n", + "Topic name: topic_01. P[topic_01] = 0.0278\n", + " topic_01 doc_freq\n", + "token \n", + "tioned 0.063519 1\n", + "belabored 0.001077 1\n", + "saturday's 0.000728 1\n", + "women's 0.000707 3\n", + "nehile 0.000462 1\n", + "lake 0.000457 2\n", + "unserious 0.000386 2\n", + "expects 0.000373 14\n", + "meter 0.000373 1\n", + "manufactured 0.000373 7\n", "\n", "------------------------------\n", - "Topic name: topic_02. P[topic_02] = 0.0374\n", - " topic_02 doc_freq\n", - "token \n", - "pavlowski 0.019693 1\n", - "oexo 0.017855 1\n", - "amcit 0.013522 3\n", - "africa... 0.012329 1\n", - "failed 0.010358 13\n", - "island 0.008794 7\n", - "untrue 0.008106 2\n", - "curriculum 0.007573 3\n", - "kissinger 0.006969 35\n", - "broadcasting 0.006956 3\n", + "Topic name: topic_02. P[topic_02] = 0.0392\n", + " topic_02 doc_freq\n", + "token \n", + "agreemfqt 0.074200 1\n", + "commences 0.032733 1\n", + "ironed 0.027652 1\n", + "cremation 0.023041 9\n", + "farewell 0.017348 10\n", + "plaza 0.016520 1\n", + "zdovc 0.015943 2\n", + "justify 0.015255 3\n", + "reliable 0.013441 4\n", + "complained 0.013423 2\n", "\n", "------------------------------\n", - "Topic name: topic_03. P[topic_03] = 0.0302\n", - " topic_03 doc_freq\n", - "token \n", - "loulou 0.047252 2\n", - "national 0.014237 83\n", - "woman 0.011837 3\n", - "jasenovac 0.004098 1\n", - "zimbabwe 0.000637 4\n", - "hidroelektra 0.000387 1\n", - "bozic 0.000367 1\n", - "edward 0.000346 4\n", - "rhone 0.000341 1\n", - "hans 0.000325 1\n", + "Topic name: topic_03. P[topic_03] = 0.0261\n", + " topic_03 doc_freq\n", + "token \n", + "unusual 0.018949 4\n", + "belabored 0.000455 1\n", + "glebe 0.000421 1\n", + "dow 0.000277 5\n", + "predicting 0.000261 1\n", + "eximbank 0.000210 4\n", + "unserious 0.000200 2\n", + "markings 0.000196 1\n", + "opera 0.000191 2\n", + "pri 0.000185 1\n", "\n", "------------------------------\n", - "Topic name: topic_04. P[topic_04] = 0.2330\n", + "Topic name: topic_04. P[topic_04] = 0.0278\n", " topic_04 doc_freq\n", "token \n", - "p. 0.069109 1\n", - "decrease 0.052638 1\n", - "tgen 0.047721 2\n", - "ran 0.032472 2\n", - "noting 0.032054 9\n", - "pdip 0.024982 31\n", - "fluent 0.023705 1\n", - "revolutionary 0.015519 10\n", - "denues 0.014742 1\n", - "bilateral 0.013113 15\n", + "bamileke 0.023252 1\n", + "'abstain 0.018596 1\n", + "city. 0.010083 1\n", + "solicit 0.010066 1\n", + "insists 0.006491 1\n", + "belabored 0.000395 1\n", + "nfumu 0.000355 1\n", + "professionnel 0.000355 1\n", + "longchamp 0.000355 1\n", + "achievable 0.000355 2\n", "\n", "------------------------------\n", - "Topic name: topic_05. P[topic_05] = 0.0278\n", + "Topic name: topic_05. P[topic_05] = 0.0264\n", " topic_05 doc_freq\n", "token \n", - "reactionary 0.010167 1\n", - "hidroelektra 0.000474 1\n", - "raise 0.000457 18\n", - "plitvice 0.000251 2\n", - "installs 0.000251 1\n", - "ngapona 0.000251 1\n", - "noire 0.000251 2\n", - "swallowed 0.000233 1\n", - "reactio 0.000189 1\n", - "braille 0.000188 2\n", + "searching 0.028985 2\n", + "belabored 0.000447 1\n", + "glebe 0.000414 1\n", + "cw 0.000414 1\n", + "dow 0.000272 5\n", + "renunciation 0.000271 3\n", + "predicting 0.000261 1\n", + "catching 0.000206 1\n", + "communica 0.000206 1\n", + "emphasized 0.000204 16\n", "\n", "------------------------------\n", - "Topic name: topic_06. P[topic_06] = 0.0398\n", - " topic_06 doc_freq\n", - "token \n", - "enought 0.052010 1\n", - "siegfried 0.034106 1\n", - "indoor 0.024230 1\n", - "unesco' 0.022533 1\n", - "familiarity 0.021430 3\n", - "quadrennial 0.015078 1\n", - "matter. 0.013456 1\n", - "dorothy 0.011053 1\n", - "tied 0.008114 6\n", - "recog 0.007351 1\n", + "Topic name: topic_06. P[topic_06] = 0.0255\n", + " topic_06 doc_freq\n", + "token \n", + "belabored 0.000470 1\n", + "glebe 0.000441 1\n", + "dow 0.000287 5\n", + "predicting 0.000271 1\n", + "unserious 0.000206 2\n", + "opera 0.000197 2\n", + "pri 0.000190 1\n", + "cross 0.000190 4\n", + "mastering 0.000190 1\n", + "oai 0.000180 1\n", "\n", "------------------------------\n", - "Topic name: topic_07. P[topic_07] = 0.1275\n", - " topic_07 doc_freq\n", - "token \n", - "copies 0.018517 22\n", - "giamo 0.018129 2\n", - "finished 0.016855 1\n", - "signalled 0.015431 1\n", - "engagements 0.013907 2\n", - "loose 0.013809 1\n", - "yours 0.013679 1\n", - "disgrace 0.013630 1\n", - "compactness 0.011646 1\n", - "adquate 0.011287 1\n", + "Topic name: topic_07. P[topic_07] = 0.1819\n", + " topic_07 doc_freq\n", + "token \n", + "noforn 0.080968 2\n", + "preamble 0.061456 2\n", + "father's 0.055679 2\n", + "took 0.037215 25\n", + "tankers 0.025041 1\n", + "capt 0.020269 3\n", + "treatment 0.017772 13\n", + "giamo 0.016974 2\n", + "dislike 0.014577 1\n", + "neslen 0.014133 1\n", "\n", "------------------------------\n", - "Topic name: topic_08. P[topic_08] = 0.0306\n", + "Topic name: topic_08. P[topic_08] = 0.0393\n", " topic_08 doc_freq\n", "token \n", - "visiting 0.020601 27\n", - "cerned 0.017167 1\n", - "thrid 0.013016 1\n", - "inbound 0.007364 1\n", - "slavko 0.005142 2\n", - "clearance 0.003495 8\n", - "cedures 0.002398 1\n", - "kilometer 0.002172 2\n", - "chiefs 0.001901 1\n", - "constantly 0.001358 3\n", + "bership 0.207765 1\n", + "pronounce 0.028863 1\n", + "organism. 0.025596 1\n", + "derive 0.016587 1\n", + "croatia' 0.013174 1\n", + "loud 0.010361 1\n", + "chasse 0.005601 1\n", + "earliest 0.003005 1\n", + "jews 0.002849 2\n", + "republique 0.002829 2\n", "\n", "------------------------------\n", - "Topic name: topic_09. P[topic_09] = 0.0274\n", - " topic_09 doc_freq\n", - "token \n", - "swallowed 0.000242 1\n", - "hidroelektra 0.000213 1\n", - "raise 0.000209 18\n", - "reactio 0.000194 1\n", - "braille 0.000193 2\n", - "rhone 0.000188 1\n", - "commodity 0.000184 3\n", - "notion 0.000178 1\n", - "compli 0.000175 1\n", - "congratulating 0.000168 2\n", + "Topic name: topic_09. P[topic_09] = 0.0256\n", + " topic_09 doc_freq\n", + "token \n", + "predicting 0.000695 1\n", + "belabored 0.000466 1\n", + "glebe 0.000433 1\n", + "dow 0.000286 5\n", + "focused 0.000239 2\n", + "airplane 0.000230 1\n", + "usinfos 0.000230 1\n", + "weight 0.000206 3\n", + "typewritten 0.000206 1\n", + "unserious 0.000204 2\n", "\n", "------------------------------\n", - "Topic name: topic_10. P[topic_10] = 0.0276\n", - " topic_10 doc_freq\n", - "token \n", - "chooses 0.004854 1\n", - "swallowed 0.000240 1\n", - "hidroelektra 0.000211 1\n", - "raise 0.000208 18\n", - "reactio 0.000193 1\n", - "braille 0.000192 2\n", - "rhone 0.000186 1\n", - "commodity 0.000182 3\n", - "notion 0.000177 1\n", - "compli 0.000174 1\n", + "Topic name: topic_10. P[topic_10] = 0.0425\n", + " topic_10 doc_freq\n", + "token \n", + "respectfully 0.021645 1\n", + "tisdelle 0.021625 1\n", + "flanks 0.017589 1\n", + "rules 0.016886 5\n", + "thirds 0.016374 4\n", + "gof 0.015946 1\n", + "ferrari 0.015598 1\n", + "raison 0.011906 1\n", + "infrastracture 0.011713 1\n", + "casting 0.010704 1\n", "\n", "------------------------------\n", - "Topic name: topic_11. P[topic_11] = 0.0455\n", - " topic_11 doc_freq\n", - "token \n", - "onto 0.218896 3\n", - "londong 0.039784 1\n", - "internationally 0.023734 4\n", - "people 0.017672 57\n", - "soccer 0.009823 1\n", - "substantially 0.007949 2\n", - "bokossa 0.007160 1\n", - "opinion 0.006626 19\n", - "withhold.. 0.005855 1\n", - "por 0.005216 3\n", + "Topic name: topic_11. P[topic_11] = 0.0301\n", + " topic_11 doc_freq\n", + "token \n", + "consultants 0.059625 1\n", + "collection 0.023723 3\n", + "thirty 0.022077 3\n", + "marsectygdbn 0.011955 1\n", + "inc. 0.008423 1\n", + "abeso 0.006332 1\n", + "cw 0.003699 1\n", + "nigerigans 0.002346 1\n", + "belabored 0.000363 1\n", + "unserious 0.000356 2\n", "\n", "------------------------------\n", - "Topic name: topic_12. P[topic_12] = 0.0448\n", - " topic_12 doc_freq\n", - "token \n", - "dans 0.019230 2\n", - "phon 0.018076 1\n", - "fallout 0.016890 2\n", - "lagdo 0.016392 1\n", - "concocted 0.015377 1\n", - "magistrate 0.014895 1\n", - "inks 0.014700 1\n", - "twisting 0.014545 1\n", - "centralized 0.013319 1\n", - "rates 0.010821 4\n", + "Topic name: topic_12. P[topic_12] = 0.1436\n", + " topic_12 doc_freq\n", + "token \n", + "organism. 0.028422 1\n", + "awacas 0.026150 1\n", + "disgrace 0.025394 1\n", + "believer 0.016931 1\n", + "solicited 0.015816 2\n", + "middle 0.015317 7\n", + "perisin 0.014861 1\n", + "idi 0.014578 2\n", + "''cameroon 0.013256 1\n", + "commemorative 0.013154 3\n", "\n", "------------------------------\n", - "Topic name: topic_13. P[topic_13] = 0.0379\n", - " topic_13 doc_freq\n", - "token \n", - "participate 0.101787 14\n", - "enactment 0.092098 1\n", - "threesome 0.081254 1\n", - "ungrateful 0.000337 1\n", - "telecon 0.000337 4\n", - "baptiste 0.000219 1\n", - "commodity 0.000215 3\n", - "acquiring 0.000206 1\n", - "rican 0.000206 6\n", - "forced 0.000206 6\n", + "Topic name: topic_13. P[topic_13] = 0.0260\n", + " topic_13 doc_freq\n", + "token \n", + "lord 0.010828 4\n", + "custody 0.004762 1\n", + "belabored 0.000463 1\n", + "glebe 0.000435 1\n", + "cross 0.000405 4\n", + "mastering 0.000405 1\n", + "dow 0.000284 5\n", + "predicting 0.000267 1\n", + "unserious 0.000203 2\n", + "opera 0.000195 2\n", "\n", "------------------------------\n", - "Topic name: topic_14. P[topic_14] = 0.0286\n", + "Topic name: topic_14. P[topic_14] = 0.0261\n", " topic_14 doc_freq\n", "token \n", - "head 0.039562 19\n", - "braille 0.000630 2\n", - "parties 0.000346 11\n", - "swallowed 0.000231 1\n", - "hidroelektra 0.000202 1\n", - "raise 0.000199 18\n", - "reactio 0.000185 1\n", - "rhone 0.000178 1\n", - "commodity 0.000174 3\n", - "notion 0.000170 1\n", + "grundig 0.018467 1\n", + "belabored 0.000451 1\n", + "glebe 0.000420 1\n", + "function 0.000408 10\n", + "verbally 0.000306 2\n", + "submerged 0.000299 1\n", + "extendable 0.000299 1\n", + "canning 0.000299 1\n", + "dow 0.000273 5\n", + "renunciation 0.000272 3\n", "\n", "------------------------------\n", - "Topic name: topic_15. P[topic_15] = 0.0591\n", - " topic_15 doc_freq\n", - "token \n", - "noting 0.033511 9\n", - "pbor 0.032218 1\n", - "official. 0.026472 1\n", - "quebec 0.021362 1\n", - "authori 0.017752 3\n", - "additonal 0.013768 1\n", - "detection 0.011330 1\n", - "sahel 0.009904 1\n", - "dependents... 0.009008 1\n", - "ning 0.008970 2\n", + "Topic name: topic_15. P[topic_15] = 0.0452\n", + " topic_15 doc_freq\n", + "token \n", + "organism. 0.078717 1\n", + "dirgen 0.032361 1\n", + "subsequently 0.019756 10\n", + "dignify 0.014038 2\n", + "vest 0.012276 2\n", + "ruling 0.011657 3\n", + "knew 0.011027 6\n", + "esperer 0.008133 1\n", + "phillip 0.007940 1\n", + "nheile's 0.007673 1\n", "\n", "------------------------------\n", - "Topic name: topic_16. P[topic_16] = 0.0274\n", - " topic_16 doc_freq\n", - "token \n", - "swallowed 0.000242 1\n", - "oi 0.000235 1\n", - "hidroelektra 0.000212 1\n", - "raise 0.000209 18\n", - "reactio 0.000194 1\n", - "braille 0.000193 2\n", - "rhone 0.000187 1\n", - "commodity 0.000184 3\n", - "notion 0.000178 1\n", - "compli 0.000175 1\n", + "Topic name: topic_16. P[topic_16] = 0.0264\n", + " topic_16 doc_freq\n", + "token \n", + "lamimo 0.022303 1\n", + "belabored 0.000427 1\n", + "glebe 0.000384 1\n", + "academy 0.000344 2\n", + "money. 0.000344 1\n", + "saturday's 0.000288 1\n", + "tely 0.000277 1\n", + "dow 0.000260 5\n", + "cw 0.000253 1\n", + "predicting 0.000246 1\n", "\n", "------------------------------\n", - "Topic name: topic_17. P[topic_17] = 0.0383\n", + "Topic name: topic_17. P[topic_17] = 0.0330\n", " topic_17 doc_freq\n", "token \n", - "undermine 0.050968 3\n", - ".. 0.048189 6\n", - "chake 0.026681 1\n", - "spontaneous 0.019155 1\n", - "jerusalem 0.017242 5\n", - "analyst 0.016371 1\n", - "mutually 0.013578 1\n", - "aligned. 0.010964 1\n", - "embajada 0.009582 1\n", - "nheile's 0.007421 1\n", + "riley 0.050184 2\n", + "drastic 0.043989 1\n", + "longtime 0.036823 1\n", + "gaconese 0.026336 1\n", + "africana 0.009119 1\n", + "socapao 0.006924 1\n", + "matkovich 0.005642 1\n", + "indictments 0.004743 1\n", + "appro 0.001297 2\n", + "glebe 0.000936 1\n", "\n", "------------------------------\n", - "Topic name: topic_18. P[topic_18] = 0.0276\n", - " topic_18 doc_freq\n", - "token \n", - "threatened 0.005208 6\n", - "acceptance 0.000267 11\n", - "swallowed 0.000239 1\n", - "hidroelektra 0.000209 1\n", - "raise 0.000207 18\n", - "reactio 0.000192 1\n", - "braille 0.000191 2\n", - "rhone 0.000185 1\n", - "commodity 0.000181 3\n", - "steadiness 0.000176 2\n", + "Topic name: topic_18. P[topic_18] = 0.0372\n", + " topic_18 doc_freq\n", + "token \n", + "falkenstr 0.132870 1\n", + "ours 0.092382 2\n", + "overly 0.087129 1\n", + "belabored 0.000250 1\n", + "glebe 0.000195 1\n", + "markings 0.000166 1\n", + "crop 0.000155 2\n", + "concurrence 0.000155 6\n", + "cw 0.000154 1\n", + "dow 0.000152 5\n", "\n", "------------------------------\n", - "Topic name: topic_19. P[topic_19] = 0.0547\n", - " topic_19 doc_freq\n", - "token \n", - "enhanced 0.027572 1\n", - "richardson 0.024494 3\n", - "full 0.023349 31\n", - "perisim 0.022316 1\n", - "tioned 0.016218 1\n", - "carry 0.015750 14\n", - "exhibitor 0.014318 1\n", - "marseille 0.014220 1\n", - "concocted 0.014220 1\n", - "currencies 0.012811 1\n" + "Topic name: topic_19. P[topic_19] = 0.1430\n", + " topic_19 doc_freq\n", + "token \n", + "peaked 0.031884 1\n", + "arabs 0.027105 3\n", + "critics 0.025209 4\n", + "knowledgable 0.019902 1\n", + "konde 0.016990 1\n", + "championship 0.016631 1\n", + "roosevelt 0.016536 1\n", + "capt 0.014484 3\n", + "prague's 0.012323 1\n", + "altogether 0.011789 1\n" ] } ], - "prompt_number": 82 + "prompt_number": 47 }, { "cell_type": "code", @@ -2363,7 +1735,7 @@ "input": [ "##\n", "lda.pr_topic_g_doc.T.loc[[0]].plot(kind='bar', figsize=(20,10),\n", - " title = 'First Document Topic We)" + " title = 'First Document Topic Weights')" ], "language": "python", "metadata": {}, @@ -2371,60 +1743,84 @@ { "metadata": {}, "output_type": "pyout", - "prompt_number": 88, + "prompt_number": 48, "text": [ - "" + "" ] }, { "metadata": { "png": { - "height": 693, - "width": 1155 + "height": 703, + "width": 1148 } }, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAACQYAAAVqCAYAAAC2jzFLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XtU1PW+//HXd0aB4RKCiWk3sb2F0LLskFqpiGUWaxe7\nC0nmdWuW20pza61fJUP7VCuPS7PLtm1uw8tRyqhz8iQFCaTWEWd7zfBWWnlXcjAQ5Tq/P9zMiZiJ\nywwOl+djre9a07w/n8/3/f02tGC+794fw+FwOAQAAAAAAAAAAAAAAACgTTH5OgEAAAAAAAAAAAAA\nAAAA3kdhEAAAAAAAAAAAAAAAANAGURgEAAAAAAAAAAAAAAAAtEEUBgEAAAAAAAAAAAAAAABtEIVB\nAAAAAAAAAAAAAAAAQBtEYRAAAAAAAAAAAAAAAADQBlEYBAAAAAAAAAAAAAAAALRBFAYBAAAAAAAA\nAAAAAAAAbRCFQQAAAAAAAAAAAAAAAEAbRGEQAAAAAAAAAAAAAAAA0AZRGAQAAAAAAAAAAAAAAAC0\nQRQGAQAAAAAAAAAAAAAAAG0QhUEAAAAAAAAAAAAAAABAG0RhEAAAAAAAAAAAAAAAANAGeaUw6PDh\nw5owYYK6d++ugIAARUZGavr06SoqKmrymitWrJDJZJLJZNI//vGPOvHvv//eGXd1JCcne3JJAAAA\nAAAAAAAAAAAAQKvWwdMFvvvuO91yyy06deqUEhMTFR0drfz8fC1YsECffvqpvvzyS4WHhzdqzUOH\nDmnq1KkKDg5WSUmJDMNwO/aGG25QYmJinff79OnT6GsBAAAAAAAAAAAAAAAA2gqPC4OmTJmiU6dO\n6Y033tCf//xn5/szZszQ/Pnz9dxzz2nhwoUNXs/hcGj8+PHq0qWL/vjHP2ru3Lm/Of6GG27Q7Nmz\nm5w/AAAAAAAAAAAAAAAA0BZ5tJXYd999p+zsbEVGRtYqCpKk1NRUBQYGasWKFSotLW3wmq+//rpy\nc3P17rvvKjAw0JP0AAAAAAAAAAAAAAAAgHbLo8Kg3NxcSdLw4cPrxIKDg3Xrrbfq7Nmz2rRpU4PW\n2717t5599llNmzZNt912W4PmHDlyRH//+9/18ssv6+9//7u+/vrrhl8AAAAAAAAAAAAAAAAA0EZ5\ntJXY3r17JUm9evVyGf/973+v7Oxs7d+/X/Hx8b+5VmVlpUaPHq0ePXro5ZdfbnAO2dnZys7OrvVe\nXFycli5dqiuvvLLB6wAAAAAAAAAAAAAAAABtiUcdg86cOSNJCg0NdRmveb+oqKjetV588UVt375d\naWlp8vf3r3d8UFCQZs+era1bt6qoqEhFRUX64osvNHToUOXl5WnYsGGN2sIMAAAAAAAAAAAAAAAA\naEs8Kgzylvz8fL3yyiuaOXOm+vfv36A5Xbp0kdVq1Q033KBLLrlEl1xyiQYNGqSsrCz1799f3377\nrRYvXtzMmQMAAAAAAAAAAAAAAAAtk0dbidV0BKrpHPRrNe936tTJ7RqVlZUaM2aMoqKilJqa6nKM\nw+FocE5ms1kTJ05Ufn6+NmzYoCeffPI3xxuG0eC1AQAAAAAAAAAAAAAAgIutMbUzv+RRx6Do6GhJ\n0t69e13G9+/fL0nq1auX2zVKSkq0f/9+FRQUKCAgQCaTyXm8+OKLkqRJkybJZDJp+vTpDcrr0ksv\nlSSdPXv2N8dRFAQAAAAAAAAAAAAAAICWrqk1Lh51DBo6dKgkKTs7Ww6Ho1YSxcXF+vLLLxUUFKQB\nAwa4XSMgIEB/+tOfXF7Ali1btG3bNg0aNEhRUVG65ZZbGpTXpk2bJEk9e/Zs0PimVlUBAAAAAACg\nLsMw+L4FAAAAAADASzxpfONRYVDPnj01fPhwZWVl6a233tLUqVOdsZSUFJWWluqxxx6TxWKRdGHb\nsG+//VZ+fn7Oop2AgAC98847Lte3Wq3atm2bxo4dqwkTJtSKbd26VTfeeGOdi1+3bp3mz58vwzD0\nyCOPeHJ5AAAAAAAAAAAAAAAAQKvlUWGQJP3tb3/TLbfcoieffFLr1q1TdHS08vPzlZeXp6ioKL30\n0kvOsYcPH1ZMTIyuvvpqHTx40KPzPv300/r22291yy236PLLL5ck7dy5U7m5uTIMQ3/9619/s1MR\nAAAAAAAAAAAAAAAA0JZ5XBjUs2dP/fOf/9Ts2bP16aefau3aterevbumTZumlJQUhYaG1pnT0BZH\nhmG4HTtmzBh99NFHstlsyszMVEVFhS677DI99NBDmjp1qm699VaPrgsAAAAAAAAAAAAAAABozQxH\nO97wvaboqB3fAgAAAAAAAK8zDIPvWwAAAAAAALzEk/oWk7eTAQAAAAAAAAAAAAAAAOB7FAYBAAAA\nAAAAAAAAAAAAbRCFQQAAAAAAAPCqlJQUX6cAAAAAAAAASYajHW/47skebAAAAAAAAAAAAAAAAEBz\n86S+hY5BAAAAAAAA8Cqr1errFAAAAAAAACA6BkmiYxAAAAAAAIA3GYbB9y0AAAAAgCZJSEjQ2rVr\nfZ0G0OzuvvtuffLJJw0a60l9C4VBojAIAAAAAADAm6xWK12DAAAAAABNUvMcH2gPGlqvQmFQE1EY\nBAAAAAAAAAAAAABAy8FzfLQHjf2ce/JzYWr0DAAAAAAAAAAAAAAAAAAtHoVBAAAAAAAAAAAAAAAA\nQBtEYRAAAAAAAAAAAAAAAADQBlEYBAAAAAAAAAAAAAAAALRBFAYBAAAAAADAq6xWq69TAAAAAAAA\ngCTD4XA4fJ2ErxiGIUlqx7cAAAAAAADA6wzD4PsWAAAAAECT8Bwf7UFjP+ee/FzQMQgAAAAAAABe\nlZKS4usUAAAAAAAAIDoGSaLSEAAAAAAAAAAAAACAloDn+G1TXl6e4uPjdfXVV+vgwYO+Tsfn6BgE\nAAAAAAAAAAAAAADgRkJCggzDaNVHQkKC1+9LWlqaUlNTtWPHDq+v7Q01BS6+Ul1drUWLFmngwIHq\n1KmTQkJC1K9fP82dO1cVFRX1zv/888/1hz/8QREREQoICNA111yjadOm6eTJkxch+6ahY5CoNAQA\nAAAAAAAAAAAAoCVo6HN8XxeYeIu36xXi4uK0fv16paWlacyYMV5d2xM2m01jxozRFVdcoezsbJ/k\nUFFRocTERGVmZkqS/P39ZTabVVpaKkmKjY1VTk6OgoKCXM5/6aWX9MILL0iSzGazgoODdebMGUlS\nly5dlJOTo969ezcoFzoGAQAAAAAAAAAAAAAA1MvRSo/2JTY2Vrt37/ZZUZAkPf/888rMzJTFYtHS\npUtVWlqqkpISrVmzRuHh4bLZbJo8ebLLuWvXrtULL7wgwzD0l7/8RUVFRbLb7dq1a5duuOEGnTp1\nSvfee6/Ky8sv8lXVj8IgAAAAAAAAAAAAAACANoSdk2o7fvy4FixYIEl69dVXNXr0aGcXnoSEBC1Z\nskSStGrVKn399dd15v+///f/JEl//OMfNWfOHGdXoZiYGK1Zs0bBwcE6cOCAFi1adDEup1EoDAIA\nAAAAAIBXWa1WX6cAAAAAAEC7kpaWJpPJpPXr10uSxo8fL5PJ5DwiIyNrjT9x4oRmzJih6OhoBQYG\nKjQ0VP3799e8efPcdr0ZN26cTCaTUlNTVVZWppSUFEVHR8tisSgiIkIPP/yw9u/f73JuXl6eyzx+\n6dChQ5oxY4b69OmjkJAQhYSEKCYmRhMnTlReXl7Tbsy/ZGRkqLy8XJ06ddKjjz5aJ37PPfeoV69e\ncjgcWrlyZa3YN998o507d8owDM2cObPO3Msvv1zJycmSpP/8z//0KM/mQGEQAAAAAAAAvCo1NdXX\nKQAAAAAA0K4EBgaqa9eu6tixoyQpNDRUl112mfOIiIhwjt28ebNiYmI0f/587d+/X35+fqqsrJTN\nZtNf/vIX9e/fX6dOnXJ7rrKyMsXFxemvf/2rfvjhBwUEBOinn35Senq6brzxRm3YsMHt3JouPb+W\nkZGhqKgozZ8/XwUFBaqurpa/v7/27dunJUuWaPz48U28Mxfk5uZKkgYPHiw/Pz+XY4YPHy5JysnJ\ncTm3pnjKlTvvvFOSZLPZdPbsWY9y9TYKgwAAAAAAAOBVKSkpvk4BAAAAAIB2JSkpSceOHdPAgQMl\nSQsWLNDRo0edR35+viTJbrcrMTFRdrtd119/vTZv3qyioiIVFxdr9erVCgsL044dOzRq1Ci351q4\ncKF27dql5cuXq6SkRHa7XVu3blW/fv1UWlqqpKQkFRUVNTj3r776SiNHjtT58+cVHx/vLK4pLCxU\nUVGRPvroIw0bNsyj+1NQUCBJ6t27t9sxMTExkqQ9e/a4nHvttdfWO9fhcNSZ72sUBgEAAAAAAMCr\n2EoMAAAAAICW6c0339Tx48cVFhamrKws3XTTTZIkk8mk+++/X+np6ZKkzz//3Nkp59fOnDmjRYsW\nadSoUTKbzZKkvn376rPPPlPnzp114sQJvfXWWw3Oafr06aqqqtKQIUP02WefOXOSpODgYN17771a\nvHhxUy9ZknTs2DFJUvfu3d2O6datmySppKSkVtefxsyVpOPHj3uUq7dRGAQAAAAAAAAAAAAAANAO\nfPDBB5KkiRMn1tperMYdd9zh7Dr0/vvvu1yjR48eSk5OrvN+586dNXny5Frnqc+ePXtks9lkGIbm\nzJnjLDTytppCH4vF4nZMYGCg83VJSUmT5jocjlpzWwIKgwAAAAAAAAAAAAAAANq48vJy7dq1S4Zh\naOjQoW7HxcfHS5K2bdvmMj5kyBC3c2ti33zzjSorK+vNadOmTZKk8PBwxcbG1jsejUdhEAAAAAAA\nAAAAAAAAQBt3+vRpORwOSdLll1/udlxN7NSpU78Zd6Vmu62qqirZ7fZ6czpx4oQk6aqrrqp3rCeC\ngoIkSefOnXM7prS01Pk6ODi4SXMNw6g1tyWgMAgAAAAAAAAAAAAAAKAdOX/+vK9TuKhqCpaOHj3q\ndkxNLDg42FkM1Ni5ktStWzePcvU2CoMAAAAAAADgVVar1dcpAAAAAACAXwkPD5dhGHI4HPrhhx/c\njjt8+LAkqUuXLi7jR44ccTu3pkDGbDYrLCys3pwuu+wySdKPP/5Y71hP9O7dW5K0a9cut2MKCgok\nSddee63Lubt373Z2XHI31zCMOvN9jcIgAAAAAAAAeFVqaqqvUwAAAAAAoF0ymS6UgbgqYPHz89N1\n110nScrNzXW7Rk5OjiSpX79+LuNffPGF27k1sT59+qhDhw715jtgwABJF7Y5y8/Pr3d8Uw0dOlSS\ntHHjRpWVlbkck52dLUkaNmyYy7lnzpyRzWZzOTcrK0uS1L9/f1ksFq/k7C0UBgEAAAAAAMCrUlJS\nfJ0CAAAAAADt0iWXXCJJstvtLuMPPPCAJCktLU3Hjx+vE8/KytKmTZtkGIaSkpJcrvH9998rPT29\nzvunT5/WokWLJEkPPvhgg/KNiorSzTffLIfDoVmzZqmysrJB8xrrvvvuk7+/v+x2uxYvXlwnvmbN\nGu3bt08mk0nJycm1Ytdee6369u0rh8Oh//iP/6gz9+jRo1q1apUkadSoUc2SvycoDAIAAAAAAIBX\nsZUYAAAAAAC+0adPH0nShx9+qJ9//rlOfOrUqerWrZvOnTunESNGaMuWLZKkqqoqZWRkaOTIkZKk\n22+/XXFxcS7PERoaqkmTJmnlypWqqqqSJO3cuVN33nmnCgsL1bVrV02ZMqXBOc+bN09ms1kbNmyo\nlZMkFRcXKz09XY888kiD13Ola9eueuqppyRJs2bN0ooVK1RdXS1JWrt2rcaPHy9JSk5Odt7DX3r5\n5ZclSRkZGXrmmWdUUlIi6cIWYn/4wx9UUlKia665RpMmTfIoz+ZgONxtgNYOGIYhyXULLQAAAAAA\nAAAAAAAAcHE19Dl+zTiptT7vb556hb1796pv374qLy+X2WxWRESEOnbsqCuvvFIbNmyQJNlsNo0Y\nMcLZVSg4OFgVFRXOLbb69u2r7OxsXXrppbXWHjdunJYtW6Znn31Wubm5ys/Pl5+fn/z9/VVcXCxJ\nCgoKUmZmpm677bZac/Py8hQfH68ePXrowIEDdfJ+7733NG7cOGcOAQEBslgszhzdzWuMyspKJSYm\nau3atZIubK1mNpt17tw5SdLNN9+sdevWKSgoyOX8l156SS+88IKkC1u2BQUFOa+7S5cuys3NVUxM\nTINyaWy9iif1LXQMAgAAAAAAAAAAAAAArZTRSo/mERUVpezsbI0YMUJhYWE6efKkDh06pCNHjjjH\nxMbGqqCgQNOnT1dUVJSqqqrk5+en2NhYzZ07V/n5+XWKgn4pICBAeXl5mj17tiIjI1VZWamIiAgl\nJydr69atdYqCpF8Wcrn20EMPaffu3Zo6daqioqJkMplUXV2tmJgYTZo0ScuWLWv6TfmXDh06aM2a\nNXr77bc1YMAAWSwWmc1m3XjjjZozZ442btzotihIkp577jllZ2crISFBnTt3VkVFha655ho99dRT\n2rVrV4OLgi42OgaJjkEAAAAAAAAAAAAAALQEDX2On5CQ4Oz80lrdfffd+uSTT3ydRoPVdAyyWq2a\nPXu2r9Np1S5mx6AOjZ4BAAAAAAAAAAAAAADgQ62poAbwJbYSAwAAAAAAgFdZrVZfpwAAAAAAAABR\nGAQAAAAAAAAvS01N9XUKAAAAAAAAEFuJAQAAAAAAwMtSUlJ8nQIAAAAAAPAywzBkGIZPc4iNjdWh\nQ4caPH7kyJF67bXXmjGjls9wOBwOXyfhKzUf2HZ8CwAAAAAAAAAAAAAAaDF4jo/fEhkZqR9//LHB\n48eOHaslS5Y0Y0ZN09jPuSc/FxQGif+gAAAAAAAAAAAAAADQEvAcH+3BxSwMMjV6BgAAAAAAAAAA\nAAAAAIAWj8IgAAAAAAAAAAAAAAAAoA2iMAgAAAAAAAAAAAAAAABogygMAgAAAAAAgFdZrVZfpwAA\nAAAAAABJhsPhcPg6CV8xDEOS1I5vAQAAAAAAgNcZhsH3LQAAAACAJuE5PtqDxn7OPfm5oGMQAAAA\nAAAAvColJcXXKQAAAAAAAEB0DJJEpSEAAAAAAAAAAAAAAC0Bz/HRHtAxCAAAAAAAAAAAAAAAAIBH\nKAwCAAAAAAAAAAAAAAAA2iAKgwAAAAAAAAAAAAAAAIA2iMIgAAAAAAAAAAAAAAAAoA2iMAgAAAAA\nAABeZbVafZ0CAAAAAAAARGEQAAAAAAAAvCw1NdXXKQAAAAAA2riEhAQZhtGqj4SEBF/fxosmLy9P\nJpNJkZGRvk6l3aEwCAAAAAAAAF6VkpLi6xQAAAAAAG3c2rVrfZ2Cx5rjGtLS0pSamqodO3Z4fW1v\nMAzDp+evrq7WokWLNHDgQHXq1EkhISHq16+f5s6dq4qKCrfz9u/fryVLlmjKlCmKjY2Vv7+/TCaT\nBg4ceBGzb5oOvk4AAAAAAAAAbQtbiQEAAAAALhqrrxNoImvzLJuWlqb169crMjJSffv2bZ6TNEFQ\nUJCioqJ0xRVX+CyHiooKJSYmKjMzU5Lk7+8vs9ms7du3a/v27Vq9erVycnIUFBRUZ+7MmTP18ccf\n13nf14VODUHHIAAAAAAAAAAAAAAAADSb2NhY7d69W9nZ2T7L4fnnn1dmZqYsFouWLl2q0tJSlZSU\naM2aNQoPD5fNZtPkyZNdzu3QoYNiYmI0duxYvfHGGxo9evRFzr7p6BgEAAAAAAAAAAAAAADQhjgc\nDl+n0KIcP35cCxYskCS9+uqrtQp7EhIStGTJEiUmJmrVqlV65plndN1119Wa//7778tk+r/eO6dO\nnbo4iXsBHYMAAAAAAAAAAAAAAABasbS0NJlMJq1fv16SNH78eJlMJucRGRlZa/yJEyc0Y8YMRUdH\nKzAwUKGhoerfv7/mzZun8vJyl+cYN26cTCaTUlNTVVZWppSUFEVHR8tisSgiIkIPP/yw9u/f73Ju\nXl6eyzx+6dChQ5oxY4b69OmjkJAQhYSEKCYmRhMnTlReXl7Tbsy/ZGRkqLy8XJ06ddKjjz5aJ37P\nPfeoV69ecjgcWrlyZZ34L4uCWhs6BgEAAAAAAAAAAAAAALRigYGB6tq1q06fPq2KigqFhobKYrE4\n4xEREc7Xmzdv1l133SW73S7DMBQSEqKKigrZbDbZbDYtX75cWVlZ6tKli8tzlZWVKS4uTvn5+fL3\n91dAQIB++uknpaen6+OPP1ZmZqYGDRrkcq5hGC7fz8jI0OjRo3X+/HlJksVikcVi0b59+7Rnzx6t\nW7dOBw8ebOrtUW5uriRp8ODB8vPzczlm+PDh2rdvn3Jycpp8npao9ZY0AQAAAAAAoEWyWq2+TgEA\nAAAAgHYlKSlJx44d08CBAyVJCxYs0NGjR51Hfn6+JMlutysxMVF2u13XX3+9Nm/erKKiIhUXF2v1\n6tUKCwvTjh07NGrUKLfnWrhwoXbt2qXly5erpKREdrtdW7duVb9+/VRaWqqkpCQVFRU1OPevvvpK\nI0eO1Pnz5xUfHy+bzaazZ8+qsLBQRUVF+uijjzRs2DCP7k9BQYEkqXfv3m7HxMTESJL27Nnj0bla\nGgqDAAAAAAAA4FWpqam+TgEAAAAAALjw5ptv6vjx4woLC1NWVpZuuukmSRe2yrr//vuVnp4uSfr8\n88+dXXZ+7cyZM1q0aJFGjRols9ksSerbt68+++wzde7cWSdOnNBbb73V4JymT5+uqqoqDRkyRJ99\n9pkzJ0kKDg7Wvffeq8WLFzf1kiVJx44dkyR1797d7Zhu3bpJkkpKSnT27FmPzteSUBgEAAAAAAAA\nr0pJSfF1CgAAAAAAwIUPPvhAkjRx4sRa24vVuOOOO5xdh95//32Xa/To0UPJycl13u/cubMmT55c\n6zz12bNnj2w2mwzD0Jw5c5yFRt5WU+jzy+3Vfi0wMND5uqSkpFny8AUKgwAAAAAAAOBVbCUGAAAA\nAEDLU15erl27dskwDA0dOtTtuPj4eEnStm3bXMaHDBnidm5N7JtvvlFlZWW9OW3atEmSFB4ertjY\n2HrHo/EoDAIAAAAAAAAAAAAAAGjjTp8+LYfDIUm6/PLL3Y6riZ06deo3467UbNVVVVUlu91eb04n\nTpyQJF111VX1jvVEUFCQJOncuXNux5SWljpfBwcHN2s+FxOFQQAAAAAAAAAAAAAAAO3I+fPnfZ3C\nRVVTsHT06FG3Y2piwcHBzkKitoDCIAAAAAAAAAAAAAAAgDYuPDxchmHI4XDohx9+cDvu8OHDkqQu\nXbq4jB85csTt3JriGrPZrLCwsHpzuuyyyyRJP/74Y71jPdG7d29J0q5du9yOKSgokCRde+21zZrL\nxUZhEAAAAAAAAAAAAAAAQBtgMl0oA6nZMuyX/Pz8dN1110mScnNz3a6Rk5MjSerXr5/L+BdffOF2\nbk2sT58+6tChQ735DhgwQNKFbc7y8/PrHd9UQ4cOlSRt3LhRZWVlLsdkZ2dLkoYNG9ZsefgChUEA\nAAAAAADwKqvV6usUAAAAAABoly655BJJkt1udxl/4IEHJElpaWk6fvx4nXhWVpY2bdokwzCUlJTk\nco3vv/9e6enpdd4/ffq0Fi1aJEl68MEHG5RvVFSUbr75ZjkcDs2aNUuVlZUNmtdY9913n/z9/WW3\n27V48eI68TVr1mjfvn0ymUxKTk5ulhx8hcIgAAAAAAAAeFVqaqqvUwAAAAAAoF3q06ePJOnDDz/U\nzz//XCc+depUdevWTefOndOIESO0ZcsWSVJVVZUyMjI0cuRISdLtt9+uuLg4l+cIDQ3VpEmTtHLl\nSlVVVUmSdu7cqTvvvFOFhYXq2rWrpkyZ0uCc582bJ7PZrA0bNtTKSZKKi4uVnp6uRx55pMHrudK1\na1c99dRTkqRZs2ZpxYoVqq6uliStXbtW48ePlyQlJyc77+EvlZeXq7Cw0HmUlpZKkiorK/XTTz85\n33d1z33NcLjqH9VOGIYhyXULLQAAAAAAADSN1WqlaxAAAAAAoEka+hy/Zlxr5+16hb1796pv374q\nLy+X2WxWRESEOnbsqCuvvFIbNmyQJNlsNo0YMcLZVSg4OFgVFRXOLbb69u2r7OxsXXrppbXWHjdu\nnJYtW6Znn31Wubm5ys/Pl5+fn/z9/VVcXCxJCgoKUmZmpm677bZac/Py8hQfH68ePXrowIEDdfJ+\n7733NG7cOGcOAQEBslgszhzdzWuMyspKJSYmau3atZIubK1mNpt17tw5SdLNN9+sdevWKSgoqM7c\ntLQ0TZgwod5zDBky5De3aavR2HoVT+pb6BgEAAAAAAAAr6IoCAAAAADQ3O6++25fp+Cx5riGqKgo\nZWdna8SIEQoLC9PJkyd16NAhHTlyxDkmNjZWBQUFmj59uqKiolRVVSU/Pz/FxsZq7ty5ys/Pr1MU\n9EsBAQHKy8vT7NmzFRkZqcrKSkVERCg5OVlbt26tUxQk1V/I9dBDD2n37t2aOnWqoqKiZDKZVF1d\nrZiYGE2aNEnLli1r+k35lw4dOmjNmjV6++23NWDAAFksFpnNZt14442aM2eONm7c6LIo6Jf5G4ZR\n79HS0DFIdAwCAAAAAAAAAAAAAKAl4Dl+y1XTMchqtWr27Nm+TqdVo2MQAAAAAAAAAAAAAAAAAI9Q\nGAQAAAAAAAAAAAAAAAC0QRQGAQAAAAAAAAAAAAAAAG1QB18nAAAAAAAAgLbFarXKarX6Og0AAAAA\nAOBFhmHIMAyf5hAbG6tDhw41ePzIkSP12muvNWNGLZ/hcDgcvk7CV2o+sO34FgAAAAAAAHidYRh8\n3wIAAAAAaBKe4+O3REZG6scff2zw+LFjx2rJkiXNmFHTNPZz7snPBR2DAAAAAAAA4FUpKSm+TgEA\nAAAAALRBBw8e9HUKrQ4dg0SlIQAAAAAAAAAAAAAALQHP8dEeXMyOQaZGzwAAAAAAAAAAAAAAAADQ\n4lEYBAAAAAAAAAAAAAAAALRBFAYBAAAAAAAAAAAAAAAAbRCFQQAAAAAAAAAAAAAAAEAbRGEQAAAA\nAAAAvMpqtfo6BQAAAAAAAEgyHA6Hw9dJ+IphGJKkdnwLAAAAAAAAvM4wDL5vAQAAAAA0Cc/x0R40\n9nPuyc+AKvoIAAAgAElEQVQFHYMAAAAAAADgVSkpKb5OAQAAAAAAAKJjkCQqDQEAAAAAAAAAAAAA\naAl4jo/2gI5BAAAAAAAAAAAAAAAAADxCYRAAAAAAAAAAAAAAAACaTV5enkwmkyIjI32dSrtDYRAA\nAAAAAAAAAAAAAGhVEhISZBhGqz4SEhK8fl/S0tKUmpqqHTt2eH1tb6jZEstXqqurtWjRIg0cOFCd\nOnVSSEiI+vXrp7lz56qiosLtvPXr12vmzJkaOHCgwsPD1bFjR0VERGj48OFaunRpi976znC05Oya\nGXsTAgAAAAAAAAAAAADQcjT0Ob6vC0y8xdv1CnFxcVq/fr3S0tI0ZswYr67tCZvNpjFjxuiKK65Q\ndna2T3KoqKhQYmKiMjMzJUn+/v4ym80qLS2VJMXGxionJ0dBQUG15r300kt64YUXnP/coUMHBQcH\n68yZM85/f4MGDdL//M//KCQkpEG5NLZexZP6FjoGAQAAAAAAwKusVquvUwAAAAAAtBOOVnq0N7Gx\nsdq9e7fPioIk6fnnn1dmZqYsFouWLl2q0tJSlZSUaM2aNQoPD5fNZtPkyZPrzKusrFTnzp319NNP\na9OmTTp//rxOnz6twsJCpaSkyGw2a8OGDZo4caIPrqp+dAwSHYMAAAAAAAC8yTAMvm8BAAAAADRJ\nYzsGtda/Pmv6HTVXx6B3331XY8eO9erardnx48fVo0cPlZeX6/XXX9fUqVNrxT/++GMlJibKMAxt\n375d1113nTO2c+dO9ezZU8HBwS7XfvHFF53/k9T333+vq666qt586BgEAAAAAACAVislJcXXKQAA\nAAAA0K6kpaXJZDJp/fr1kqTx48fLZDI5j8jIyFrjT5w4oRkzZig6OlqBgYEKDQ1V//79NW/ePJWX\nl7s8x7hx42QymZSamqqysjKlpKQoOjpaFotFERERevjhh7V//36Xc/Py8lzm8UuHDh3SjBkz1KdP\nH4WEhCgkJEQxMTGaOHGi8vLymnZj/iUjI0Pl5eXq1KmTHn300Trxe+65R7169ZLD4dDKlStrxa6/\n/nq3RUHShfsiXSje2bJli0d5NocOvk4AAAAAAAAAbQtbiQEAAAAAcHEFBgaqa9euOn36tCoqKhQa\nGiqLxeKMR0REOF9v3rxZd911l+x2uwzDUEhIiCoqKmSz2WSz2bR8+XJlZWWpS5cuLs9VVlamuLg4\n5efny9/fXwEBAfrpp5+Unp6ujz/+WJmZmRo0aJDLuTWdb34tIyNDo0eP1vnz5yVJFotFFotF+/bt\n0549e7Ru3TodPHiwqbdHubm5kqTBgwfLz8/P5Zjhw4dr3759ysnJadTa4eHhki5086murm5yjs2F\njkEAAAAAAAAAAAAAAACtWFJSko4dO6aBAwdKkhYsWKCjR486j/z8fEmS3W5XYmKi7Ha7rr/+em3e\nvFlFRUUqLi7W6tWrFRYWph07dmjUqFFuz7Vw4ULt2rVLy5cvV0lJiex2u7Zu3ap+/fqptLRUSUlJ\nKioqanDuX331lUaOHKnz588rPj5eNptNZ8+eVWFhoYqKivTRRx9p2LBhHt2fgoICSVLv3r3djomJ\niZEk7dmzp1Frf/HFF5IuFD316dOniRk2HwqDAAAAAAAAAAAAAAAA2oE333xTx48fV1hYmLKysnTT\nTTdJkkwmk+6//36lp6dLkj7//HNnl51fO3PmjBYtWqRRo0bJbDZLkvr27avPPvtMnTt31okTJ/TW\nW281OKfp06erqqpKQ4YM0WeffebMSZKCg4N17733avHixU29ZEnSsWPHJEndu3d3O6Zbt26SpJKS\nEp09e7ZB61ZXVzu3VB8wYICioqI8yrM5UBgEAAAAAAAAAAAAAADQDnzwwQeSpIkTJ9baXqzGHXfc\n4ew69P7777tco0ePHkpOTq7zfufOnTV58uRa56nPnj17ZLPZZBiG5syZ4yw08raaQp9fbq/2a4GB\ngc7XJSUlDVr3hRde0NatW9WxY0ctWLDAsySbCYVBAAAAAAAAAAAAAAAAbVx5ebl27dolwzA0dOhQ\nt+Pi4+MlSdu2bXMZHzJkiNu5NbFvvvlGlZWV9ea0adMmSVJ4eLhiY2PrHd+SrFq1Sq+88ooMw9Ar\nr7yif/u3f/N1Si5RGAQAAAAAAACvslqtvk4BAAAAAAD8yunTp+VwOCRJl19+udtxNbFTp079ZtyV\nmq26qqqqZLfb683pxIkTkqSrrrqq3rGeCAoKkiSdO3fO7ZjS0lLn6+Dg4N9c75NPPtHYsWMlSU8+\n+aSefvppL2TZPCgMAgAAAAAAgFelpqb6OgUAAAAAAPAbzp8/7+sULqqagqWjR4+6HVMTCw4OdhYS\nubJu3To98MADqqys1IQJEzR//nzvJutlFAYBAAAAAADAq1JSUnydAgAAAAAA+JXw8HAZhiGHw6Ef\nfvjB7bjDhw9Lkrp06eIyfuTIEbdza4przGazwsLC6s3psssukyT9+OOP9Y71RO/evSVJu3btcjum\noKBAknTttde6HbNx40bdc889Kisr00MPPaR33nnHu4k2AwqDAAAAAAAA4FVsJQYAAAAAgG+YTBfK\nQGq2DPslPz8/XXfddZKk3Nxct2vk5ORIkvr16+cy/sUXX7idWxPr06ePOnToUG++AwYMkHRhm7P8\n/Px6xzfV0KFDJV0o7CkrK3M5Jjs7W5I0bNgwl/HNmzcrISFB586d0z333KMVK1bIMIzmSdiLKAwC\nAAAAAAAAAAAAAABoAy655BJJkt1udxl/4IEHJElpaWk6fvx4nXhWVpY2bdokwzCUlJTkco3vv/9e\n6enpdd4/ffq0Fi1aJEl68MEHG5RvVFSUbr75ZjkcDs2aNUuVlZUNmtdY9913n/z9/WW327V48eI6\n8TVr1mjfvn0ymUxKTk6uE9+xY4dGjBih4uJiDR8+XKtXr5bZbG6WXL2NwiAAAAAAAAAAAAAAAIA2\noE+fPpKkDz/8UD///HOd+NSpU9WtWzedO3dOI0aM0JYtWyRJVVVVysjI0MiRIyVJt99+u+Li4lye\nIzQ0VJMmTdLKlStVVVUlSdq5c6fuvPNOFRYWqmvXrpoyZUqDc543b57MZrM2bNhQKydJKi4uVnp6\nuh555JEGr+dK165d9dRTT0mSZs2apRUrVqi6ulqStHbtWo0fP16SlJyc7LyHNfbu3avhw4erqKhI\ncXFx+q//+i917NjRo3wuJsPhqn9UO1HT0qkd3wIAAADApYSEBK1du9bXabQId999tz755BNfpwEA\nAAAAAAC0Cw19ju8c1+wZNY+aDai8Xa+wd+9e9e3bV+Xl5TKbzYqIiFDHjh115ZVXasOGDZIkm82m\nESNGOLsKBQcHq6KiwrnFVt++fZWdna1LL7201trjxo3TsmXL9Oyzzyo3N1f5+fny8/OTv7+/iouL\nJUlBQUHKzMzUbbfdVmtuXl6e4uPj1aNHDx04cKBO3u+9957GjRvnzCEgIEAWi8WZo7t5jVFZWanE\nxETnd99+fn4ym806d+6cJOnmm2/WunXrFBQUVGvehAkTlJaWJkkKCwv7zaKgmTNnasaMGfXm0th6\nFU/qW+gYBAAAAKAOioL+D/cCAAAAAAAAaLmMVno0l6ioKGVnZ2vEiBEKCwvTyZMndejQIR05csQ5\nJjY2VgUFBZo+fbqioqJUVVUlPz8/xcbGau7cucrPz69TFPRLAQEBysvL0+zZsxUZGanKykpFREQo\nOTlZW7durVMUJP1fYYs7Dz30kHbv3q2pU6cqKipKJpNJ1dXViomJ0aRJk7Rs2bKm35R/6dChg9as\nWaO3335bAwYMkMVikdls1o033qg5c+Zo48aNdYqCpAvFOIZhyDAMFRUV6dSpU26Ps2fPepynt9Ex\nSHQMAgAAAH6t5nflXOX6OBPfGqqhkvibAQAay2q1ymq1+joNAAAAAEAr1NDn+G2h63lr61Ze0zHI\narVq9uzZvk6nVWtVHYMOHz6sCRMmqHv37goICFBkZKSmT5+uoqKiJq+5YsUKmUwmmUwm/eMf/3A7\n7quvvtLdd9+t8PBwBQYGqm/fvlqwYIFzHzgAAAAAAABcfKmpqb5OAQAAAADQxn3yySdyOByt+mhN\nRUFovTwqDPruu+900003KS0tTQMGDNDTTz+tnj17asGCBRo4cKBOnz7d6DUPHTqkqVOnKjg4WJL7\ndlL//d//rcGDB2vjxo26//779cQTT6i8vFzTp0/XyJEjPbksAAAAAAAAeCAlJcXXKQAAAAAAAEAe\nFgZNmTJFp06d0htvvKEPP/xQL7/8statW6fp06dr7969eu655xq1nsPh0Pjx49WlSxc99thjbsf9\n/PPPmjRpkjp27Ki8vDy98847evXVV7V9+3YNHDhQH3zwgd577z1PLg0AAAAAAABNxDZiAAAAAAAA\nLUOTC4O+++47ZWdnKzIyUn/+859rxVJTUxUYGKgVK1aotLS0wWu+/vrrys3N1bvvvqvAwEC34z74\n4AMVFhZq5MiR6tevn/N9f39//fu//7skaeHChY28IgAAAAAAAAAAAAAAALhiGIbbXZ8ultjYWF12\n2WUNPqZNm+bTfFuCDk2dmJubK0kaPnx4nVhwcLBuvfVWZWdna9OmTYqPj693vd27d+vZZ5/VtGnT\ndNttt+nzzz93OzYnJ0eSNGLEiDqxwYMHy2Kx6H//939VUVGhjh07NvSSAAAAAAAAAAAAAAAA4MK7\n776rd99916c5FBYW6tSpUw0e//PPPzdjNq1DkzsG7d27V5LUq1cvl/Hf//73kqT9+/fXu1ZlZaVG\njx6tHj166OWXX/bo3GazWZGRkaqsrNSBAwfqXQsAAAAAAAAAAAAAAAAt38GDB1VVVdXgY8mSJb5O\n2eea3DHozJkzkqTQ0FCX8Zr3i4qK6l3rxRdf1Pbt2/Xll1/K39+/Qec2DOM3z+1wOBp0bgAAAAAA\nAAAAAAAAAKAtanLHIG/Jz8/XK6+8opkzZ6p///6+TgcAAAAAAAAeslqtvk4BAAAAAAAA8qAwqKZb\nT03noF+reb9Tp05u16isrNSYMWMUFRWl1NRUl2McDofLczscDo/ODQAAAAAAgObh7nseAAAAAAAA\nXFxNLgyKjo6WJO3du9dlfP/+/ZKkXr16uV2jpKRE+/fvV0FBgQICAmQymZzHiy++KEmaNGmSTCaT\npk+f7pwXFRXl9tyVlZU6ePCgOnbsqJ49ezboWgzDcHvExcXJMAy3/6eb1WolTpw4ceLEiRMnTrzN\nxd1JU5qGaqjSlNYu4y3l3w9x4sSJt/R4SkpKi86POHHixIkTJ06cOHHixIm33DjQXtXUp7g6PGE4\nXLXkaYADBw7od7/7nSIjI/Xtt9/WSqS4uFjdunWTYRg6efKkLBaLyzXOnz+vJ554wuVFbNmyRdu2\nbdOgQYMUFRWlO+64Qw8++KAk6d1339Wf/vQnjRkzRmlpabXm5eTk6Pbbb9eQIUOUm5v7m9dQc94m\n3gIAAACgzar5XTlXv/07dVs3VEMl8TcDAAAAAAAAcLHwHB/tQWM/5578XHRo9Ix/6dmzp4YPH66s\nrCy99dZbmjp1qjOWkpKi0tJSPfbYY86ioMrKSn377bfy8/NzdvIJCAjQO++843J9q9Wqbdu2aezY\nsZowYUKt2AMPPKBnnnlG6enpeuKJJ3TTTTdJulBo9Pzzz0uSHn/88aZeGgAAAAAAAAAAAAAAANDq\nNbkwSJL+9re/6ZZbbtGTTz6pdevWKTo6Wvn5+crLy1NUVJReeukl59jDhw8rJiZGV199tQ4ePOhR\n0iEhIXrnnXf0wAMPKC4uTiNHjlRYWJg+/vhj7du3Tw8++KCSkpI8OgcAAAAAAAAAAAAAAADQmpk8\nmdyzZ0/985//1Lhx45Sfn6958+bp4MGDmjZtmjZt2qSwsLA6cxq691l9+6Tde++9+uKLLzR48GBl\nZGTozTfflL+/v+bPn6/09PQmXxMAAAAAAAAAAAAAAADQFhiOdrwxH3sTAgAAAK7V/K6cq1wfZ+Jb\nQzVUEn8zAAAAAAAAABcLz/HRHjT2c+7Jz4VHHYMAAAAAAACAX7Narb5OAQAAAAAAAKJjkCQqDQEA\nAIBfo2PQBXQMAoCmMQyD/3YCAAAAAJqE5/hoD+gYBAAAAAAAgFYrJSXF1ykAAAAAAABAFAYBAAAA\nAADAy9hKDAAAAADQ3BISEmQYRqs+EhISfH0bL5q8vDyZTCZFRkb6OpV2h8IgAAAAAAAAAAAAAADQ\nqqxdu9bXKXisOa4hLS1Nqamp2rFjh9fX9oaaLbF8pbq6WosWLdLAgQPVqVMnhYSEqF+/fpo7d64q\nKirczlu2bJkef/xx9e/fX1dccYUCAgIUHBysa6+9Vo8//ri++eabi3gVjWM42vHGfOxNCAAAALhW\n87tyrnJ9nIlvDdVQSfzNAAAAAAAAAFwsDX2O7ywwyW2l32EObZ7vHuPi4rR+/XqlpaVpzJgxXl3b\nEzabTWPGjNEVV1yh7Oxsn+RQUVGhxMREZWZmSpL8/f1lNptVWloqSYqNjVVOTo6CgoLqzA0ICFB5\nebkMw5DJZFJoaKjOnDmjqqoqSZLZbNaCBQs0ZcqUBuXS2HoVT+pb6BgEAAAAAAAAAAAAAACAZhMb\nG6vdu3f7rChIkp5//nllZmbKYrFo6dKlKi0tVUlJidasWaPw8HDZbDZNnjzZ5dzHHntMq1at0vff\nf6+ysjIVFhaqrKxMGzZs0IABA1RVVaUnn3xS27dvv8hXVT8KgwAAAAAAAAAAAAAAANoQuqDXdvz4\ncS1YsECS9Oqrr2r06NHOLjwJCQlasmSJJGnVqlX6+uuv68x/7bXX9NBDD+nKK6+UyXSh1MZkMunW\nW2/Vp59+quDgYFVXV2v16tUX6YoajsIgAAAAAAAAeJXVavV1CgAAAAAAtCtpaWkymUxav369JGn8\n+PEymUzOIzIystb4EydOaMaMGYqOjlZgYKBCQ0PVv39/zZs3T+Xl5S7PMW7cOJlMJqWmpqqsrEwp\nKSmKjo6WxWJRRESEHn74Ye3fv9/l3Ly8PJd5/NKhQ4c0Y8YM9enTRyEhIQoJCVFMTIwmTpyovLy8\npt2Yf8nIyFB5ebk6deqkRx99tE78nnvuUa9eveRwOLRy5cpGrX3JJZfod7/7nSSppKTEozybQwdf\nJwAAAAAAAIC2JTU1leIgAAAAAAAuosDAQHXt2lWnT59WRUWFQkNDZbFYnPGIiAjn682bN+uuu+6S\n3W6XYRgKCQlRRUWFbDabbDabli9frqysLHXp0sXlucrKyhQXF6f8/Hz5+/srICBAP/30k9LT0/Xx\nxx8rMzNTgwYNcjm3pkvPr2VkZGj06NE6f/68JMlischisWjfvn3as2eP1q1bp4MHDzb19ig3N1eS\nNHjwYPn5+bkcM3z4cO3bt085OTmNWvunn37Svn37JF3YMq2loWMQAAAAAAAAvColJcXXKQAAAAAA\n0K4kJSXp2LFjGjhwoCRpwYIFOnr0qPPIz8+XJNntdiUmJsput+v666/X5s2bVVRUpOLiYq1evVph\nYWHasWOHRo0a5fZcCxcu1K5du7R8+XKVlJTIbrdr69at6tevn0pLS5WUlKSioqIG5/7VV19p5MiR\nOn/+vOLj42Wz2XT27FkVFhaqqKhIH330kYYNG+bR/SkoKJAk9e7d2+2YmJgYSdKePXvqXc/hcOjk\nyZP65JNPNHz4cJWWlmrIkCG/ed98hcIgAAAAAAAAeBXdggAAAPD/2bv3qKrrfP/jr+/eCGyuogFp\nN2hOYkhRdvDSjCnYxWSmOF1UUgtbmiuPk+O4llMnj2zWmXEml8fJlY2Ox6OkjlGGdeIER0jASyWS\npmlq2mSJF1AElJty278/nL1/IRu5s1Gej7X2arc/n+/n+/p+BRbb/fb9AQD0TMuXL1dhYaECAgKU\nmZmpBx54QJJkMpn09NNPKyUlRZL06aefOrrsXO3ChQtatWqVJk+eLLPZLEmKjIzUli1b1L9/fxUV\nFentt99udaa5c+eqvr5eo0eP1pYtWxyZJMnHx0dPPvmkVq9e3d5LliSdOXNGkjRw4MBm5wwYMEDS\nle3AKisrnc75/e9/L5PJJLPZrJtvvlm/+tWvdP78eS1evFhZWVnNdkRyJQqDAAAAAAAAAAAAAAAA\neoEPPvhAkjR9+vRG24vZPfLII46uQ++//77TNUJCQhQfH9/k9f79+2vmzJmNztOSI0eOKD8/X4Zh\naPHixY5Co85mL/T56fZqV/Py8nI8r6iocDrH19dXN998swIDAx1FQKdOndL27dt16tSpTkzceSgM\nAgAAAAAAAAAAAAAAuMHV1NTo4MGDMgxD0dHRzc6LiYmRJH311VdOx0ePHt3ssfaxb775RnV1dS1m\n2rVrlySpX79+ioqKanG+q82ZM0enT59WUVGRKisrlZ6ervDwcP3v//6vRowY0SOLgygMAgAAAAAA\nAAAAAAAAuMGVlJTIZrNJkm655ZZm59nHzp07d81xZ+xbddXX16u0tLTFTEVFRZKk22+/vcW5HeHt\n7S1Jqq6ubnZOVVWV47mPj0+La3p6emrcuHH67LPPFBISoqKiIiUlJXU8bCejMAgAAAAAAAAAAAAA\nAKAXuXTpkqsjdCt7wdLp06ebnWMf8/HxcRQStYaPj49eeOEFSVJ2dnYHUnYNCoMAAAAAAADQqaxW\nq6sjAAAAAACAq/Tr10+GYchms+nHH39sdt7JkyclSYGBgU7Hr7Vdlr24xmw2KyAgoMVMN998syTp\nxIkTLc7tiCFDhkiSDh482OycQ4cOSZLuvvvuNq/fmsIjV6EwCAAAAAAAAJ2qJ7bNBgAAAACgNzCZ\nrpSB2LcM+yl3d3fdc889kqScnJxm17B3vRk6dKjT8W3btjV7rH0sIiJCbm5uLeYdMWKEpCvbnOXl\n5bU4v72io6MlSTt37tTly5edzsnKypIkjR07ts3rHz9+XJIUFBTUzoRdh8IgAAAAAAAAdKrExERX\nRwAAAAAAoFfy8/OTJJWWljodf+aZZyRJycnJKiwsbDKemZmpXbt2yTAMTZgwwekaP/zwg1JSUpq8\nXlJSolWrVkmSnn322VblDQsL07Bhw2Sz2TR//nzV1dW16ri2euqpp+Th4aHS0lKtXr26yXhaWpqO\nHj0qk8mk+Pj4RmP19fXXXLu4uFhr166V1L6ioq5GYRAAAAAAAAA6FVuJAQAAAADgGhEREZKkzZs3\n6+LFi03GZ8+erQEDBqi6ulrjxo3Tnj17JF0pfklNTdWkSZMkSQ8//LDGjBnj9Bz+/v6aMWOGNm7c\n6Cia+frrr/XYY4+puLhYwcHBmjVrVqszL126VGazWTt27GiUSZLKy8uVkpKiKVOmtHo9Z4KDgzVn\nzhxJ0vz587VhwwY1NDRIktLT0zVt2jRJUnx8vOMe2v3xj39UQkKCsrOzVVFR4Xi9srJSmzdv1oMP\nPqiioiJ5eXnptdde61DOrmDYnPWP6iUMw5DkvIUWAAAA0JvZf1fOUfPtZHuDaF1pL8t7BgAAAAAA\nAKB7tPZzfPu8611n/93jt99+q8jISNXU1MhsNisoKEh9+vTRbbfdph07dkiS8vPzNW7cOEdXIR8f\nH9XW1jq22IqMjFRWVpZuuummRmsnJCRo3bp1evXVV5WTk6O8vDy5u7vLw8ND5eXlkiRvb29lZGTo\nF7/4RaNjc3NzFRMTo5CQEH3//fdNcr/33ntKSEhwZPD09JTFYnFkbO64tqirq1NcXJzS09MlXdla\nzWw2q7q6WpI0bNgwbd26Vd7e3o2OS0pKarRtup+fn8xms8rKyhx/foGBgXr33XcVExPTqixtrVfp\nSH0LHYMAAAAAAAAAAAAAAMB1Zfz48a6O0GFdcQ1hYWHKysrSuHHjFBAQoLNnz6qgoECnTp1yzImK\nitKhQ4c0d+5chYWFqb6+Xu7u7oqKitKSJUuUl5fXpCjopzw9PZWbm6uFCxcqNDRUdXV1CgoKUnx8\nvPbu3dukKEhquZBr4sSJOnz4sGbPnq2wsDCZTCY1NDQoPDxcM2bM0Lp169p/U/7Bzc1NaWlpWrly\npUaMGCGLxSKz2az7779fixcv1s6dO5sUBUnSiy++qDfffFNPPvmkBg0aJMMwVFlZqcDAQI0ZM0aL\nFy/WkSNHWl0U1N3oGCT+9S8AAABwNToGXUHHIAAAAAAAAKB78Tl+z2XvGGS1WrVw4UJXx7mu0TEI\nAAAAAAAAAAAAAAAAQIdQGAQAAAAAAIBOZbVaXR0BAAAAAAAAojAIAAAAAAAAnSwpKcnVEQAAAAAA\nACDJzdUBAAAAAAAAcGNJTEx0dQQAAAAAANDJDMOQYRguzRAVFaWCgoJWz580aZLefPPNLkzU8xk2\nm83m6hCuYv+C7cW3AAAAAHDK/rtyjnJcnMS1ohUtifcMAAAAAAAAQHfhc3xcS2hoqE6cONHq+S+8\n8ILWrFnThYnap61f5x35vqBjEAAAAAAAAAAAAAAAAHq848ePuzrCdcfk6gAAAAAAAAAAAAAAAAAA\nOh+FQQAAAAAAAAAAAAAAAMANiMIgAAAAAAAAAAAAAAAA4AZEYRAAAAAAAAA6ldVqdXUEAAAAAAAA\nSDJsNpvN1SFcxTAMSVIvvgUAAACAU/bflXOU4+IkrhWtaEm8ZwCAtjIMg5+dAAAAAIB24XN89AZt\n/TrvyPcFHYMAAAAAAADQqRITE10dAQAAAAAAAKJjkCQqDQEAAICr0THoCjoGAQAAAAAAAN2Lz/HR\nG9AxCAAAAAAAAAAAAAAAAECHUBgEAAAAAAAAAAAAAAAA3IAoDAIAAAAAAAAAAAAAAABuQBQGAQAA\nAAAAAAAAAAAAoMvk5ubKZDIpNDTU1VF6HQqDAAAAAAAA0KmsVqurIwAAAAAAbnCxsbEyDOO6fsTG\nxnb6fUlOTlZSUpL279/f6Wt3BsMwXHr+hoYGrVq1SiNHjlTfvn3l6+uroUOHasmSJaqtrW3TWh99\n9B4dNzAAACAASURBVJFMJpPj0VMZNpvN5uoQrmL/guvFtwAAAABwyv67co5yXJzEtaIVLYn3DADQ\nVoZh8LMTAAAAANAurf0c39UFJp2ls98/jxkzRtu3b1dycrKef/75Tl27I/Lz8/X888/r1ltvVVZW\nlksy1NbWKi4uThkZGZIkDw8Pmc1mVVVVSZKioqKUnZ0tb2/vFteqqKjQ3XffrVOnTkm68vVYX1/f\n6ixtrVfpSH2LW5uPAAAAAAAAAK4hMTHR1REAAAAAAL3E9fqPG+3/KLG3iIqK0uHDh12aYcGCBcrI\nyJDFYtHKlSs1ZcoUGYahTz75RC+88ILy8/M1c+ZMbdiwocW1/v3f/12nTp3S8OHDlZeX1w3p26/n\n9jICAAAAAADAdYmtxAAAAAAAcC06+TZWWFioZcuWSZLeeOMNTZ061dGFJzY2VmvWrJEkvfvuuzpw\n4MA119q7d6/eeust/fM//7Neeumlrg3eCSgMAgAAAAAAAAAAAAAAuI4lJyfLZDJp+/btkqRp06bJ\nZDI5HqGhoY3mFxUVad68eRo8eLC8vLzk7++v4cOHa+nSpaqpqXF6joSEBJlMJiUlJeny5ctKTEzU\n4MGDZbFYFBQUpOeee07Hjh1zemxubq7THD9VUFCgefPmKSIiQr6+vvL19VV4eLimT5+u3Nzc9t2Y\nf0hNTVVNTY369u3rtJjniSee0KBBg2Sz2bRx48Zm12loaNDMmTNlGIZWrFhxXWxpx1ZiAAAAAAAA\nAAAAAAAA1zEvLy8FBwerpKREtbW18vf3l8VicYwHBQU5nu/evVuPP/64SktLZRiGfH19VVtbq/z8\nfOXn52v9+vXKzMxUYGCg03NdvnxZY8aMUV5enjw8POTp6anz588rJSVFH3/8sTIyMjRq1CinxzZX\nSJOamqqpU6fq0qVLkiSLxSKLxaKjR4/qyJEj2rp1q44fP97e26OcnCtbzj300ENyd3d3OufRRx/V\n0aNHlZ2d3ew6y5cv1549e/Tyyy/rgQceaLG7UE9AxyAAAAAAAAAAAAAAAIDr2IQJE3TmzBmNHDlS\nkrRs2TKdPn3a8cjLy5MklZaWKi4uTqWlpbr33nu1e/dulZWVqby8XJs2bVJAQID279+vyZMnN3uu\nFStW6ODBg1q/fr0qKipUWlqqvXv3aujQoaqqqtKECRNUVlbW6uyff/65Jk2apEuXLikmJkb5+fmq\nrKxUcXGxysrK9OGHH2rs2LEduj+HDh2SJA0ZMqTZOeHh4ZKkI0eOOB0/deqUFixYoKCgIC1atKhD\neboThUEAAAAAAAAAAAAAAAC9wPLly1VYWKiAgABlZmbqgQcekCSZTCY9/fTTSklJkSR9+umnji47\nV7tw4YJWrVqlyZMny2w2S5IiIyO1ZcsW9e/fX0VFRXr77bdbnWnu3Lmqr6/X6NGjtWXLFkcmSfLx\n8dGTTz6p1atXt/eSJUlnzpyRJA0cOLDZOQMGDJAkVVRUqLKyssn4r3/9a1VUVGjx4sXy9/fvUJ7u\nRGEQAAAAAAAAOpXVanV1BAAAAAAA4MQHH3wgSZo+fXqj7cXsHnnkEUfXoffff9/pGiEhIYqPj2/y\nev/+/TVz5sxG52nJkSNHlJ+fL8MwtHjxYkehUWezF/r8dHu1q3l5eTmeV1RUNBpLS0vTRx99pFGj\nRun555/vkoxdhcIgAAAAAAAAdKqkpCRXRwAAAAAAAFepqanRwYMHZRiGoqOjm50XExMjSfrqq6+c\njo8ePbrZY+1j33zzjerq6lrMtGvXLklSv379FBUV1eJ8V6isrNTs2bPVp08f/eUvf3F1nDajMAgA\nAAAAAACdKjEx0dURAAAAAADAVUpKSmSz2SRJt9xyS7Pz7GPnzp275rgz9q266uvrVVpa2mKmoqIi\nSdLtt9/e4tyO8Pb2liRVV1c3O6eqqsrx3MfHx/F84cKFKigo0CuvvKIhQ4Z0Xcgu4ubqAAAAAAAA\nALixsJUYAAAAAAA926VLl1wdoVsNHDhQFy5c0OnTp5udYx/z8fFxFBJ99913WrZsmYKDgzVv3rwm\nW4xdvnzZ8byyslI2m00eHh7q06dPF1xF+9AxCAAAAAAAAAAAAAAA4AbXr18/GYYhm82mH3/8sdl5\nJ0+elCQFBgY6HT916lSzx9qLa8xmswICAlrMdPPNN0uSTpw40eLcjrB3+jl48GCzcw4dOiRJuvvu\nux2vnTx5Ug0NDSoqKtLAgQPl5+fX6PHyyy9Lkmw2m3x9feXn56dFixZ14ZW0HYVBAAAAAAAAAAAA\nAAAANwCT6UoZiH3LsJ9yd3fXPffcI0nKyclpdo3s7GxJ0tChQ52Ob9u2rdlj7WMRERFyc2t5E6sR\nI0ZIurLNWV5eXovz2ys6OlqStHPnzkZdfn4qKytLkjR27FjHa4ZhOP7r7PFTzb3uahQGAQAAAAAA\nAAAAAAAA3AD8/PwkSaWlpU7Hn3nmGUlScnKyCgsLm4xnZmZq165dMgxDEyZMcLrGDz/8oJSUlCav\nl5SUaNWqVZKkZ599tlV5w8LCNGzYMNlsNs2fP191dXWtOq6tnnrqKXl4eKi0tFSrV69uMp6Wlqaj\nR4/KZDIpPj7e8fro0aPV0NCg+vp6p4+1a9dKulIUZH9t4cKFXXIN7UVhEAAAAAAAAAAAAAAAwA0g\nIiJCkrR582ZdvHixyfjs2bM1YMAAVVdXa9y4cdqzZ48kqb6+XqmpqZo0aZIk6eGHH9aYMWOcnsPf\n318zZszQxo0bVV9fL0n6+uuv9dhjj6m4uFjBwcGaNWtWqzMvXbpUZrNZO3bsaJRJksrLy5WSkqIp\nU6a0ej1ngoODNWfOHEnS/PnztWHDBjU0NEiS0tPTNW3aNElSfHy84x62hrPOTD0NhUEAAAAAAADo\nVFar1dURAAAAAADolaZOnSp3d3ft3LlT/fv31y233KKQkBCNGjVKktS3b1999NFHCggI0Ndff62o\nqCj5+fnJx8dHzz77rMrKyhQZGam//e1vzZ7j5ZdfVkREhKZMmSJvb2/5+/vrvvvu0549e+Tt7a1N\nmzbJ39+/1ZkffPBBbdiwQR4eHsrOzlZUVJS8vLzUv39/+fv767nnntPnn3/e4Xvz+9//XuPHj1d1\ndbWef/55eXl5ydvbW7/85S9VUlKiYcOGaeXKlR0+T0/T8oZuAAAAAAAAQBskJSVRHAQAAAAA6BbR\ninZ1hB4lLCxMWVlZ+uMf/6gvv/xSZ8+eVUNDg0ym/983JioqSocOHdLixYuVnp6uEydOyN3dXffe\ne68mTpyo2bNny93dvdlzeHp6Kjc3V3/84x/13nvv6cSJEwoKCtLYsWNltVp11113NTnGMIxr5p44\ncaKGDx+upUuXKisrSwUFBWpoaFB4eLh+/vOfa+rUqe2/Kf/g5uamtLQ0/dd//ZeSk5N1+PBh1dfX\n6/7771d8fLx+85vfyM2tbWU0LV1XT2DYroe+Rl3E/gfUi28BAAAA4JT9d+Uc5bg4iWvZ/1KB9wwA\n0DZWq5XCIAAAAABAu7T2c/zY2Filp6d3R6QuM378eH3yySeujtFqCQkJWrdunaxWqxYuXOjqONe1\nttardKS+hY5BAAAAAAAA6FQUBQEAAAAAutr1VFADuJKp5SkAAAAAAAAAAAAAAAAArjcUBgEAAAAA\nAAAAAAAAAAA3ILYSAwAAAAAAAAAAAAAAwDUZhiHDMFyaISoqSgUFBa2eP2nSJL355ptdmKjnozAI\nAAAAAAAAAAAAAAAA17R27VqtXbvWpRmKi4t17ty5Vs+/ePFiF6a5PlAYBAAAAAAAgE5ltVpltVpd\nHQMAAAAAANxgjh8/7uoI1x3DZrPZXB3CVewtrnrxLQAAAACcsv+unKMcFydxrWhFS+I9AwC0lWEY\n/OwEAAAAALQLn+OjN2jr13lHvi9MbT4CAAAAAAAAuIbExERXRwAAAAAAAIDoGCSJSkMAAADganQM\nuoKOQQAAAAAAAED34nN89AZ0DAIAAAAAAAAAAAAAAADQIRQGAQAAAAAAAAAAAAAAADcgCoMAAAAA\nAAAAAAAAAACAGxCFQQAAAAAAAAAAAAAAAMANiMIgAAAAAAAAdCqr1erqCAAAAAAAAJBk2Gw2m6tD\nuIphGJKkXnwLAAAAAKfsvyvnKMfFSVwrWtGSeM8AAG1lGAY/OwEAAAAA7cLn+OgN2vp13pHvCzoG\nAQAAAAAAoFMlJia6OgIAAAAAAABExyBJVBoCAAAAV6Nj0BV0DAIAAAAAAAC6F5/jozegYxAAAAAA\nAAAAAAAAAACADqEwCAAAAAAAAAAAAAAAXFdiY2NlGMZ1/YiNjXX1bew2ubm5MplMCg0NdXWUXofC\nIAAAAAAAAAAAAAAAcF1JT093dYQO64prSE5OVlJSkvbv39/pa3cG+5ZYrtLQ0KBVq1Zp5MiR6tu3\nr3x9fTV06FAtWbJEtbW1zR43ZswYmUymaz5+/etfd+OVtJ6bqwMAAAAAAAAAAAAAAAC0R06OqxO0\nT3R016ybnJys7du3KzQ0VJGRkV1zknbw9vZWWFiYbr31VpdlqK2tVVxcnDIyMiRJHh4eMpvN2rdv\nn/bt26dNmzYpOztb3t7eza7h7+8vi8XS7FhPRMcgAAAAAAAAdCqr1erqCAAAAAAAoAeJiorS4cOH\nlZWV5bIMCxYsUEZGhiwWi9555x1VVVWpoqJCaWlp6tevn/Lz8zVz5sxrrrFs2TKdPn3a6eP3v/99\nN11J21AYBAAAAAAAgE6VlJTk6ggAAAAAAPRqNpvN1RF6lMLCQi1btkyS9MYbb2jq1KmObc1iY2O1\nZs0aSdK7776rAwcOuCxnV6AwCAAAAAAAAJ0qMTHR1REAAAAAAOhVkpOTZTKZtH37dknStGnTZDKZ\nHI/Q0NBG84uKijRv3jwNHjxYXl5e8vf31/Dhw7V06VLV1NQ4PUdCQoJMJpOSkpJ0+fJlJSYmavDg\nwbJYLAoKCtJzzz2nY8eOOT02NzfXaY6fKigo0Lx58xQRESFfX1/5+voqPDxc06dPV25ubvtuzD+k\npqaqpqZGffv21UsvvdRk/IknntCgQYNks9m0cePGDp2rp3FzdQAAAAAAAADcWNhKDAAAAACA7uXl\n5aXg4GCVlJSotrZW/v7+slgsjvGgoCDH8927d+vxxx9XaWmpDMOQr6+vamtrlZ+fr/z8fK1fv16Z\nmZkKDAx0eq7Lly9rzJgxysvLk4eHhzw9PXX+/HmlpKTo448/VkZGhkaNGuX0WHuXnqulpqZq6tSp\nunTpkiTJYrHIYrHo6NGjOnLkiLZu3arjx4+39/YoJydHkvTQQw/J3d3d6ZxHH31UR48eVXZ2drPr\nXI+dmOgYBAAAAAAAAAAAAAAAcB2bMGGCzpw5o5EjR0qSli1bptOnTzseeXl5kqTS0lLFxcWptLRU\n9957r3bv3q2ysjKVl5dr06ZNCggI0P79+zV58uRmz7VixQodPHhQ69evV0VFhUpLS7V3714NHTpU\nVVVVmjBhgsrKylqd/fPPP9ekSZN06dIlxcTEKD8/X5WVlSouLlZZWZk+/PBDjR07tkP359ChQ5Kk\nIUOGNDsnPDxcknTkyJFm5yxZskQDBw6Uu7u7AgMD9fDDD2vlypW6fPlyh/J1JQqDAAAAAAAAAAAA\nAAAAeoHly5ersLBQAQEByszM1AMPPCBJMplMevrpp5WSkiJJ+vTTTx1ddq524cIFrVq1SpMnT5bZ\nbJYkRUZGasuWLerfv7+Kior09ttvtzrT3LlzVV9fr9GjR2vLli2OTJLk4+OjJ598UqtXr27vJUuS\nzpw5I0kaOHBgs3MGDBggSaqoqFBlZaXTOYcOHVJZWZl8fX1VUlKi7OxszZo1S8OGDVNBQUGHMnYV\nCoMAAAAAAAAAAAAAAAB6gQ8++ECSNH369Ebbi9k98sgjjq5D77//vtM1QkJCFB8f3+T1/v37a+bM\nmY3O05IjR44oPz9fhmFo8eLFjkKjzmYv9Pnp9mpX8/LycjyvqKhoNBYdHa3169frzJkzqqqq0vnz\n51VYWKhFixbJw8NDBw4c0Pjx41VbW9sl+TuCwiAAAAAAAAAAAAAAAIAbXE1NjQ4ePCjDMBQdHd3s\nvJiYGEnSV1995XR89OjRzR5rH/vmm29UV1fXYqZdu3ZJkvr166eoqKgW57tKYmKiJk+e3KiYKjAw\nUK+++qpSU1MlXbnm5ORkFyVsHoVBAAAAAAAA6FRWq9XVEQAAAAAAwFVKSkpks9kkSbfcckuz8+xj\n586du+a4M/atuurr61VaWtpipqKiIknS7bff3uLcjvD29pYkVVdXNzunqqrK8dzHx6fVa48fP14P\nPfSQJCktLa2dCbsOhUEAAAAAAADoVElJSa6OAAAAAAAAruHSpUuujtCt7AVLp0+fbnaOfczHx8dR\nSNRaw4cPlyQdP368nQm7DoVBAAAAAAAA6FSJiYmujgAAAAAAAK7Sr18/GYYhm82mH3/8sdl5J0+e\nlHRlqyxnTp061eyx9uIas9msgICAFjPdfPPNkqQTJ060OLcjhgwZIkk6ePBgs3MOHTokSbr77rvb\nvL69E1NPRGEQAAAAAAAAOhVbiQEAAAAA4Bom05UyEGeFKu7u7rrnnnskSTk5Oc2ukZ2dLUkaOnSo\n0/Ft27Y1e6x9LCIiQm5ubi3mHTFihKQr25zl5eW1OL+9oqOjJUk7d+7U5cuXnc7JysqSJI0dO7bN\n69uzh4aGtjNh16EwCAAAAAAAAAAAAAAA4Abg5+cnSSotLXU6/swzz0iSkpOTVVhY2GQ8MzNTu3bt\nkmEYmjBhgtM1fvjhB6WkpDR5vaSkRKtWrZIkPfvss63KGxYWpmHDhslms2n+/Pmqq6tr1XFt9dRT\nT8nDw0OlpaVavXp1k/G0tDQdPXpUJpNJ8fHxbVr7//7v/7Rjxw5JUmxsbKfk7UwUBgEAAAAAAAAA\nAAAAANwAIiIiJEmbN2/WxYsXm4zPnj1bAwYMUHV1tcaNG6c9e/ZIkurr65WamqpJkyZJkh5++GGN\nGTPG6Tn8/f01Y8YMbdy4UfX19ZKkr7/+Wo899piKi4sVHBysWbNmtTrz0qVLZTabtWPHjkaZJKm8\nvFwpKSmaMmVKq9dzJjg4WHPmzJEkzZ8/Xxs2bFBDQ4MkKT09XdOmTZMkxcfHO+6h3Z/+9CfNmDFD\nubm5qqysdLx+7tw5LV68WE899ZQkafDgwXrxxRc7lLMrGLaevNFZFzMMQ1LP3usNAAAAcAX778o5\nar6dbG8QrSvtZXnPAAAAAAAAAHSP1n6Ob593vevsv3v89ttvFRkZqZqaGpnNZgUFBalPnz667bbb\nHF1t8vPzNW7cOEdXIR8fH9XW1jq22IqMjFRWVpZuuummRmsnJCRo3bp1evXVV5WTk6O8vDy5u7vL\nw8ND5eXlkiRvb29lZGToF7/4RaNjc3NzFRMTo5CQEH3//fdNcr/33ntKSEhwZPD09JTFYnFkbO64\ntqirq1NcXJzS09MlXdlazWw2q7q6WpI0bNgwbd26Vd7e3o2OS0pKUlJSkuP//fz8ZBiGLly44Hjt\n3nvv1ccff6zbb7+9VVnaWq/SkfoWOgYBAAAAAAAAAAAAAIDryvjx410docO64hrCwsKUlZWlcePG\nKSAgQGfPnlVBQYFOnTrlmBMVFaVDhw5p7ty5CgsLU319vdzd3RUVFaUlS5YoLy+vSVHQT3l6eio3\nN1cLFy5UaGio6urqFBQUpPj4eO3du7dJUZDUciHXxIkTdfjwYc2ePVthYWEymUxqaGhQeHi4ZsyY\noXXr1rX/pvyDm5ub0tLStHLlSo0YMUIWi0Vms1n333+/Fi9erJ07dzYpCpKubIv2+uuvKyYmRnfc\ncYcaGhp06dIlDRw4UOPHj9eaNWuUn5/f6qKg7kbHIPGvfwEAAICr0THoCjoGAUD7WK1WWa1WV8cA\nAAAAAFyH+By/57J3DLJarVq4cKGr41zX6BgEAAAAAACA69ZP22sDAAAAAADAdSgMAgAAAAAAQKdK\nTEx0dQQAAAAAAACIwiAAAAAAAAB0MrYRAwAAAAAA6BncXB0AAAAAAAAAAAAAAAAAPZthGDIMw6UZ\noqKiVFBQ0Or5kyZN0ptvvtmFiXo+CoMAAAAAAAAAAAAAAABwTWvXrtXatWtdmqG4uFjnzp1r9fyL\nFy92YZrrA4VBAAAAAAAAAAAAAAAA6PGOHz/u6gjXHZOrAwAAAAAAAAAAAAAAAADofBQGAQAAAAAA\noFNZrVZXRwAAAAAAAIAkw2az2VwdwlUMw5Ak9eJbAAAAADhl/105RzkuTuJa0YqWxHsGAGgrwzD4\n2QkAAAAAaBc+x0dv0Nav8458X9AxCAAAAAAAAJ0qMTHR1REAAAAAAAAgOgZJotIQAAAAuBodg66g\nYxAAAAAAAADQvfgcH70BHYMAAAAAAAAAAAAAAAAAdEinFAadPHlSL774ogYOHChPT0+FhoZq7ty5\nKisra/Uav/vd7zR27Fjddttt8vLyUr9+/RQZGakFCxaoqKioyfwffvhBJpOp2Ud8fHxnXBoAAAAA\nAAAAAAAAAABwXerwVmJ///vf9eCDD+rcuXOKi4vT4MGDlZeXp5ycHIWFhemzzz5Tv379WlzHw8ND\nDzzwgMLDwxUUFKTKykp98cUX+vLLL3XTTTfps88+01133eWY/8MPP+jOO+/Ufffdp7i4uCbrRURE\n6KmnnrrmOWlBBgAAADjHVmJXsJUYAAAAAAAA0L34HB+9QXduJebW5iOuMmvWLJ07d05vvfWW/vVf\n/9Xx+rx58/TnP/9Zr7/+ulasWNHiOuXl5XJ3d2/y+oIFC7Ro0SL96U9/0n//9383Gb/vvvu0cOHC\njl0EAAAAAAAAAAAAAAAAcIPp0FZif//735WVlaXQ0NBGRUGSlJSUJC8vL23YsEFVVVUtruWsKEiS\nnn32WUnS6dOnOxIVAAAAAAAA3cRqtbo6AgAAAAAAANTBwqCcnCvbCjz66KNNxnx8fPTzn/9clZWV\n2rVrV7vPkZaWJkkaM2aM0/FTp07pr3/9qxYtWqS//vWvOnDgQLvPBQAAAAAAgI5LSkpydQQAAAAA\nANCD5ObmymQyKTQ01NVRep0ObSX27bffSpIGDRrkdPyuu+5SVlaWjh07ppiYmFatuWTJElVUVOjC\nhQv68ssvlZeXp+nTp+u3v/2t0/lZWVnKyspq9NqYMWP0zjvv6LbbbmvD1QAAAAAAAKAzJCYmujoC\nAAAAAOAGFxsbq/T0dFfH6JDx48frk08+6dQ1k5OT9eOPPyouLk6RkZGdunZnMAzDpedvaGjQ6tWr\ntXbtWh0+fFj19fW666679Nxzz2nOnDnq06dPi2t88MEHWrdunfbs2aPi4mIFBAToZz/7mWJiYjRn\nzhzddNNN3XAlrdehwqALFy5Ikvz9/Z2O218vKytr9Zr/+Z//qaKiIsf///znP9ekSZOa3Hxvb28t\nXLhQcXFxuvPOOyVJ+/fvl9VqVU5OjsaOHat9+/bJy8urTdcEAAAAAACAjmErMQAAAABAV7vei4Kk\nrrmG5ORkbd++XaGhoT2qMMjb21thYWG69dZbXZahtrZWcXFxysjIkCR5eHjIbDZr37592rdvnzZt\n2qTs7Gx5e3s7Pb68vFxPP/20Pv30U0mS2WyWv7+/zp8/r7Nnz+qLL77Q448/3uMKgzq0lVhXOHPm\njBoaGlRUVKTNmzfr3LlzevTRR7Vhw4ZG8wIDA2W1WnXffffJz89Pfn5+GjVqlDIzMzV8+HB99913\nWr16tYuuAgAAAAAAAAAAAAAAAJIUFRWlw4cPN9kRqjstWLBAGRkZslgseuedd1RVVaWKigqlpaWp\nX79+ys/P18yZM50eW19fr9jYWH366ae64447lJKSovLychUXF6u6uloHDx7Uf/zHf6h///7dfFUt\n61BhkL0jkL1z0NXsr/ft27fNawcGBiouLk6ZmZlyc3PTvHnzWnWc2WzW9OnTJUk7duxo83kBAAAA\nAAAAAAAAAACuZzabzdURepTCwkItW7ZMkvTGG29o6tSpjm3NYmNjtWbNGknSu+++qwMHDjQ5funS\npdq5c6eCg4P12WefacKECfL09JQkubm5KTw8XK+//rrCwsK66Ypar0OFQYMHD5Ykffvtt07Hjx07\nJkkaNGhQu89x++236+6771ZxcXGjLcauxd6WqbKyslXzDcNo9jFmzBgZhtFsC2yr1co444wzzjjj\njDPOOOM33HhzkpWsaEUrWcm9cryn/PkwzjjjjDPOOOOMM84444wzzjjjjDPO+I06jvZJTk6WyWTS\n9u3bJUnTpk2TyWRyPEJDQxvNLyoq0rx58zR48GB5eXnJ399fw4cP19KlS1VTU+P0HAkJCTKZTEpK\nStLly5eVmJiowYMHy2KxKCgoSM8995yjTuRqubm5TnP8VEFBgebNm6eIiAj5+vrK19dX4eHhmj59\nunJzc9t3Y/4hNTVVNTU16tu3r1566aUm40888YQGDRokm82mjRs3Nhqrra3VkiVLJF35Gh04cGCH\nsjTHXp/i7NERhq0DZWLff/+9/umf/kmhoaH67rvvGoUpLy/XgAEDZBiGzp49K4vF0u6QwcHBOn/+\nvC5cuNDsXm4/9dprr+mNN97QrFmztHz58mbn2fNSKQcAAAA0Zv9dOUc5Lk7iWtGKlsR7BgAAAAAA\nAKC7tPZz/I4WS/QUnfV3j++//77mzJmjkpIS1dbWyt/fv1Gdxm233aa8vDxJ0u7du/X444+rtLRU\nhmHI19dXtbW1qq6uliRFRkYqMzNTgYGBjc6RkJCgdevW6dVXX1VOTo7y8vLk4eEhT09PXbx4UTab\nTV5eXsrIyNCoUaMaHZubm6uYmBiFhITo+++/b5I/NTVVU6dO1aVLlyRJFotFFotFZWVlamho0B13\n3KHjx4+3+/4888wz2rx5s5544gl99NFHTue88sorWr58uaKiohz3SpLS09P1y1/+UiaTSefPacyM\nmwAAIABJREFUn3fsrtURba1X6Uh9S4c6Bt1555169NFHdfz4cb399tuNxhITE1VVVaWpU6c6vtjq\n6up05MiRJn/Ix44dc7odWUNDg15//XWdO3dODz/8cKOioL179zq94K1bt+rPf/6zDMPQlClTOnJ5\nAAAAAAAAaAf+hScAAAAAAN1rwoQJOnPmjEaOHClJWrZsmU6fPu142AtdSktLFRcXp9LSUt17773a\nvXu3ysrKVF5erk2bNikgIED79+/X5MmTmz3XihUrdPDgQa1fv14VFRUqLS3V3r17NXToUFVVVWnC\nhAkqKytrdfbPP/9ckyZN0qVLlxQTE6P8/HxVVlaquLhYZWVl+vDDDzV27NgO3Z9Dhw5JkoYMGdLs\nnPDwcEnSkSNHGr3+xRdfSJJCQkLk5+ent956S5GRkbJYLAoICFB0dLTWrVvXY/+BqVtHF/jLX/6i\nBx98UK+88oq2bt2qwYMHKy8vT7m5uQoLC9Mf/vAHx9yTJ08qPDy8SSXXJ598otdee02jRo1SSEiI\n+vfvr6KiIm3btk3Hjx/XHXfcoZUrVzY6729/+1t99913evDBB3XLLbdIkr7++mvl5OTIMAz9x3/8\nh0aMGNHRywMAAAAAAEAbJSUlURwEAAAAAEAPtHz5chUWFiogIECZmZkKCgqSJJlMJj399NPy8/PT\nY489pk8//VQ5OTmKjo5ussaFCxf0t7/9TfHx8Y7XIiMjtWXLFg0ePFhFRUV6++239frrr7cq09y5\nc1VfX6/Ro0dry5YtMpvNjjEfHx89+eSTevLJJzt03WfOnJGka24DNmDAAElSRUWFKisrHc1r7Nuj\n9e/fX//yL/+ijz/+WCaTSX379tXFixe1bds2bdu2Tf/zP/+jTZs2yWTqUI+eTtfhNHfeeae+/PJL\nJSQkKC8vT0uXLtXx48f1m9/8Rrt27VJAQECTY65u6fXII49o+vTpOnfunD788EMtWbJEH330kYKD\ng/WHP/xBBw4cUEhISKNjnn/+ed1///3Kz8/X6tWrtWLFCv3973/XxIkTtX37dv3bv/1bRy8NAAAA\nAAAA7ZCYmOjqCAAAAAAAwIkPPvhAkjR9+nRHUdBPPfLII46uQ++//77TNUJCQhoVBdn1799fM2fO\nbHSelhw5ckT5+fkyDEOLFy9uVBTUmSorKyWp0fZqV/Py8nI8r6iocDy3dz/as2ePPv74Y82cOVNn\nz55VcXGxiouL9dprr0mSPvzwQy1atKgr4ndIhzsGSdKtt96qNWvWtDgvJCREDQ0NTV4fMmSI3nrr\nrTad88UXX9SLL77YpmMAAAAAAADQ9egWBAAAAABAz1NTU6ODBw/KMAynnYDsYmJi9MUXX+irr75y\nOj569Ohmjx09erQWLVqkb775RnV1dXJzu3ZZyq5duyRJ/fr1U1RUVCuuovvZ61waGho0atQorVix\nwjHm5+enP/zhDzp27Jg++OADLV26VL/73e/Up08fV8Vtomf1LwIAAAAAAAAAAAAAAECnKykpkc1m\nkyTdcsstzc6zj507d+6a487Yt+qqr69XaWlpi5mKiookSbfffnuLczvCvi1YdXV1s3Oqqqocz318\nfJw+nzNnjtNjf/vb30q6ss3anj17OpS1s1EYBAAAAAAAAAAAAAAA0ItcunTJ1RG6lb1g6fTp083O\nsY/5+Pg4Comk/18IZRiGwsLCnB47aNAgSZLNZtPJkyc7JXNnoTAIAAAAAAAAAAAAAADgBtevXz8Z\nhiGbzaYff/yx2Xn2wpbAwECn46dOnWr2WHtxjdlsVkBAQIuZbr75ZknSiRMnWpzbEUOGDJEkHTx4\nsNk5hw4dkiTdfffdjV6PiIho07kMw2hjuq5FYRAAAAAAAAAAAAAAAMANwGS6UgZi3zLsp9zd3XXP\nPfdIknJycppdIzs7W5I0dOhQp+Pbtm1r9lj7WEREhNzc3FrMO2LECElXtjnLy8trcX57RUdHS5J2\n7typy5cvO52TlZUlSRo7dmyj1x9++GFJV+7pkSNHnB5rf90wDIWEhHRG5E5DYRAAAAAAAAA6ldVq\ndXUEAAAAAAB6JT8/P0lSaWmp0/FnnnlGkpScnKzCwsIm45mZmdq1a5cMw9CECROcrvHDDz8oJSWl\nyeslJSVatWqVJOnZZ59tVd6wsDANGzZMNptN8+fPV11dXauOa6unnnpKHh4eKi0t1erVq5uMp6Wl\n6ejRozKZTIqPj2809rOf/UwjR46UJC1btszp+n/+858lXemA1FxBlatQGAQAAAAAAIBOlZSU5OoI\nAAAAAAD0SvZtrzZv3qyLFy82GZ89e7YGDBig6upqjRs3Tnv27JEk1dfXKzU1VZMmTZJ0pUvOmDFj\nnJ7D399fM2bM0MaNG1VfXy9J+vrrr/XYY4+puLhYwcHBmjVrVqszL126VGazWTt27GiUSZLKy8uV\nkpKiKVOmtHo9Z4KDgzVnzhxJ0vz587VhwwY1NDRIktLT0zVt2jRJUnx8vNOtw9544w2ZTCbt3LlT\nL7/8ss6fPy9Junjxol5//XWlpqbKMAwlJib2uK3EDJuz/lG9hP0PoxffAgAAAMAp++/KOWq+nWxv\nEK0r7WV5zwAAbWO1WukaBAAAAABol9Z+jt/Tii/aq7P/7vHbb79VZGSkampqZDabFRQUpD59+ui2\n227Tjh07JEn5+fkaN26co6uQj4+PamtrHVtsRUZGKisrSzfddFOjtRMSErRu3Tq9+uqrysnJUV5e\nntzd3eXh4aHy8nJJkre3tzIyMvSLX/yi0bG5ubmKiYlRSEiIvv/++ya533vvPSUkJDgyeHp6ymKx\nODI2d1xb1NXVKS4uTunp6ZKubK1mNptVXV0tSRo2bJi2bt0qb29vp8f/9a9/1ezZs1VfXy/DMNS3\nb19duHBBDQ0NMgxDr7zyiqNzUEvaWq/SkfoWOgYBAAAAAACgU1EUBAAAAACAa4SFhSkrK0vjxo1T\nQECAzp49q4KCAp06dcoxJyoqSocOHdLcuXMVFham+vp6ubu7KyoqSkuWLFFeXl6ToqCf8vT0VG5u\nrhYuXKjQ0FDV1dUpKChI8fHx2rt3b5OiIKnlQq6JEyfq8OHDmj17tsLCwmQymdTQ0KDw8HDNmDFD\n69ata/9N+Qc3NzelpaVp5cqVGjFihCwWi8xms+6//34tXrxYO3fubLYoSJJmzpypL774QhMnTtTA\ngQNVWVmpm266Sb/61a+UkZHR6qKg7kbHIPGvfwEAAICr0THoCjoGAQAAAAAAAN2rtZ/jx8bGOjq/\nXK/Gjx+vTz75xNUxWs3eMchqtWrhwoWujnNd686OQW5tPgIAAAAAAAAAAAAAAMCFrqeCGsCV2EoM\nAAAAAAAAAAAAAAAAuAFRGAQAAAAAAAAAAAAAAADcgNhKDAAAAAAAAJ3KarXKarW6OgYAAAAAAOhE\nhmHIMAyXZoiKilJBQUGr50+aNElvvvlmFybq+QybzWZzdQhXsX/B9uJbAAAAADhl/105RzkuTuJa\n0YqWxHsGAGgrwzD42QkAAAAAaBc+x8e1hIaG6sSJE62e/8ILL2jNmjVdmKh92vp13pHvCzoGAQAA\nAAAAoFMlJia6OgIAAAAAALgBHT9+3NURrjt0DBKVhgAAAMDV6Bh0BR2DAAAAAAAAgO7F5/joDbqz\nY5CpzUcAAAAAAAAAAAAAAAAA6PEoDAIAAAAAAAAAAAAAAABuQBQGAQAAAAAAAAAAAAAAADcgCoMA\nAAAAAAAAAAAAAACAGxCFQQAAAAAAAOhUVqvV1REAAAAAAAAgybDZbDZXh3AVwzAkSb34FgAAAABO\n2X9XzlGOi5O4VrSiJfGeAQDayjAMfnYCAAAAANqFz/HRG7T167wj3xd0DAIAAAAAAECnSkxMdHUE\nAAAAAAAAiI5Bkqg0BAAAAK5Gx6Ar6BgEAAAAAAAAdC8+x0dvQMcgAAAAAAAAAAAAAAAAAB1CYRAA\nAAAAAAAAAAAAAABwA6IwCAAAAAAAAAAAAAAAALgBURgEAAAAAAAAAAAAAACuK7GxsTIM47p+xMbG\nuvo2dpvc3FyZTCaFhoa6OkqvQ2EQAAAAAAAAOpXVanV1BAAAAADADS49Pd3VETqsK64hOTlZSUlJ\n2r9/f6ev3RkMw3Dp+RsaGrRq1SqNHDlSffv2la+vr4YOHaolS5aotrbW6THJyckymUytetx5553d\nfEUtc3N1AAAAAAAAANxYkpKSKA4CAAAAAHQTm6sDtFPXFMgkJydr+/btCg0NVWRkZJecoz28vb0V\nFhamW2+91WUZamtrFRcXp4yMDEmSh4eHzGaz9u3bp3379mnTpk3Kzs6Wt7d3o+O8vLwUHBx8zaKm\nwsJCSdIDDzzQdRfQTnQMAgAAAAAAQKdKTEx0dQQAAAAAANCDREVF6fDhw8rKynJZhgULFigjI0MW\ni0XvvPOOqqqqVFFRobS0NPXr10/5+fmaOXNmk+MmTJigM2fO6PTp004fP+38lJCQ0I1X1DoUBgEA\nAAAAAKBT0S0IAAAAAADXstmu105KXaOwsFDLli2TJL3xxhuaOnWqowNQbGys1qxZI0l69913deDA\ngTatnZycLEkKDg7W448/3nmhOwmFQQAAAAAAAAAAAAAAANex5ORkmUwmbd++XZI0bdo0mUwmxyM0\nNLTR/KKiIs2bN0+DBw+Wl5eX/P39NXz4cC1dulQ1NTVOz5GQkCCTyaSkpCRdvnxZiYmJGjx4sCwW\ni4KCgvTcc8/p2LFjTo/Nzc11muOnCgoKNG/ePEVERMjX11e+vr4KDw/X9OnTlZub274b8w+pqamq\nqalR37599dJLLzUZf+KJJzRo0CDZbDZt3Lix1evW1tY65k+ePFkmU88rw3FzdQAAAAAAAAAAAAAA\nAAC0n5eXl4KDg1VSUqLa2lr5+/vLYrE4xoOCghzPd+/erccff1ylpaUyDEO+vr6qra1Vfn6+8vPz\ntX79emVmZiowMNDpuS5fvqwxY8YoLy9PHh4e8vT01Pnz55WSkqKPP/5YGRkZGjVqlNNj7V16rpaa\nmqqpU6fq0qVLkiSLxSKLxaKjR4/qyJEj2rp1q44fP97e26OcnBxJ0kMPPSR3d3encx599FEdPXpU\n2dnZrV43IyNDxcXFMgxDL7zwQrvzdaWeV6oEAAAAAAAAAAAAAACAVpswYYLOnDmjkf+PvTuPi+q8\n9zj+PQOCbBIkQtQsktwERJRGi0uzKBgTok21TVRwi95qvddrG62tXSPDbRMbm1pNkyZVr1K1CSZR\n03iDFVRwqRWJJlqDRls14gIRGRQQZZv7B525IjOyDYzC5/16zSvkPM9zzneOwGvG+fl7hgyRJC1d\nulTnzp2zP7KzsyVJFotFY8aMkcViUb9+/bRv3z4VFxerpKRE7733noKCgnTw4EFNnDjR6bXefPNN\nHT58WGvWrFFpaaksFosOHDig/v3768qVKxo3bpyKi4sbnX3Pnj1KSEjQ1atXFRcXp5ycHJWVlamw\nsFDFxcXauHGjhg8f3qL7k5ubK0nq06eP0zmRkZGSpKNHjzb6vH/84x8lSdHR0erbt28LErYeCoMA\nAAAAAAAAAAAAAAA6gNdff135+fkKCgpSenq6BgwYIEkymUx69tlnlZqaKknaunWrvcvOjS5duqRl\ny5Zp4sSJ8vDwkFRbGLNlyxYFBweroKBAb7zxRqMzzZ07V9XV1Ro6dKi2bNlizyRJ/v7+Gj16tFas\nWNHcpyxJOn/+vCSpR48eTud0795dklRaWqqysrIGz3nx4kX97//+r6TabdZuVRQGAQAAAAAAwKXM\nZrO7IwAAAAAAAAfef/99SdL06dPrbC9mM2LECHvXoXfffdfhOXr16qXExMR6x4ODgzVz5sw612nI\n0aNHlZOTI8MwtGjRInuhkavZCn2u317tRr6+vvavS0tLGzznO++8o8rKSnXq1EkTJkxoechWQmEQ\nAAAAAAAAXCo5OdndEQAAAAAAwA0qKip0+PBhGYah2NhYp/Pi4uIkSZ988onD8aFDhzpdaxv77LPP\nVFVV1WCmvXv3SpK6du2qmJiYBuffSmzbiD399NO688473ZzGOQqDAAAAAAAA4FJJSUnujgAAAAAA\nAG5QVFQkq9UqSerZs6fTebaxCxcu3HTcEdtWXdXV1bJYLA1mKigokCTde++9Dc5tCT8/P0lSeXm5\n0zlXrlyxf+3v73/T8+Xm5mr//v2Sbu1txCQKgwAAAAAAAOBibCUGAAAAAMCt7erVq+6O0KZsBUvn\nzp1zOsc25u/vby8kcsbWLSg4OFhf//rXXZSydVAYBAAAAAAAAAAAAAAA0M517dpVhmHIarXqiy++\ncDrvzJkzkqRu3bo5HD979qzTtbbiGg8PDwUFBTWY6a677pIknT59usG5LdGnTx9J0uHDh53Oyc3N\nlST17t37pueqrq7W2rVrJUmJiYny9PR0UcrWQWEQAAAAAAAAAAAAAABAO2Ay1ZaB2LYMu56Xl5f6\n9u0rScrMzHR6ju3bt0uS+vfv73B8x44dTtfaxqKiohpVMDN48GBJtducZWdnNzi/uWJjYyVJu3fv\n1rVr1xzOycjIkCQNHz78pufKyMjQ+fPnZRjGLb+NmERhEAAAAAAAAAAAAAAAQLvQpUsXSZLFYnE4\n/txzz0mSUlJSlJ+fX288PT1de/fulWEYGjdunMNznDp1SqmpqfWOFxUVadmyZZKksWPHNipveHi4\nBg4cKKvVqvnz56uqqqpR65rqW9/6lry9vWWxWLRixYp645s2bdKxY8dkMpmUmJh403PZthGLjIx0\nWjx1K6EwCAAAAAAAAAAAAAAAoB2IioqSJG3YsEGXL1+uNz579mx1795d5eXlio+P1/79+yXVbo+1\nfv16JSQkSJKeeOIJDRs2zOE1AgMDNWPGDL399tuqrq6WJB06dEhPPfWUCgsLFRoaqlmzZjU68+LF\ni+Xh4aFdu3bVySRJJSUlSk1N1aRJkxp9PkdCQ0P1wgsvSJLmz5+vtWvXqqamRpKUlpamadOmSard\nGsx2Dx25dOmSPvjgA0nS888/36JMbcWwOuof1UEYhiHJcQstAAAAoCOzvVbOlPN2sh1BrGrby/Ke\nAQCaxmw2y2w2uzsGAAAAAOA21NjP8W3zbneu/rvHzz//XNHR0aqoqJCHh4dCQkLUqVMn3XPPPdq1\na5ckKScnR/Hx8fauQv7+/qqsrLRvsRUdHa2MjAzdeeeddc49depUrV69Wj/+8Y+VmZmp7OxseXl5\nydvbWyUlJZIkPz8/bd68WY8++midtVlZWYqLi1OvXr104sSJernXrVunqVOn2jN07txZPj4+9ozO\n1jVFVVWVxowZo7S0NEm1W6t5eHiovLxckjRw4EBt27ZNfn5+Ts+xfPlyzZw5U56ensrLy1NoaGiz\nsjS1XqUl9S10DAIAAAAAAIBLJScnuzsCAAAAAKCdGzlypLsjtFhrPIfw8HBlZGQoPj5eQUFB+vLL\nL5WXl6ezZ8/a58TExCg3N1dz585VeHi4qqur5eXlpZiYGL366qvKzs6uVxR0vc6dOysrK0sLFixQ\nWFiYqqqqFBISosTERB04cKBeUZDUcCHX+PHjdeTIEc2ePVvh4eEymUyqqalRZGSkZsyYodWrVzf/\npvyLp6enNm3apLfeekuDBw+Wj4+PPDw89PDDD2vRokXavXv3TYuCJGn16tUyDEMjRoxodlFQW6Nj\nkPjXvwAAAMCN6BhUi45BANA8dAwCAAAAADQXn+Pfumwdg8xmsxYsWODuOLc1OgYBAAAAAADgtkVR\nEAAAAAAAwK2BwiAAAAAAAAAAAAAAAACgHaIwCAAAAAAAAAAAAAAAAGiHPN0dAAAAAAAAAAAAAAAA\nALc2wzBkGIZbM8TExCgvL6/R8xMSErRkyZJWTHTrozAIAAAAAAAAAAAAAAAAN7Vq1SqtWrXKrRkK\nCwt14cKFRs+/fPlyK6a5PVAYBAAAAAAAAJcym80ym83ujgEAAAAAANqZkydPujvCbcewWq1Wd4dw\nF1uLqw58CwAAAACHbK+VM5Xp5iTuFatYSbxnAICmMgyD350AAAAAgGbhc3x0BE39Pm/Jz4WpySsA\nAAAAAACAm0hKSnJ3BAAAAAAAAIiOQZKoNAQAAABuRMegWnQMAgAAAAAAANoWn+OjI6BjEAAAAAAA\nAAAAAAAAAIAWoTAIAAAAAAAAAAAAAAAAaIcoDAIAAAAAAAAAAAAAAADaIQqDAAAAAAAAAAAAAAAA\ngHaIwiAAAAAAAAC4lNlsdncEAAAAAAAASDKsVqvV3SHcxTAMSVIHvgUAAACAQ7bXypnKdHMS94pV\nrCTeMwBAUxmGwe9OAAAAAECz8Dk+OoKmfp+35OeCjkEAAAAAAABwqaSkJHdHAAAAAAAAgCgMAgAA\nAAAAgIuxlRgAAAAAALheVlaWTCaTwsLC3B2lw6EwCAAAAAAAAAAAAAAA3FZGjRolwzBu68eoUaNc\nfl9SUlKUnJysgwcPuvzcrmDbEstdampqtGzZMg0ZMkR33HGHAgIC1L9/f7366quqrKy86dpTp05p\nzpw5ioqKkr+/v7y8vNSjRw+NHj1amzZtaqNn0HSGtQNvzMfehAAAAIBjttfKmcp0cxL3ilWsJN4z\nAAAAAAAAAG2lsZ/ju7vAxFVc/XePw4YN086dO5WSkqIpU6a49NwtkZOToylTpujuu+9WRkaGWzJU\nVlZqzJgx2rx5syTJ29tbHh4eunLliiQpJiZG27dvl5+fX7216enp+uY3v6ny8nJJkqenp3x9fVVS\nUmL/M5wyZYpSUlIalaWp9SotqW/xbPIKAAAAAAAAAAAAAACAW4HZ3QGayezuAG0rJiZGR44ccWuG\nn//859q8ebN8fHz01ltvadKkSTIMQx999JGef/555eTkaObMmVq7dm2ddWVlZZo4caLKy8v1wAMP\n6A9/+IOGDRsmk8mkgoIC/eIXv9Dvf/97rV69WsOHD9fkyZPd9AwdYysxAAAAAAAAAAAAAACAdoQu\n6HXl5+dr6dKlkqRXXnlFkydPtnfhGTVqlFauXClJeuedd/T3v/+9ztqdO3fq4sWLMgxDKSkpiouL\nk8lUW24TGhqq119/XUOHDpUkbdiwoa2eUqNRGAQAAAAAAACXMpvN7o4AAAAAAECHkpKSIpPJpJ07\nd0qSpk2bJpPJZH+EhYXVmV9QUKB58+YpIiJCvr6+CgwM1KBBg7R48WJVVFQ4vMbUqVNlMpmUnJys\na9euKSkpSREREfLx8VFISIgmTJig48ePO1yblZXlMMf18vLyNG/ePEVFRSkgIEABAQGKjIzU9OnT\nlZWV1bwb8y/r169XRUWF7rjjDn3nO9+pN/6Nb3xDDz30kKxWq95+++06Y7btwyTp4Ycfdnj+/v37\nS5J9W7JbCYVBAAAAAAAAcKnk5GR3RwAAAAAAoEPx9fVVaGioOnXqJEkKDAzUXXfdZX+EhITY5+7b\nt0+RkZH67W9/q+PHj8vLy0tVVVXKycnRD37wAw0aNEgXLlxweq1r165p2LBh+sUvfqEvvvhCnTt3\n1sWLF5WamqqHH35Yu3btcrrW1qXnRuvXr1d4eLh++9vfKjc3VzU1NfL29taxY8e0cuVKTZs2rZl3\nplZmZqYk6fHHH5eXl5fDOU8++aQkafv27XWOf+UrX5HJZJLVatWBAwccrt2/f7+k/y8QupVQGAQA\nAAAAAACXSkpKcncEAAAAAAA6lHHjxun8+fMaMmSIJGnp0qU6d+6c/ZGdnS1JslgsGjNmjCwWi/r1\n66d9+/apuLhYJSUleu+99xQUFKSDBw9q4sSJTq/15ptv6vDhw1qzZo1KS0tlsVh04MAB9e/fX1eu\nXNG4ceNUXFzc6Ox79uxRQkKCrl69qri4OOXk5KisrEyFhYUqLi7Wxo0bNXz48Bbdn9zcXElSnz59\nnM6JjIyUJB09erTO8fvvv18vvPCCpNquSdu2bVNVVZWk2i3KZs+erZ07d6pnz576wQ9+0KKcrYHC\nIAAAAAAAALgUW4kBAAAAAHBrev3115Wfn6+goCClp6drwIABkiSTyaRnn31WqampkqStW7fau+zc\n6NKlS1q2bJkmTpwoDw8PSVJ0dLS2bNmi4OBgFRQU6I033mh0prlz56q6ulpDhw7Vli1b7Jkkyd/f\nX6NHj9aKFSua+5QlSefPn5ck9ejRw+mc7t27S5JKS0tVVlZWZ+w3v/mN3nrrLXXu3FkjRoxQ586d\n1aVLF/Xo0UOrVq3SlClTtG/fPgUHB7coZ2ugMAgAAAAAAAAAAAAAAKADeP/99yVJ06dPr7O9mM2I\nESPsXYfeffddh+fo1auXEhMT6x0PDg7WzJkz61ynIUePHlVOTo4Mw9CiRYvshUauZiv08fHxcTrH\n19fX/nVpaWmdsZqaGpWUlOjKlSuSJKvVqrKyMhmGocrKSpWUlKioqKgVkrcchUEAAAAAAAAAAAAA\nAADtXEVFhQ4fPizDMBQbG+t0XlxcnCTpk08+cTg+dOhQp2ttY5999pl9u62b2bt3rySpa9euiomJ\naXC+u0ycOFE//OEPVVJSoj/84Q86deqULl++rL179yo+Pl4bN27UI488oo8//tjdUeuhMAgAAAAA\nAAAAAAAAAKCdKyoqktVqlST17NnT6Tzb2IULF2467ohtq67q6mpZLJYGMxUUFEiS7r333gbntoSf\nn58kqby83OkcWzcgqXYLM5vNmzdr3bp1MplM2rhxo2bMmKF77rlHfn5+iomJ0Ycffqjhw4fr8uXL\n+u53v9t6T6KZKAwCAAAAAAAAAAAAAADoQK5everuCG3KVrB07tw5p3NsY/7+/vZCIkn64IMPJEkD\nBgzQo48+6nDtnDlzJEn79u2zFzvdKigMAgAAAAAAgEuZzWZ3RwAAAAAAADfo2rWrDMOQ1WrVF198\n4XTemTNnJEndunVzOH727Fmna23FNR4eHgoKCmow01133SVJOn36dINzW6JPnz6SpMP1WPQ7AAAg\nAElEQVSHDzudk5ubK0nq3bt3neO2exUWFuZ07fVjN7u37kBhEAAAAAAAAFwqOTnZ3REAAAAAAOiQ\nTKbaMhDblmHX8/LyUt++fSVJmZmZTs+xfft2SVL//v0dju/YscPpWttYVFSUPD09G8w7ePBgSbXb\nnGVnZzc4v7liY2MlSbt379a1a9cczsnIyJAkDR8+vM5x27ZiNyv4uX4sICCgRVldjcIgAAAAAAAA\nuFRSUpK7IwAAAAAA0CF16dJFkmSxWByOP/fcc5KklJQU5efn1xtPT0/X3r17ZRiGxo0b5/Acp06d\nUmpqar3jRUVFWrZsmSRp7NixjcobHh6ugQMHymq1av78+aqqqmrUuqb61re+JW9vb1ksFq1YsaLe\n+KZNm3Ts2DGZTCYlJibWGbMVL+3fv1+ffvqpw/MvX75ckhQYGKiIiAgXp28ZCoMAAAAAAADgUmwl\nBgAAAACAe0RFRUmSNmzYoMuXL9cbnz17trp3767y8nLFx8dr//79kqTq6mqtX79eCQkJkqQnnnhC\nw4YNc3iNwMBAzZgxQ2+//baqq6slSYcOHdJTTz2lwsJChYaGatasWY3OvHjxYnl4eGjXrl11MklS\nSUmJUlNTNWnSpEafz5HQ0FC98MILkqT58+dr7dq1qqmpkSSlpaVp2rRpkqTExET7PbR5/vnnFRAQ\noKqqKo0ePVoffvihvetQXl6epk+frg8++ECSNGvWLBmG0aKsrmZYHfWP6iBsfxgd+BYAAAAADtle\nK2fKeTvZjiBWte1lec8AAAAAAAAAtI3Gfo5vL74wt3Kg1mKu/Y+r/+7x888/V3R0tCoqKuTh4aGQ\nkBB16tRJ99xzj3bt2iVJysnJUXx8vL2rkL+/vyorK+3FLtHR0crIyNCdd95Z59xTp07V6tWr9eMf\n/1iZmZnKzs6Wl5eXvL29VVJSIkny8/PT5s2b9eijj9ZZm5WVpbi4OPXq1UsnTpyol3vdunWaOnWq\nPUPnzp3l4+Njz+hsXVNUVVVpzJgxSktLk1S7tZqHh4fKy8slSQMHDtS2bdvk5+dXb+1f/vIXjR07\nVmVlZZJqv/98fHx05coV+5xnnnlG69evb9QWak2tV2lJfUvDaQAAAAAAAAAAAAAAAG5FZncHuLWE\nh4crIyNDCxcu1Mcff6wvv/xSNTU1Mpn+f0OpmJgY5ebmatGiRUpLS9Pp06fl5eWlfv36afz48Zo9\ne7a8vLycXqNz587KysrSwoULtW7dOp0+fVohISEaPny4zGazHnzwwXprGuqiM378eA0aNEiLFy9W\nRkaG8vLyVFNTo8jISD3yyCOaPHly82/Kv3h6emrTpk1avny5UlJSdOTIEVVXV+vhhx9WYmKi5syZ\n47SoJz4+XocPH9Zrr72mrVu36uTJk7p27Zruuusu9e/fX5MnT9b48eNbnLE10DFI/OtfAAAA4EZ0\nDKpFxyAAAAAAAACgbTX2c/xRo0bZO7/crkaOHKmPPvrI3TEazdYxyGw2a8GCBe6Oc1ujYxAAAAAA\nAAAAAAAAAIATt1NBDeBOpoanAAAAAAAAAI1nNpvdHQEAAAAAAACiMAgAAAAAAAAulpyc7O4IAAAA\nAAAAEFuJAQAAAAAAwMWSkpLcHQEAAAAAALiYYRgyDMOtGWJiYpSXl9fo+QkJCVqyZEkrJrr1GVar\n1eruEO5i+4btwLcAAAAAcMj2WjlTmW5O4l6xipXEewYAAAAAAACgrfA5Pm4mLCxMp0+fbvT8559/\nXitXrmzFRM3T1O/zlvxc0DEIAAAAAAAAAAAAAAAAt7yTJ0+6O8Jtx+TuAAAAAAAAAAAAAAAAAABc\nj8IgAAAAAAAAAAAAAAAAoB2iMAgAAAAAAAAAAAAAAABohygMAgAAAAAAgEuZzWZ3RwAAAAAAAIAk\nw2q1Wt0dwl0Mw5AkdeBbAAAAADhke62cqUw3J3GvWMVK4j0DADSVYRj87gQAAAAANAuf46MjaOr3\neUt+LugYBAAAAAAAAJdKSkpydwQAAAAAAACIjkGSqDQEAAAAbkTHoFp0DAIAAAAAAADaFp/joyOg\nYxAAAAAAAAAAAAAAAACAFqEwCAAAAAAAAAAAAAAAAGiHKAwCAAAAAAAAAAAAAAAA2iEKgwAAAAAA\nAAAAAAAAAIB2iMIgAAAAAAAAuJTZbHZ3BAAAAAAAAIjCIAAAAAAAALhYcnKyuyMAAAAAANq5UaNG\nyTCM2/oxatQod9/GNpOVlSWTyaSwsDB3R+lwKAwCAAAAAACASyUlJbk7AgAAAACgnUtLS3N3hBZr\njeeQkpKi5ORkHTx40OXndgXDMNx6/ZqaGi1btkxDhgzRHXfcoYCAAPXv31+vvvqqKisrb7r24sWL\n+tnPfqa+ffvKz89PXbp00YABA/TrX/9aFRUVbfQMms6wWq1Wd4dwF9s3XAe+BQAAAIBDttfKmcp0\ncxL3ilWsJN4zAAAAAAAAAG2lsZ/j2+e1eqLWYSuPcfXfPQ4bNkw7d+5USkqKpkyZ4tJzt0ROTo6m\nTJmiu+++WxkZGW7JUFlZqTFjxmjz5s2SJG9vb3l4eOjKlSuSpJiYGG3fvl1+fn711h48eFBPP/20\n8vPzJUkBAQGqqalRWVmZJKlfv37avn27unbt2qgsTa1XaUl9Cx2DAAAAAAAAAAAAAAAA0GpiYmJ0\n5MgRtxUFSdLPf/5zbd68WT4+PvrjH/+oK1euqLS0VJs2bVLXrl2Vk5OjmTNn1ltXWlqqZ555Rvn5\n+YqIiNCePXt06dIllZSUaOvWrbr77rt16NAhTZgwwQ3PqmEUBgEAAAAAAAAAAAAAALQjdEGvKz8/\nX0uXLpUkvfLKK5o8ebK9C8+oUaO0cuVKSdI777yjv//973XW/s///I/OnDkjT09Pbdy4UYMHD7aP\nxcXF6U9/+pMkKT09XVu3bm2Lp9MkFAYBAAAAAAAAAAAAAADcxlJSUmQymbRz505J0rRp02QymeyP\nsLCwOvMLCgo0b948RUREyNfXV4GBgRo0aJAWL16siooKh9eYOnWqTCaTkpOTde3aNSUlJSkiIkI+\nPj4KCQnRhAkTdPz4cYdrs7KyHOa4Xl5enubNm6eoqCgFBAQoICBAkZGRmj59urKyspp3Y/5l/fr1\nqqio0B133KHvfOc79ca/8Y1v6KGHHpLVatXbb79dZ8y29diTTz6p8PDwemsfe+wxDRgwQJK0evXq\nFuVsDZ7uDgAAAAAAAAAAAAAAAIDm8/X1VWhoqIqKilRZWanAwED5+PjYx0NCQuxf79u3T08//bQs\nFosMw1BAQIAqKyuVk5OjnJwcrVmzRunp6erWrZvDa127dk3Dhg1Tdna2vL291blzZ128eFGpqan6\n8MMPtXnzZj322GMO19q69Nxo/fr1mjx5sq5evSpJ8vHxkY+Pj44dO6ajR49q27ZtOnnyZHNvjzIz\nMyVJjz/+uLy8vBzOefLJJ3Xs2DFt3769zvEvvvhCkhwWBdmEh4dr//79dAwCAAAAAABA+2c2m90d\nAQAAAACADmXcuHE6f/68hgwZIklaunSpzp07Z39kZ2dLkiwWi8aMGSOLxaJ+/fpp3759Ki4uVklJ\nid577z0FBQXp4MGDmjhxotNrvfnmmzp8+LDWrFmj0tJSWSwWHThwQP3799eVK1c0btw4FRcXNzr7\nnj17lJCQoKtXryouLk45OTkqKytTYWGhiouLtXHjRg0fPrxF9yc3N1eS1KdPH6dzIiMjJUlHjx6t\nc9xWzFRdXe10bVVVlaTaTkwWi6VFWV2txYVBZ86c0b//+7+rR48e6ty5s8LCwjR37twm/SH/6Ec/\n0vDhw3XPPffI19dXXbt2VXR0tH7+85+roKDA6bo9e/Zo5MiR6tq1q3x9fRUdHa2lS5eqpqampU8L\nAAAAAAAAzZScnOzuCAAAAAAAwIHXX39d+fn5CgoKUnp6un0LLJPJpGeffVapqamSpK1bt9q77Nzo\n0qVLWrZsmSZOnCgPDw9JUnR0tLZs2aLg4GAVFBTojTfeaHSmuXPnqrq6WkOHDtWWLVvsmSTJ399f\no0eP1ooVK5r7lCVJ58+flyT16NHD6Zzu3btLkkpLS1VWVmY/3qtXL0nSZ5995nStrfDo+mvdKlpU\nGPTPf/5TAwYMUEpKigYPHqzvf//7uv/++7V06VINGTJERUVFjTrPkiVLVF5erqeeekpz5szR5MmT\n5e3trZdffll9+/Z1uAfdn//8Zz3++OPavXu3nn32WX33u99VRUWF5s6dq4SEhJY8LQAAAAAAALRA\nUlKSuyMAAAAAAAAH3n//fUnS9OnT62wvZjNixAh716F3333X4Tl69eqlxMTEeseDg4M1c+bMOtdp\nyNGjR5WTkyPDMLRo0SJ7oZGr2Qp9rt9e7Ua+vr72r0tLS+1fP/nkk5Kk7du368CBA/XWbd68WYcP\nH5YkWa1WlZSUuCSzq7SoMGjWrFm6cOGCfve732nDhg16+eWXtW3bNs2dO1eff/65fvaznzXqPCUl\nJdqzZ49WrFihl19+WUuXLtW+ffv005/+VIWFhfrVr35VZ/7ly5c1Y8YMderUSVlZWVq+fLleeeUV\nffrppxoyZIjef/99rVu3riVPDQAAAAAAAM3EVmIAAAAAANx6KioqdPjwYRmGodjYWKfz4uLiJEmf\nfPKJw/GhQ4c6XWsb++yzz+zba93M3r17JUldu3ZVTExMg/Pd4dvf/rZ69Oghq9WqMWPG6M9//rPK\nyspUUlKid955R5MnT1anTp3s802mFm/e5VLNTvPPf/5TGRkZCgsL03/913/VGUtOTpavr6/Wrl2r\nK1euNHguLy8vh8fHjh0rSTp37lyd4++//74KCwuVkJCg/v372497e3vrl7/8paTaPe0AAAAAAAAA\nAAAAAAAgFRUVyWq1SpJ69uzpdJ5t7MKFCzcdd8S2VVd1dbUsFkuDmQoKCiRJ9957b4NzW8LPz0+S\nVF5e7nTO9fUt/v7+9q8DAgL05z//Wd26ddOZM2f0zW9+UwEBAQoMDNTEiRNlMpns26obhqE77rij\nlZ5F8zS7MMi2l5ytZdL1/P399cgjj6isrMxe3dUcmzZtkiQNGzaszvHt27dLkuLj4+utefzxx+Xj\n46O//e1vqqysbPa1AQAAAAAAAAAAAAAA2qOrV6+6O0KbshUs3diY5nq2MX9/f3shkc2AAQOUm5ur\nBQsWaPDgwbrvvvvUr18/vfDCCzp48KDuuusuSVKnTp3Uq1ev1nkSzeTZ3IWff/65JOmhhx5yOP7g\ngw8qIyNDx48ft7eZasirr76q0tJSXbp0SR9//LGys7M1ffp0ff/732/0tT08PBQWFqYjR47oxIkT\nCg8Pb8rTAgAAAAAAAAAAAAAAaHe6du0qwzBktVr1xRdfON2668yZM5Kkbt26ORw/e/as02vYims8\nPDwUFBTUYCZbQc3p06cbnNsSffr00ZEjR3T48GGnc3JzcyVJvXv3djgeHBwss9nscAv1AwcOSJIe\nfvjhOtuK3Qqa3THo0qVLkqTAwECH47bjxcXFjT7nb37zG/33f/+3li5dqr/+9a8aNGiQEhIS6t20\nS5cuyTCMm17barU26doAAAAAAAAAAAAAAAC3M5OptgzEtmXY9by8vNS3b19J/79LlCO2XZz69+/v\ncHzHjh1O19rGoqKi5OnZcK+awYMHS6rd5iw7O7vB+c0VGxsrSdq9e7euXbvmcE5GRoYkafjw4U06\nd0VFhdavXy9JmjBhQgtSto5mFwa1hvPnz6umpkYFBQXasGGDLly4oCeffFJr1651dzQAAAAAAAA0\nkqN/OQcAAAAAAFpfly5dJEkWi8Xh+HPPPSdJSklJUX5+fr3x9PR07d27V4ZhaNy4cQ7PcerUKaWm\nptY7XlRUpGXLlkmSxo4d26i84eHhGjhwoKxWq+bPn6+qqqpGrWuqb33rW/L29pbFYtGKFSvqjW/a\ntEnHjh2TyWRSYmJik85tNpt1/vx5de/eXVOnTnVRYtdpdmGQrVuPrXPQjWzH77jjjiafu1u3bhoz\nZozS09Pl6empefPm1bu21WptlWsDAAAAAACgZZKTk90dAQAAAACADikqKkqStGHDBl2+fLne+OzZ\ns9W9e3eVl5crPj5e+/fvlyRVV1dr/fr1SkhIkCQ98cQTGjZsmMNrBAYGasaMGXr77bdVXV0tSTp0\n6JCeeuopFRYWKjQ0VLNmzWp05sWLF8vDw0O7du2qk0mSSkpKlJqaqkmTJjX6fI6EhobqhRdekCTN\nnz9fa9euVU1NjSQpLS1N06ZNkyQlJiba7+H1XnnlFW3cuLFOwdXnn3+ub3/72/rVr34lT09PLV++\nXAEBAS3K2RqaXRgUEREhqfaJOnL8+HFJ0kMPPdTcS+jee+9V7969VVhYqIKCAvvx8PBwp9euqqrS\nyZMn1alTJ91///2Nuo5hGE4fw4YNk2EYTv+lm9lsZpxxxhlnnHHGGWec8XY37kyKUhSrWKUopUOO\n3yp/Powzzjjjt/p4UlLSLZ2PccYZZ5xxxhlnnHHGGWec8Vt3vKmM2/TRWiZPniwvLy/t3r1bwcHB\n6tmzp3r16qXHHntMUm2DlQ8++EBBQUE6dOiQYmJi1KVLF/n7+2vs2LEqLi5WdHS0/vSnPzm9xn/+\n538qKipKkyZNkp+fnwIDA/WVr3xF+/fvl5+fn9577z17s5nG+NrXvqa1a9fK29tb27dvV0xMjHx9\nfRUcHKzAwEBNmDBBe/bsafG9+eUvf6mRI0eqvLxcU6ZMka+vr/z8/PT1r39dRUVFGjhwoN566y2H\nazdv3qxnn31WwcHB8vf3l5+fn3r37q1Vq1YpICBAa9eu1ciRI1uUz1af4ujREobV0cZyjXDixAn9\n27/9m8LCwvSPf/yjTpCSkhJ1795dhmHoyy+/lI+PT7MDhoaG6uLFi7p06ZL8/PwkSatWrdK3v/1t\nTZkyRSkpKXXmb9++XU888YSGDh160z3xJNkzN/MWAAAAAO2W7bVypm7+mrq9i1XtvtO8ZwAAAAAA\nAADaRmM/xx81apTS0tLaIlKrGTlypD766COXn3fXrl1auHChPv74Y1ksFtXU1Oi+++7TiRMn7HMK\nCgq0aNEipaWl6fTp0/L09FRERITGjx+v2bNny8vLq955p06dqtWrV8tsNutHP/qRFi5cqHXr1un0\n6dMKCAjQ8OHDZTab9eCDD9Zbu2PHDsXGxqpXr151clzv1KlTWrx4sTIyMpSXl6dOnTqpZ8+eeuSR\nRzR58mQ9+uijLb43VqtVy5cvV0pKio4cOaLq6mo9+OCDSkxM1Jw5c+Tp6elw3caNG/Xuu+9q//79\nys/Pl2EYuu+++/T000/re9/7nnr27NmkHE2tV2lJfUuzC4MkKT4+Xunp6Xrttdc0e/Zs+/Hvf//7\nWrJkif7jP/5Dv//97yXVdvL5xz/+IS8vrzqdfI4fP66QkJB61WI1NTV68cUXtXDhQj355JP6y1/+\nYh8rKSnRAw88oMuXL+uvf/2rBgwYIEm6evWq4uLitHfvXqWmpjrd787+5CkMAgAAAByiMKgWhUEA\nAAAAAABA2+Jz/FvX9YVBCxYscHec21pbFgY5LnVqpN///vf62te+pu9973vatm2bIiIilJ2drays\nLIWHh+ull16yzz1z5owiIyN133336eTJk/bjH330kX7yk5/oscceU69evRQcHKyCggLt2LFDJ0+e\n1H333VevVVNAQICWL1+u5557TsOGDVNCQoKCgoL04Ycf6tixYxo7dmyDRUEAAAAAAAAAAAAAAABA\ne9aiwqD7779fH3/8sRYsWKC//OUvSktLU48ePTRnzhwlJSU53DPuxr3PRowYoX/+85/avXu3Pvnk\nExUXFysgIEARERGaPn26vvvd78rf37/eeUaPHq0dO3bopZde0vr163X16lU9+OCD+u1vf6vvfe97\nLXlaAAAAAAAAAAAAAAAAwG2vRYVBknT33Xdr5cqVDc7r1auXampq6h3v06ePfve73zXr2l/72tda\nZb89AAAAAAAAAAAAAAAA4HbX4sIgAAAAAAAA4Hpms1lms9ndMQAAAAAAgAsZhlFvl6i2FhMTo7y8\nvEbPT0hI0JIlS1ox0a3PsFqtVneHcBfbN2wHvgUAAACAQ7bXypnKdHMS94pVrCTeMwBAUxmGwe9O\nAAAAAECz8Dk+biYsLEynT59u9Pznn3++UbtgtbWmfp+35OeCjkEAAAAAAABwqaSkJHdHAAAAAAAA\n7dDJkyfdHeG2Q8cgUWkIAAAA3IiOQbXoGAQAAAAAAAC0LT7HR0fQlh2DTE1eAQAAAAAAAAAAAAAA\nAOCWR2EQAAAAAAAAAAAAAAAA0A5RGAQAAAAAAAAAAAAAAAC0QxQGAQAAAAAAAAAAAAAAAO0QhUEA\nAAAAAABwKbPZ7O4IAAAAAAAAkGRYrVaru0O4i2EYkqQOfAsAAAAAh2yvlTOV6eYk7hWrWEm8ZwCA\npjIMg9+dAAAAAIBm4XN8dARN/T5vyc8FHYMAAAAAAADgUklJSe6OAAAAAAAAANExSBKVhgAAAMCN\n6BhUi45BAAAAAAAAQNvic3x0BHQMAgAAAAAAAAAAAAAAANAiFAYBAAAAAAAAAAAAAACg1WRlZclk\nMiksLMzdUTocCoMAAAAAAAAAAAAAAMBtZdSoUTIM47Z+jBo1yuX3JSUlRcnJyTp48KDLz+0Kti2x\n3GHv3r1aunSpJk2apIiICJlMJplMJv3kJz9p9Dm2bt2qZ555RiEhIercubMeeOABzZkzR19++WUr\nJm8ZT3cHAAAAAAAAAAAAAAAAaIq0tDR3R2ix1ngOKSkp2rlzp8LCwhQdHe3y8zeXn5+fwsPDdffd\nd7stQ3x8vC5fvlzveGOLlV566SW9+OKLkiQPDw/5+/vr5MmTeu211/TOO+9o+/bt6tOnj0szuwKF\nQQAAAAAAAHAps9kss9ns7hgAAAAAgI4gM9PdCZonNtbdCdpUTEyMjhw54tYMvr6+6t27t2JiYvTV\nr35VS5Ys0aefftqotWlpaXrxxRdlGIbmzZunpKQk+fn5KTc3V5MmTdKnn36q0aNHKzc3V15eXq38\nTJqGrcQAAAAAAADgUsnJye6OAAAAAABAh2a1Wt0d4ZZz9uxZ/e1vf9Nrr72mKVOmqEuXLo1e+9Of\n/lSS9M1vflOLFi2Sn5+fJCkyMlKbNm2Sv7+/Tpw4oWXLlrVK9pagMAgAAAAAAAAulZSU5O4IAAAA\nAAB0KCkpKTKZTNq5c6ckadq0aTKZTPZHWFhYnfkFBQWaN2+eIiIi5Ovrq8DAQA0aNEiLFy9WRUWF\nw2tMnTpVJpNJycnJunbtmpKSkhQRESEfHx+FhIRowoQJOn78uMO1WVlZDnNcLy8vT/PmzVNUVJQC\nAgIUEBCgyMhITZ8+XVlZWc27Mddp7JZhN/rss8906NAhGYahH/7wh/XGe/bsqcTEREnSn/70pxZl\nbA1sJQYAAAAAAACXYhsxAAAAAADalq+vr0JDQ1VUVKTKykoFBgbKx8fHPh4SEmL/et++fXr66adl\nsVhkGIYCAgJUWVmpnJwc5eTkaM2aNUpPT1e3bt0cXuvatWsaNmyYsrOz5e3trc6dO+vixYtKTU3V\nhx9+qM2bN+uxxx5zuNZZcc769es1efJkXb16VZLk4+MjHx8fHTt2TEePHtW2bdt08uTJ5t6eFsn8\n13Z1tuIpR5566iktX75cOTk5Kisrs3cUuhXQMQgAAAAAAAAAAAAAAOA2Nm7cOJ0/f15DhgyRJC1d\nulTnzp2zP7KzsyVJFotFY8aMkcViUb9+/bRv3z4VFxerpKRE7733noKCgnTw4EFNnDjR6bXefPNN\nHT58WGvWrFFpaaksFosOHDig/v3768qVKxo3bpyKi4sbnX3Pnj1KSEjQ1atXFRcXZy+uKSwsVHFx\nsTZu3Kjhw4e37Aa1QG5uriSpd+/eTudERkZKqt3C7ejRo22Sq7EoDAIAAAAAAAAAAAAAAOgAXn/9\ndeXn5ysoKEjp6ekaMGCAJMlkMunZZ59VamqqJGnr1q32Tjk3unTpkpYtW6aJEyfKw8NDkhQdHa0t\nW7YoODhYBQUFeuONNxqdae7cuaqurtbQoUO1ZcsWeyZJ8vf31+jRo7VixYrmPuUWO3/+vCSpR48e\nTud0797d/nV+fn6rZ2oKCoMAAAAAAAAAAAAAAAA6gPfff1+SNH369Drbi9mMGDHC3nXo3XffdXiO\nXr16KTExsd7x4OBgzZw5s851GnL06FHl5OTIMAwtWrTIXmh0KykrK5OkOluz3cjX11dSbceg0tLS\nNsnVWBQGAQAAAAAAAAAAAAAAtHMVFRU6fPiwDMNQbGys03lxcXGSpE8++cTh+NChQ52utY199tln\nqqqqajDT3r17JUldu3ZVTExMg/PRdBQGAQAAAAAAwKXMZrO7IwAAAAAAgBsUFRXJarVKknr27Ol0\nnm3swoULNx13xLbdVnV1tSwWS4OZCgoKJEn33ntvg3Pdxc/PT5JUXl7udM6VK1ckSYZhyN/fv01y\nNRaFQQAAAAAAAHCp5ORkd0cAAAAAAAA3cfXqVXdHuG3Yip3OnTvndM71Y927d2/1TE1BYRAAAAAA\nAABcKikpyd0RAAAAAADADbp27SrDMGS1WvXFF184nXfmzBlJUrdu3RyOnz171ulaW4GMh4eHgoKC\nGsx01113SZJOnz7d4Fx36dOnjyTpyJEj9o5LN8rNzZVU2zGod+/ebZatMSgMAgAAAAAAgEuxlRgA\nAAAAAO5hMtWWgTgqYPHy8lLfvn0lSZmZmU7PsX37dklS//79HY7v2LHD6VrbWFRUlDw9PRvMO3jw\nYEm125xlZ2c3ON8dYmNjJUmXLl1STk6Owznp6emSpEGDBsnHx6fNsjUGhUEAAAAAAAAAAAAAAADt\nQJcuXSRJFovF4fhzzz0nSUpJSVF+fn698fT0dO3du1eGYWjcuHEOz3Hq1Cmlpm5FTmQAACAASURB\nVKbWO15UVKRly5ZJksaOHduovOHh4Ro4cKCsVqvmz5+vqqqqRq1rS71791Z0dLSsVqt+/etf1xs/\nd+6c3nnnHUnSxIkT2zpegygMAgAAAAAAAAAAAAAAaAeioqIkSRs2bNDly5frjc+ePVvdu3dXeXm5\n4uPjtX//fklSdXW11q9fr4SEBEnSE088oWHDhjm8RmBgoGbMmKG3335b1dXVkqRDhw7pqaeeUmFh\noUJDQzVr1qxGZ168eLE8PDy0a9euOpkkqaSkRKmpqZo0aVKjz+dMWVmZCgsLdfHiRRUWFqqyslKS\ndOXKFfuxwsJClZeX11v78ssvS5LWr1+vH/3oRyotLZVUu4XYM888o9LSUj3wwAOaMWNGi3O6mmF1\ntgFaB2AYhiTHLbQAAACAjsz2WjlTztvJdgSxqm0Ry3sGAAAAAAAAoG009nN82zzdZEusW1ps6/zd\n4+eff67o6GhVVFTIw8NDISEh6tSpk+655x7t2rVLkpSTk6P4+Hh7VyF/f39VVlbq2rVrkqTo6Ghl\nZGTozjvvrHPuqVOnavXq1frxj3+szMxMZWdny8vLS97e3iopKZEk+fn5afPmzXr00UfrrM3KylJc\nXJx69eqlEydO1Mu9bt06TZ061Z6hc+fO8vHxsWd0tq4pbPkbkpSUpKSkpHrHX3rpJb344ouSards\n8/Pzsz/vbt26KTMzU5GRkY3K0tR6lZbUtzS8oRsAAAAAAAAAAAAAAMCt6F8FNqgVHh6ujIwMLVy4\nUB9//LG+/PJL1dTUyGT6/w2lYmJilJubq0WLFiktLU2nT5+Wl5eX+vXrp/Hjx2v27Nny8vJyeo3O\nnTsrKytLCxcu1Lp163T69GmFhIRo+PDhMpvNevDBB+utsRdyOTF+/HgNGjRIixcvVkZGhvLy8lRT\nU6PIyEg98sgjmjx5cvNvynUZGspxs6w/+9nPNHjwYC1ZskT79u1TSUmJHnjgAX3961/XT3/6U3Xr\n1q3FGVsDHYPEv/4FAAAAbkTHoFp0DAKA5jGbzTKbze6OAQAAAAC4DTX2c/xRo0YpLS2tLSK1mpEj\nR+qjjz5yd4xGs3XcMZvNWrBggbvj3NbasmOQqeEpAAAAAAAAQOMlJye7OwIAAAAAoJ376KOPZLVa\nb+vH7VQUhNsXhUEAAAAAAABwqaSkJHdHAAAAAAAAgCgMAgAAAAAAgIuxjRgAAAAAAMCtwdPdAQAA\nAAAAAAAAAAAAAHBrMwxDhmG4NUNMTIzy8vIaPT8hIUFLlixpxUS3PgqDAAAAAAAAAAAAAAAAcFOr\nVq3SqlWr3JqhsLBQFy5caPT8y5cvt2Ka2wOFQQAAAAAAAAAAAAAAALjlnTx50t0RbjsmdwcAAAAA\nAAAAAAAAAAAA4HoUBgEAAAAAAMClzGazuyMAAAAAAABAkmG1Wq3uDuEuhmFIkjrwLQAAAAAcsr1W\nzlSmm5O4V6xiJfGeAQCayjAMfncCAAAAAJqFz/HRETT1+7wlPxd0DAIAAAAAAIBLJSUluTsCAAAA\nAAAARMcgSVQaAgAAADeiY1AtOgYBAAAAAAAAbYvP8dER0DEIAAAAAAAAAAAAAAAAQItQGAQAAAAA\nAAAAAAAAAAC0QxQGAQAAAAAAAAAAAAAAAO0QhUEAAAAAAAAAAAAAAABAO0RhEAAAAAAAAFzKbDa7\nOwIAAAAAAAAkGVar1eruEO5iGIYkqQPfAgAAAMAh22vlTGW6OYl7xSpWEu8ZAKCpDMPgdycAAAAA\noFn4HB8dQVO/z1vyc0HHIAAAAAAAALhUUlKSuyMAAAAAAABAFAYBAAAAAADAxdhKDAAAAADQ2kaN\nGiXDMG7rx6hRo9x9G9tMVlaWTCaTwsLC3B2lw6EwCAAAAAAAAAAAAAAA3FbS0tLcHaHFWuM5pKSk\nKDk5WQcPHnT5uV3BtiWWO+zdu1dLly7VpEmTFBERIZPJJJPJpJ/85CcNrj1+/LhWrlypWbNmKSYm\nRt7e3jKZTBoyZEgbJG8ZT3cHAAAAAAAAAAAAAAAAaI5MZbo7QrPEKrZVzpuSkqKdO3cqLCxM0dHR\nrXKN5vDz81N4eLjuvvtut2WIj4/X5cuX6x1vTLHSD3/4Q3344YfNWutuFAYBAAAAAAAAAAAAAACg\n1cTExOjIkSNuzeDr66vevXsrJiZGX/3qV7VkyRJ9+umnjVrr6empyMhI+9p9+/ZpzZo1rZzYNSgM\nAgAAAAAAAAAAAAAAaEesVqu7I9xyzp49W6fDz8qVKxu99t1335XJZLL//4ULF1yarTWZGp4CAAAA\nAAAANJ7ZbHZ3BAAAAAAAOpSUlBSZTCbt3LlTkjRt2jSZTCb7IywsrM78goICzZs3TxEREfL19VVg\nYKAGDRqkxYsXq6KiwuE1pk6dKpPJpOTkZF27dk1JSUmKiIiQj4+PQkJCNGHCBB0/ftzh2qysLIc5\nrpeXl6d58+YpKipKAQEBCggIUGRkpKZPn66srKzm3ZjrtGTbr+uLgm43dAwCAAAAAACASyUnJ1Mc\nBAAAAABAG/L19VVoaKiKiopUWVmpwMBA+fj42MdDQkLsX+/bt09PP/20LBaLDMNQQECAKisrlZOT\n83/s3X90VPWd//HXnUBIQn6YxAwIyhJP20QaiYsMoJbND/wRzdlCq4QgINEDpVJ0y3LWI3u2zOR0\nV7esS4nFZctyMAVrowh6bAVJhARoaUIKCgUBtQYJQQKTTCAk5Ncw3z84yZeYCfk1yc2P5+Oce8T7\n+XFfc0k4GebN+6q4uFhbtmxRbm6uoqKivF6rvr5eiYmJKioq0ogRIxQQEKCKigrl5OTo/fff186d\nOzV9+nSva9srztm2bZsWLFiguro6SVJgYKACAwP12Wef6eTJk9q9e7dKSkq6e3uGtIFb0gQAAAAA\nAIB+yW63mx0BAAAAAIAhJS0tTV9//bXuu+8+SVJWVpbOnTvXchQVFUmSXC6XZs2aJZfLpYkTJ+rg\nwYOqqqpSdXW1tm7dqvDwcB05ckTz5s1r91rr16/XsWPHtGXLFl25ckUul0uHDx/WpEmTVFtbq7S0\nNFVVVXU6+4EDB5Senq66ujolJyeruLhYNTU1cjqdqqqq0rvvvqsZM2b07AYNYRQGAQAAAAAAwKfo\nFgQAAAAAQP+0bt06nT9/XuHh4crNzdW9994r6fqjsh5//HHl5ORIkj766CPl5+d73ePSpUvasGGD\n5s2bJz8/P0lSfHy8du3apcjISJWXl+u1117rdKbly5fL7XYrISFBu3btaskkScHBwZo5c6Y2btzY\n3Zc85FEYBAAAAAAAAAAAAAAAMAS88847kqRFixa1erxYs4ceeqil69Dbb7/tdY/x48dr7ty5bc5H\nRkZqyZIlra7TkZMnT6q4uFiGYWj16tUthUbwHQqDAAAAAAAAAAAAAAAABrmGhgYdO3ZMhmEoKSmp\n3XnJycmSpI8//tjreEJCQrtrm8eOHz+upqamDjMVFhZKkiIiImSz2Tqcj66jMAgAAAAAAAAAAAAA\nAGCQq6yslMfjkSSNHTu23XnNYxcvXrzpuDdjxoyRJLndbrlcrg4zlZeXS5LGjRvX4Vx0D4VBAAAA\nAAAAAAAAAAAAQ0hdXZ3ZEdBHKAwCAAAAAACATzkcDrMjAAAAAACAb4iIiJBhGPJ4PPrqq6/anXf2\n7FlJUlRUlNfxsrKydteeO3dOkuTn56fw8PAOM40ePVqSdObMmQ7nonsoDAIAAAAAAIBPZWZmmh0B\nAAAAAIAhyWK5XgbS/MiwG/n7++vuu++WJOXn57e7x549eyRJkyZN8jq+d+/edtc2j8XFxWnYsGEd\n5p02bZqk6485Kyoq6nA+uo7CIAAAAAAAAPiU3W43OwIAAAAAAENSaGioJMnlcnkdf+KJJyRJ2dnZ\nOn/+fJvx3NxcFRYWyjAMpaWled3j9OnTysnJaXO+srJSGzZskCTNnj27U3ljYmI0ZcoUeTwevfDC\nC2pqaurUOnQehUEAAAAAAADwKR4lBgAAAACAOeLi4iRJ27dv1+XLl9uML1u2TLfddpuuXr2qlJQU\nHTp0SJLkdru1bds2paenS5IefPBBJSYmer1GWFiYFi9erDfffFNut1uSdPToUT3yyCNyOp0aNWqU\nli5d2unMa9askZ+fn/bv398qkyRVV1crJydH8+fP7/R+7ampqZHT6VRFRYWcTqcaGxslSbW1tS3n\nnE6nrl692mZtQ0NDy7jT6VRtba0kqampqdVab/fcbIbHW/+oIcIwDEneW2gBAAAAQ1nzz8r5ar+d\n7FCQpCRJvGcAAAAAAAAA+kpnP8dvnjfQ+frvHk+dOqX4+Hg1NDTIz89PVqtVw4cP1x133KH9+/dL\nkoqLi5WSktLSVSg4OFiNjY2qr6+XJMXHxysvL0+33nprq70zMjK0efNmvfjii8rPz1dRUZH8/f01\nYsQIVVdXS5JGjhypnTt36nvf+16rtQUFBUpOTtb48eP15Zdftsn91ltvKSMjoyVDQECAAgMDWzK2\nt64rmvN3xG63t+mGnJ2drWeeeabDtQkJCTd9TFuzrtar9KS+hY5BAAAAAAAAAAAAAABgQHnsscfM\njtBjvfEaYmJilJeXp5SUFIWHh+vChQsqLS1VWVlZyxybzaZPP/1Uy5cvV0xMjNxut/z9/WWz2fTK\nK6+oqKioTVHQjQICAlRQUKBVq1YpOjpaTU1Nslqtmjt3rg4fPtymKEjquJBrzpw5OnHihJYtW6aY\nmBhZLBZdu3ZNEyZM0OLFiztV0NMRwzA6fbSXvztrzUbHIPGvfwEAAIBvomPQdXQMAgAAAAAAAPoW\nn+P3X80ddxwOh1atWmV2nAGNjkEAAAAAAAAAAAAAAAAAeoTCIAAAAAAAAPiUw+EwOwIAAAAAAABE\nYRAAAAAAAAB8LDMz0+wIAAAAAAAAkDTM7AAAAAAAAAAYXOx2u9kRAAAAAACAjxmGIcMwTM1gs9lU\nWlra6fnp6elau3ZtLybq/wyPx+MxO4RZmr9gh/AtAAAAALxq/lk5X/kmJzFXkpIk8Z4BAAAAAAAA\n6Ct8jo+biY6O1pkzZzo9f+HChdq0aVMvJuqern6d9+T7go5BAAAAAAAAAAAAAAAA6PdKSkrMjjDg\nWMwOAAAAAAAAAAAAAAAAAMD3KAwCAAAAAAAAAAAAAAAABiEKgwAAAAAAAAAAAAAAAIBBiMIgAAAA\nAAAA+JTD4TA7AgAAAAAAACQZHo/HY3YIsxiGIUkawrcAAAAA8Kr5Z+V85ZucxFxJSpLEewYA6CrD\nMPizEwAAAADQLXyOj6Ggq1/nPfm+oGMQAAAAAAAAfMput5sdAQAAAAAAAKJjkCQqDQEAAIBvomPQ\ndXQMAgAAAAAAAPoWn+NjKKBjEAAAAAAAAAAAAAAAAIAeoTAIAAAAAAAAAAAAAAAAGIQoDAIAAAAA\nAAAAAAAAAAAGIQqDAAAAAAAAAAAAAAAA0GsKCgpksVgUHR1tdpQhh8IgAAAAAAAA+JTD4TA7AgAA\nAABgkEtNTZVhGAP6SE1N9fl9yc7OVmZmpo4cOeLzvX3BMAzTrl1YWKisrCzNnz9fsbGxslgsslgs\nWrlyZYdr9+3bp3/5l3/Rfffdp4iICA0fPlxWq1UPP/ywfvOb38jj8fTBK+gew9Of0/Wy5i+4IXwL\nAAAAAK+af1bOV77JScyVpCRJvGcAgK4yDIM/OwEAAAAA3dLZz/HNLDDxJV+/f05MTNS+ffuUnZ2t\np556yqd790RxcbGeeuop3X777crLyzMlwy233KLLly+3Of/iiy/qpZdeanfdf/zHf+hnP/tZy/8P\nGzZMwcHBunTpUsvv3/Tp0/WHP/xBISEhncrS1XqVntS3DOvyCgAAAAAAAOAm7Ha72REAAAAAAENE\n/gD9t41JSWYn6Fs2m00nTpwwNUNQUJDuuusu2Ww2TZ48WWvXrtUnn3zS4bqmpiZFRkZq4cKFSktL\n0+TJk2WxWORyufTqq6/q3//937V//34tWrRIb731Vh+8kq6hMAgAAAAAAAA+xaPEAAAAAAAwF518\n2yorK2vVaWrTpk2dWveDH/xAK1asUHBwcKvz4eHhstvtMgxDDodDW7du1X/9139p3LhxPs3dUxaz\nAwAAAAAAAAAAAAAAAKD7srOzZbFYtG/fPknS008/LYvF0nJER0e3ml9eXq4VK1YoNjZWQUFBCgsL\n09SpU7VmzRo1NDR4vUZGRoYsFosyMzNVX18vu92u2NhYBQYGymq16sknn9Tnn3/udW1BQYHXHDcq\nLS3VihUrFBcXp5CQEIWEhGjChAlatGiRCgoKundjbtDdx89NnDixTVHQjTIyMlr2P3ToULeu0Zvo\nGAQAAAAAAAAAAAAAADCABQUFadSoUaqsrFRjY6PCwsIUGBjYMm61Wlt+ffDgQT366KNyuVwyDEMh\nISFqbGxUcXGxiouLtWXLFuXm5ioqKsrrterr65WYmKiioiKNGDFCAQEBqqioUE5Ojt5//33t3LlT\n06dP97q2veKcbdu2acGCBaqrq5MkBQYGKjAwUJ999plOnjyp3bt3q6SkpLu3p1dFRERIut6l6dq1\nayanaYuOQQAAAAAAAAAAAAAAAANYWlqavv76a913332SpKysLJ07d67lKCoqkiS5XC7NmjVLLpdL\nEydO1MGDB1VVVaXq6mpt3bpV4eHhOnLkiObNm9futdavX69jx45py5YtunLlilwulw4fPqxJkyap\ntrZWaWlpqqqq6nT2AwcOKD09XXV1dUpOTlZxcbFqamrkdDpVVVWld999VzNmzOjZDepFe/fulXS9\n6CkuLs7kNG1RGAQAAAAAAAAAAAAAADAErFu3TufPn1d4eLhyc3N17733SpIsFosef/xx5eTkSJI+\n+ugj5efne93j0qVL2rBhg+bNmyc/Pz9JUnx8vHbt2qXIyEiVl5frtdde63Sm5cuXy+12KyEhQbt2\n7WrJJEnBwcGaOXOmNm7c2N2X3KuuXbsmu90uSZo2bZpiYmJMTtQWhUEAAAAAAADwKYfDYXYEAAAA\nAADgxTvvvCNJWrRoUavHizV76KGHWroOvf322173GD9+vObOndvmfGRkpJYsWdLqOh05efKkiouL\nZRiGVq9e3VJoNFD87Gc/0+HDhzV8+HBlZWWZHccrCoMAAAAAAADgU5mZmWZHAAAAAAAA39DQ0KBj\nx47JMAwlJSW1Oy85OVmS9PHHH3sdT0hIaHdt89jx48fV1NTUYabCwkJJUkREhGw2W4fz+5Pf/e53\nevnll2UYhl5++WVNnjzZ7EheURgEAAAAAAAAn2puoQ0AAAAAAPqPyspKeTweSdLYsWPbndc8dvHi\nxZuOezNmzBhJktvtlsvl6jBTeXm5JGncuHEdzu1PPvjgAy1cuFCS9Pzzz+uf//mfTU7UPgqDAAAA\nAAAA4FM8SgwAAAAAgP6trq7O7AgD1u7du/XEE0+oqalJzzzzjH75y1+aHemmKAwCAAAAAAAAAAAA\nAAAY5CIiImQYhjwej7766qt25509e1aSFBUV5XW8rKys3bXnzp2TJPn5+Sk8PLzDTKNHj5YknTlz\npsO5/cEf//hHff/731d9fb3mzJmj//u//zM7UocoDAIAAAAAAAAAAAAAABgELJbrZSDNjwy7kb+/\nv+6++25JUn5+frt77NmzR5I0adIkr+N79+5td23zWFxcnIYNG9Zh3mnTpkm6/pizoqKiDueb6eDB\ng0pNTdXVq1f1/e9/X2+88YYMwzA7VocoDAIAAAAAAAAAAAAAABgEQkNDJUkul8vr+BNPPCFJys7O\n1vnz59uM5+bmqrCwUIZhKC0tzesep0+fVk5OTpvzlZWV2rBhgyRp9uzZncobExOjKVOmyOPx6IUX\nXlBTU1On1vW1I0eOKCUlRdXV1Xr44Ye1detW+fn5mR2rUygMAgAAAAAAAAAAAAAAGATi4uIkSdu3\nb9fly5fbjC9btky33Xabrl69qpSUFB06dEiS5Ha7tW3bNqWnp0uSHnzwQSUmJnq9RlhYmBYvXqw3\n33xTbrdbknT06FE98sgjcjqdGjVqlJYuXdrpzGvWrJGfn5/279/fKpMkVVdXKycnR/Pnz+/0fu2p\nqamR0+lURUWFnE6nGhsbJUm1tbUt55xOp65evdpq3alTp/Twww+rqqpKiYmJeu+99zR8+PAe5+kr\nFAYBAAAAAADApxwOh9kRAAAAAAAYkhYsWCB/f3/98Y9/VGRkpMaOHavx48dr+vTpkqRbbrlF7733\nnsLDw3X06FHZbDaFhoYqODhYs2fPVlVVleLj4/Xb3/623Ws8++yziouL0/z58zVy5EiFhYXpnnvu\n0aFDhzRy5Eht3bpVYWFhnc58//3364033tCIESO0Z88e2Ww2BQUFKTIyUmFhYXryySd14MCBHt+b\nn/zkJ7JarYqKipLVatWf//xnSdKrr77acs5qtWr16tWt1v3iF7/QxYsXJV3vHDR+/HiNHj3a6/Hf\n//3fPc7pax0/0A0AAAAAAADogszMTIqDAAAAAAB9IinJ7AT9S0xMjPLy8vTyyy/rL3/5iy5cuKBr\n167JYvn/fWNsNps+/fRTrV69Wjt27NCZM2fk7++viRMnas6cOVq2bJn8/f3bvUZAQIAKCgr08ssv\n66233tKZM2dktVo1Y8YMORwOffvb326zxjCMm+aeM2eOpk6dqjVr1igvL0+lpaW6du2aJkyYoAce\neEALFizo/k25IUNHObxl9Xg8Leeqqqpuurampqb7AXuJ4fF4PGaHMEvzb9wQvgUAAACAV80/K+cr\n3+Qk5krS9b9V4D0DAHSNw+GgMAgAAAAA0C2d/Rw/NTVVO3bs6ItIveaxxx7TBx98YHaMTsvIyNDm\nzZvlcDi0atUqs+MMaF2tV+lJfQsdgwAAAAAAAOBTFAUBAAAAAHrbQCqoAcxk6XgKAAAAAAAAAAAA\nAAAAgIHGJ4VBZ8+e1TPPPKMxY8YoICBA0dHRWr58eYfPVmtWWVmpjRs36gc/+IG+9a1vKSgoSLfc\ncoumT5+uTZs2eW2FdPr0aVkslnaPuXPn+uKlAQAAAAAAAAAAAAAAAANSjx8l9re//U3333+/Ll68\nqFmzZik2NlZFRUXKysrShx9+qD/96U+KiIi46R5vv/22li5dqjFjxigpKUnjxo3T+fPntX37di1a\ntEg7d+7U1q1bva695557NGvWrDbn4+LievrSAAAAAAAAAAAAAAAAIMkwDBmGYWoGm82m0tLSTs9P\nT0/X2rVrezFR/2d4vLXj6YJHHnlEeXl5+tWvfqWf/OQnLedXrFihX/7yl1qyZInWr19/0z3y8/NV\nW1ur1NTUVufLy8s1ZcoUlZaW6p133tEPf/jDlrHTp0/rzjvvVEZGhjZt2tSt7M1fsD28BQAAAMCg\n0/yzcr7yTU5iriQlSeI9AwAAAAAAANBX+BwfNxMdHa0zZ850ev7ChQu7XVPSm7r6dd6T74sePUrs\nb3/7m/Ly8hQdHd2qKEiSMjMzFRQUpDfeeEO1tbU33ScpKalNUZAkjRo1Sj/+8Y8lSXv37u1JVAAA\nAAAAAPQRh8NhdgQAAAAAADAIlZSUyO12d/roj0VBfa1HhUH5+df/9fDDDz/cZiw4OFgPPPCAampq\nVFhY2O1rDBs2rNV/v6msrEy//vWv9dJLL+nXv/61/vrXv3b7WgAAAAAAAOi5zMxMsyMAAAAAAABA\nkvdqm046deqUJOk73/mO1/Fvf/vbysvL0+eff67k5OQu79/U1KTNmzdLklJSUrzOycvLU15eXqtz\niYmJ+s1vfqM77rijy9cEAAAAAABAz9jtdrMjAAAAAAAAQD3sGHTp0iVJUlhYmNfx5vNVVVXd2v/F\nF1/U8ePHlZqaqoceeqjV2MiRI7Vq1SodPnxYVVVVqqqq0t69e5WUlKSCggLNmDGjw0eYAQAAAAAA\nwPd4lBgAAAAAAED/0KPCoN706quvas2aNbrrrru0ZcuWNuNRUVFyOBy65557FBoaqtDQUE2fPl25\nubmaOnWqvvjiC23cuNGE5AAAAAAAAAAAAAAAAID5elQY1NwRqLlz0Dc1n7/lllu6tO+6dev005/+\nVN/97neVn5/fpfV+fn5atGiRJGn//v1dui4AAAAAAAAAAAAAAAAwWPSoMCg2NlaSdOrUKa/jn3/+\nuSTpO9/5Tqf3XLt2rZ5//nndfffdys/Pl9Vq7XKuW2+9VZJUU1PTqfmGYbR7JCYmyjCMdltgOxwO\nxhlnnHHGGWecccYZH3Tj7clWtpKUpGxlD8nx/vL7wzjjjDPOOOOMM84444wzzjjjjDPOOOODdRwY\nqprrU7wdPWF4PB5Pdxd/+eWX+ta3vqXo6Gh98cUXrcJUV1frtttuk2EYunDhggIDAzvc7xe/+IVW\nrlypv//7v1deXp4iIiK6lWvlypX6xS9+oaVLl2rdunXtzmvO24NbAAAAAAxKzT8r5yvf5CTmSlKS\nJN4zAAAAAAAAAH2Fz/ExFHT167wn3xc96hh055136uGHH1ZJSYlee+21VmN2u121tbVasGBBS1FQ\nU1OTTp48qS+//LLNXj//+c+1cuVKTZ48Wbt37+6wKOjw4cNeX/Du3bv1y1/+UoZhaP78+T14dQAA\nAAAAAOgO/oUnAAAAAABA/9CjjkHS9a5B999/vy5cuKCZM2cqNjZWRUVFKigoUExMjA4cOKDw8HBJ\n0unTp3XnnXfq7/7u71RSUtKyx29+8xs9/fTT8vPz03PPPafQ0NA214mOjtbChQtb/j8xMVFffPGF\n7r//fo0dO1aSdPToUeXn58swDP385z/Xv/7rv978xVNpCAAAAHhFx6Dr6BgEAN1jGAZ/dgIAAAAA\nuoXP8TEU9GXHoGFdXvENd955p/7yl79o1apV+vDDD7Vjxw6NGTNGP/3pT2W32xUWFtZu4GanT5+W\nJF27dk1r1671ep3ExMRWhUFPPfWU3n33XRUXF2vnzp1qbGzU6NGjNWfOKuP2pgAAIABJREFUHC1b\ntkwPPPBAT18aAAAAAAAAusFut5sdAQAAAAAAAPJBx6CBjEpDAAAAwDs6Bl1HxyAAAAAAAACgb/E5\nPoaCvuwYZOnyCgAAAAAAAAAAAAAAAAD9HoVBAAAAAAAAAAAAAABgQElNTZVhGAP6SE1NNfs29pmC\nggJZLBZFR0ebHWXIoTAIAAAAAAAAAAAAAAAMKDt27DA7Qo/1xmvIzs5WZmamjhw54vO9faH5kVhm\nKCwsVFZWlubPn6/Y2FhZLBZZLBatXLmyw7WbN2/Ws88+q6lTp+r2229XQECAgoODddddd+nZZ5/V\n8ePH++AVdM8wswMAAAAAAAAAAAAAAACg57Kzs7Vv3z5FR0crPj7e7DgtRo4cqZiYGN1+++2mZUhJ\nSdHly5fbnO9MsdKPfvQjNTQ0yDAMWSwWhYWF6dKlSzp16pROnTqljRs3KisrS0uXLu2N6D1CxyAA\nAAAAAAD4lMPhMDsCAAAAAADoR2w2m06cOKG8vDzTMgQFBWnq1KlatmyZsrOzdc8993R67Y9//GP9\n7ne/0+nTp1VfXy+n06n6+nrt379f06ZNk9vt1vPPP69PPvmkF19B99AxCAAAAAAAAD6VmZlJcRAA\nAAAAACbyeDxmR+h3ysrKWnUH2rRpU6fXrl27ts05i8WiBx54QB9++KFuv/12XblyRVu3bu1SwVFf\noGMQAAAAAAAAfMput5sdAQAAAACAISU7O1sWi0X79u2TJD399NOyWCwtR3R0dKv55eXlWrFihWJj\nYxUUFKSwsDBNnTpVa9asUUNDg9drZGRkyGKxKDMzU/X19bLb7YqNjVVgYKCsVquefPJJff75517X\nFhQUeM1xo9LSUq1YsUJxcXEKCQlRSEiIJkyYoEWLFqmgoKB7N+YGnXlkWHeEhobqW9/6liTpypUr\nvXKNnqBjEAAAAAAAAHyKbkEAAAAAAPStoKAgjRo1SpWVlWpsbFRYWJgCAwNbxq1Wa8uvDx48qEcf\nfVQul0uGYSgkJESNjY0qLi5WcXGxtmzZotzcXEVFRXm9Vn19vRITE1VUVKQRI0YoICBAFRUVysnJ\n0fvvv6+dO3dq+vTpXte2V5yzbds2LViwQHV1dZKkwMBABQYG6rPPPtPJkye1e/dulZSUdPf29KqK\nigp99tlnkq4/Mq2/oWMQAAAAAAAAAAAAAADAAJaWlqavv/5a9913nyQpKytL586dazmKiookSS6X\nS7NmzZLL5dLEiRN18OBBVVVVqbq6Wlu3blV4eLiOHDmiefPmtXut9evX69ixY9qyZYuuXLkil8ul\nw4cPa9KkSaqtrVVaWpqqqqo6nf3AgQNKT09XXV2dkpOTVVxcrJqaGjmdTlVVVendd9/VjBkzenaD\nfMzj8ejChQv64IMP9PDDD6u2tlYJCQk3vW9moTAIAAAAAAAAAAAAAABgCFi3bp3Onz+v8PBw5ebm\n6t5775UkWSwWPf7448rJyZEkffTRR8rPz/e6x6VLl7RhwwbNmzdPfn5+kqT4+Hjt2rVLkZGRKi8v\n12uvvdbpTMuXL5fb7VZCQoJ27drVkkmSgoODNXPmTG3cuLG7L9mn/v3f/10Wi0V+fn4aPXq0/vEf\n/1EVFRVavXq18vLyeu1xZT1BYRAAAAAAAAAAAAAAAMAQ8M4770iSFi1a1OrxYs0eeuihlq5Db7/9\nttc9xo8fr7lz57Y5HxkZqSVLlrS6TkdOnjyp4uJiGYah1atXtxQa9VchISEaPXq0oqKiWoqAysrK\ntG/fPpWVlZmczjsKgwAAAAAAAAAAAAAAAAa5hoYGHTt2TIZhKCkpqd15ycnJkqSPP/7Y63hCQkK7\na5vHjh8/rqampg4zFRYWSpIiIiJks9k6nG+2f/qnf9K5c+dUXl6umpoa7dixQxMmTNAf/vAHTZs2\nrV8WB1EYBAAAAAAAAJ9yOBxmRwAAAAAAAN9QWVkpj8cjSRo7dmy785rHLl68eNNxb8aMGSNJcrvd\ncrlcHWYqLy+XJI0bN67Duf1NQECAUlJS9Kc//Unjx49XeXm5MjMzzY7VBoVBAAAAAAAA8Kn++Jdg\nAAAAAADg/6urqzM7wqARHByshQsXSpL27Nljcpq2KAwCAAAAAACAT9ntdrMjAAAAAACAb4iIiJBh\nGPJ4PPrqq6/anXf27FlJUlRUlNfxmz0u69y5c5IkPz8/hYeHd5hp9OjRkqQzZ850OLc/a+6U1Pz6\n+xMKgwAAAAAAAOBTPEoMAAAAAABzWCzXy0CaHxl2I39/f919992SpPz8/Hb3aO56M2nSJK/je/fu\nbXdt81hcXJyGDRvWYd5p06ZJuv6Ys6Kiog7n91clJSWSJKvVanKStigMAgAAAAAAAAAAAAAAGARC\nQ0MlSS6Xy+v4E088IUnKzs7W+fPn24zn5uaqsLBQhmEoLS3N6x6nT59WTk5Om/OVlZXasGGDJGn2\n7NmdyhsTE6MpU6bI4/HohRdeUFNTU6fW9SW3233TcafTqddff12SNGPGjL6I1CUUBgEAAAAAAAAA\nAAAAAAwCcXFxkqTt27fr8uXLbcaXLVum2267TVevXlVKSooOHTok6Xrxy7Zt25Seni5JevDBB5WY\nmOj1GmFhYVq8eLHefPPNlqKZo0eP6pFHHpHT6dSoUaO0dOnSTmdes2aN/Pz8tH///laZJKm6ulo5\nOTmaP39+p/drT01NjZxOpyoqKuR0OtXY2ChJqq2tbTnndDp19erVVutefvllZWRkaM+ePbpy5Uqr\n/bZv3677779f5eXlCgoK0sqVK3uc09cMj7f+UUOEYRiSvLfQAgAAAIay5p+V89V+O9mhIElJknjP\nAAAAAAAAAPSVzn6O3zxvoPP13z2eOnVK8fHxamhokJ+fn6xWq4YPH6477rhD+/fvlyQVFxcrJSWl\npatQcHCwGhsbVV9fL0mKj49XXl6ebr311lZ7Z2RkaPPmzXrxxReVn5+voqIi+fv7a8SIEaqurpYk\njRw5Ujt37tT3vve9VmsLCgqUnJys8ePH68svv2yT+6233lJGRkZLhoCAAAUGBrZkbG9dVzTn74jd\nbpfdbm/5/8zMTGVmZrb8f2hoqPz8/FRVVdXy+xcVFaXf/e53Sk5O7lSWrtar9KS+hY5BAAAAAAAA\nAAAAAABgQHnsscfMjtBjvfEaYmJilJeXp5SUFIWHh+vChQsqLS1VWVlZyxybzaZPP/1Uy5cvV0xM\njNxut/z9/WWz2fTKK6+oqKioTVHQjQICAlRQUKBVq1YpOjpaTU1Nslqtmjt3rg4fPtymKEjquJBr\nzpw5OnHihJYtW6aYmBhZLBZdu3ZNEyZM0OLFiztV0NMRwzA6fdzomWee0dq1azVz5kx95zvfkWEY\nqqmpUVRUlBITE7V69WqdPHmy00VBfY2OQeJf/wIAAADfRMeg6+gYBADd43A45HA4zI4BAAAAABiA\n+By//2ruuONwOLRq1Sqz4wxodAwCAAAAAADAgHVje20AAAAAAACYh8IgAAAAAAAA+JTdbjc7AgAA\nAAAAAERhEAAAAAAAAHyMx4gBAAAAAAD0D8PMDgAAAAAAAAAAAAAAAID+zTAMGYZhagabzabS0tJO\nz09PT9fatWt7MVH/R2EQAAAAAAAAAAAAAAAAbur111/X66+/bmoGp9Opixcvdnr+5cuXezHNwEBh\nEAAAAAAAAAAAAAAAAPq9kpISsyMMOBazAwAAAAAAAAAAAAAAAADwPQqDAAAAAAAA4FMOh8PsCAAA\nAAAAAJBkeDwej9khzGIYhiRpCN8CAAAAwKvmn5XzlW9yEnMlKUkS7xkAoKsMw+DPTgAAAABAt/A5\nPoaCrn6d9+T7go5BAAAAAAAA8Cm73W52BAAAAAAAAIiOQZKoNAQAAAC+iY5B19ExCAAAAAAAAOhb\nfI6PoYCOQQAAAAAAAAAAAAAAAAB6hMIgAAAAAAAAAAAAAAAAYBCiMAgAAAAAAAAAAAAAAAAYhCgM\nAgAAAAAAAAAAAAAAAAYhCoMAAAAAAADgUw6Hw+wIAAAAAAAAEIVBAAAAAAAA8LHMzEyzIwAAAAAA\ngH6koKBAFotF0dHRZkcZcigMAgAAAAAAgE/Z7XazIwAAAAAABrnU1FQZhjGgj9TUVJ/fl+zsbGVm\nZurIkSM+39sXDMMw7dqFhYXKysrS/PnzFRsbK4vFIovFopUrV3Zrv/fee69lD4ul/5bfDDM7AAAA\nAAAAAAYXHiUGAAAAAOhtO3bsMDtCj/XGa8jOzta+ffsUHR2t+Ph4n+/fXSNHjlRMTIxuv/120zKk\npKTo8uXLbc53p1jpypUreu6553q0R1+hMAgAAAAAAAAAAAAAAAxQHrMDdFP/LSTpDTabTSdOnDA1\nQ1BQkO666y7ZbDZNnjxZa9eu1SeffNKtvX72s5+prKxMU6dOVVFRkY+T+haFQQAAAAAAAAAAAAAA\nAIOIxzNQC6Z6T1lZWavOPps2berWPocPH9avfvUrTZ48WT/60Y/6fWFQ/33IGQAAAAAAAAAAAAAA\nADqUnZ0ti8Wiffv2SZKefvppWSyWliM6OrrV/PLycq1YsUKxsbEKCgpSWFiYpk6dqjVr1qihocHr\nNTIyMmSxWJSZman6+nrZ7XbFxsYqMDBQVqtVTz75pD7//HOvawsKCrzmuFFpaalWrFihuLg4hYSE\nKCQkRBMmTNCiRYtUUFDQvRtzA1887uvatWtasmSJDMPQ+vXr+/UjxJrRMQgAAAAAAAAAAAAAAGAA\nCwoK0qhRo1RZWanGxkaFhYUpMDCwZdxqtbb8+uDBg3r00UflcrlkGIZCQkLU2Nio4uJiFRcXa8uW\nLcrNzVVUVJTXa9XX1ysxMVFFRUUaMWKEAgICVFFRoZycHL3//vvauXOnpk+f7nVte4U027Zt04IF\nC1RXVydJCgwMVGBgoD777DOdPHlSu3fvVklJSXdvj8+sW7dOhw4d0rPPPqt7771Xf/3rX82O1CE6\nBgEAAAAAAMCnHA6H2REAAAAAABhS0tLS9PXXX+u+++6TJGVlZencuXMtR/Pjrlwul2bNmiWXy6WJ\nEyfq4MGDqqqqUnV1tbZu3arw8HAdOXJE8+bNa/da69ev17Fjx7RlyxZduXJFLpdLhw8f1qRJk1Rb\nW6u0tDRVVVV1OvuBAweUnp6uuro6JScnq7i4WDU1NXI6naqqqtK7776rGTNm9OwG+UBZWZn+7d/+\nTVarVS+99JLZcTqNwiAAAAAAAAD4VGZmptkRAAAAAACAF+vWrdP58+cVHh6u3Nxc3XvvvZIki8Wi\nxx9/XDk5OZKkjz76SPn5+V73uHTpkjZs2KB58+bJz89PkhQfH69du3YpMjJS5eXleu211zqdafny\n5XK73UpISNCuXbtaMklScHCwZs6cqY0bN3b3JfvMc889pytXrmj16tUKCwszO06nURgEAAAAAAAA\nn7Lb7WZHAAAAAAAAXrzzzjuSpEWLFrV6vFizhx56qKXr0Ntvv+11j/Hjx2vu3LltzkdGRmrJkiWt\nrtORkydPqri4WIZhaPXq1S2FRv3N73//e7333nuaPn26nnrqKbPjdAmFQQAAAAAAAPApHiUGAAAA\nAED/09DQoGPHjskwDCUlJbU7Lzk5WZL08ccfex1PSEhod23z2PHjx9XU1NRhpsLCQklSRESEbDZb\nh/PNUFNTo2XLlmn48OH6n//5H7PjdBmFQQAAAAAAAAAAAAAAAINcZWWlPB6PJGns2LHtzmseu3jx\n4k3HvRkzZowkye12y+VydZipvLxckjRu3LgO55pl1apVKi0t1fPPP6/vfve7ZsfpsmFmBwAAAAAA\nAAAAAAAAAEDfqaurMzvCgPDFF18oKytLo0aN0ooVK3TlypVW4/X19S2/rqmpkcfj0YgRIzR8+PC+\njtouOgYBAAAAAAAAAAAAAAAMchERETIMQx6PR1999VW7886ePStJioqK8jpeVlbW7tpz585Jkvz8\n/BQeHt5hptGjR0uSzpw50+FcM5w9e1bXrl1TeXm5xowZo9DQ0FbHs88+K0nyeDwKCQlRaGioXnrp\nJZNTt0ZhEAAAAAAAAAAAAAAAwCBgsVwvA2l+ZNiN/P39dffdd0uS8vPz291jz549kqRJkyZ5Hd+7\nd2+7a5vH4uLiNGxYxw+xmjZtmqTrjzkrKirqcH5fMwyj5b/ejm/O9XbebBQGAQAAAAAAwKccDofZ\nEQAAAAAAGJJCQ0MlSS6Xy+v4E088IUnKzs7W+fPn24zn5uaqsLBQhmEoLS3N6x6nT59WTk5Om/OV\nlZXasGGDJGn27NmdyhsTE6MpU6bI4/HohRdeUFNTU6fW9ZWEhARdu3ZNbrfb6/H6669Lul4U1Hxu\n1apVJqdujcIgAAAAAAAA+FRmZqbZEQAAAAAAGJLi4uIkSdu3b9fly5fbjC9btky33Xabrl69qpSU\nFB06dEiS5Ha7tW3bNqWnp0uSHnzwQSUmJnq9RlhYmBYvXqw333xTbrdbknT06FE98sgjcjqdGjVq\nlJYuXdrpzGvWrJGfn5/279/fKpMkVVdXKycnR/Pnz+/0fu2pqamR0+lURUWFnE6nGhsbJUm1tbUt\n55xOp65evdrpPb11ZupvKAwCAAAAAACAT9ntdrMjAAAAAAAwJC1YsED+/v764x//qMjISI0dO1bj\nx4/X9OnTJUm33HKL3nvvPYWHh+vo0aOy2WwKDQ1VcHCwZs+eraqqKsXHx+u3v/1tu9d49tlnFRcX\np/nz52vkyJEKCwvTPffco0OHDmnkyJHaunWrwsLCOp35/vvv1xtvvKERI0Zoz549stlsCgoKUmRk\npMLCwvTkk0/qwIEDPb43P/nJT2S1WhUVFSWr1ao///nPkqRXX3215ZzVatXq1at7fK3+hMIgAAAA\nAAAA+BSPEgMAAAAA9B1jgB69IyYmRnl5eUpJSVF4eLguXLig0tJSlZWVtcyx2Wz69NNPtXz5csXE\nxMjtdsvf3182m02vvPKKioqKdOutt7Z7jYCAABUUFGjVqlWKjo5WU1OTrFar5s6dq8OHD+t73/te\nmzWGcfPXPGfOHJ04cULLli1TTEyMLBaLrl27pgkTJmjx4sXavHlz92/KDRk6e3Rlz/7O8AyEvka9\npPk3aAjfAgAAAMCr5p+V85VvchJzJSlJEu8ZAAAAAAAAgL7S2c/xU1NTtWPHjr6I1Gsee+wxffDB\nB2bH6LSMjAxt3rxZDodDq1atMjvOgNbVepWe1LcM6/IKAAAAAAAAAAAAAAAAEw2kghrATDxKDAAA\nAAAAAAAAAAAAABiEKAwCAAAAAAAAAAAAAAAABiEeJQYAAAAAAACfcjgccjgcZscAAAAAAAA+ZBiG\nDMMwNYPNZlNpaWmn56enp2vt2rW9mKj/Mzwej8fsEGZp/oIdwrcAAAAA8Kr5Z+V85ZucxFxJSpLE\newYA6CrDMPizEwAAAADQLXyOj5uJjo7WmTNnOj1/4cKF2rRpUy8m6p6ufp335PuCjkEAAAAAAADw\nKbvdbnYEAAAAAAAwCJWUlJgdYcChY5CoNAQAAAC+iY5B19ExCAAAAAAAAOhbfI6PoaAvOwZZurwC\nAAAAAAAAAAAAAAAAQL9HYRAAAAAAAAAAAAAAAAAwCFEYBAAAAAAAAAAAAAAAAAxCFAYBAAAAAAAA\nAAAAAAAAgxCFQQAAAAAAAPAph8NhdgQAAAAAAABIMjwej8fsEGYxDEOSNIRvAQAAAOBV88/K+co3\nOYm5kpQkifcMANBVhmHwZycAAAAAoFv4HB9DQVe/znvyfUHHIAAAAAAAAPiU3W43OwIAAAAAAABE\nxyBJVBoCAAAA30THoOvoGAQAAAAAAAD0LT7Hx1BAxyAAAAAAAAAAAAAAAAAAPUJhEAAAAAAAAAAA\nAAAAADAIURgEAAAAAAAAAAAAAAAADEIUBgEAAAAAAAAAAAAAgAElNTVVhmEM6CM1NdXs29hnCgoK\nZLFYFB0dbXaUIYfCIAAAAAAAAPiUw+EwOwIAAAAAYJDbsWOH2RF6rDdeQ3Z2tjIzM3XkyBGf7+0L\nhmGYdu3CwkJlZWVp/vz5io2NlcVikcVi0cqVKztcm5iY2DK/veO5557rg1fRdcPMDgAAAAAAAIDB\nJTMzk+IgAAAAAEDfcJgdoJscvbNtdna29u3bp+joaMXHx/fORbph5MiRiomJ0e23325ahpSUFF2+\nfLnN+a4UK4WFhSkwMLDdsf6IwiAAAAAAAAD4lN1uNzsCAAAAAADoR2w2m06cOGFqhqCgIN11112y\n2WyaPHmy1q5dq08++aRLe2RlZempp57qpYS9g8IgAAAAAAAA+BTdggAAAAAAMJfH4zE7Qr9TVlbW\nqjvQpk2bTEzTdyxmBwAAAAAAAAAAAAAAAED3ZWdny2KxaN++fZKkp59+WhaLpeWIjo5uNb+8vFwr\nVqxQbGysgoKCFBYWpqlTp2rNmjVqaGjweo2MjAxZLBZlZmaqvr5edrtdsbGxCgwMlNVq1ZNPPqnP\nP//c69qCggKvOW5UWlqqFStWKC4uTiEhIQoJCdGECRO0aNEiFRQUdO/G3KArjwwbTOgYBAAAAAAA\nAAAAAAAAMIAFBQVp1KhRqqysVGNjo8LCwhQYGNgybrVaW3598OBBPfroo3K5XDIMQyEhIWpsbFRx\ncbGKi4u1ZcsW5ebmKioqyuu16uvrlZiYqKKiIo0YMUIBAQGqqKhQTk6O3n//fe3cuVPTp0/3ura9\n4pxt27ZpwYIFqqurkyQFBgYqMDBQn332mU6ePKndu3erpKSku7fHZwZiJyY6BgEAAAAAAAAAAAAA\nAAxgaWlp+vrrr3XfffdJkrKysnTu3LmWo6ioSJLkcrk0a9YsuVwuTZw4UQcPHlRVVZWqq6u1detW\nhYeH68iRI5o3b16711q/fr2OHTumLVu26MqVK3K5XDp8+LAmTZqk2tpapaWlqaqqqtPZDxw4oPT0\ndNXV1Sk5OVnFxcWqqamR0+lUVVWV3n33Xc2YMaNnN8hHXnnlFY0ZM0b+/v6KiorSgw8+qP/93/9V\nfX292dHaRWEQAAAAAAAAAAAAAADAELBu3TqdP39e4eHhys3N1b333itJslgsevzxx5WTkyNJ+uij\nj5Sfn+91j0uXLmnDhg2aN2+e/Pz8JEnx8fHatWuXIiMjVV5ertdee63TmZYvXy63262EhATt2rWr\nJZMkBQcHa+bMmdq4cWN3X7JPffrpp6qqqlJISIgqKyu1Z88eLV26VFOmTFFpaanZ8byiMAgAAAAA\nAAA+5XA4zI4AAAAAAAC8eOeddyRJixYtavV4sWYPPfRQS9eht99+2+se48eP19y5c9ucj4yM1JIl\nS1pdpyMnT55UcXGxDMPQ6tWrWwqN+pukpCRt2bJFX3/9tWpra1VRUaHz58/rpZde0ogRI/TXv/5V\njz32mBobG82O2gaFQQAAAAAAAPCpzMxMsyMAAAAAAIBvaGho0LFjx2QYhpKSktqdl5ycLEn6+OOP\nvY4nJCS0u7Z57Pjx42pqauowU2FhoSQpIiJCNputw/lmsdvtmjdvXqtiqqioKL344ovatm2bpOuv\nOTs726SE7aMwCAAAAAAAAD5lt9vNjgAAAAAAAL6hsrJSHo9HkjR27Nh25zWPXbx48abj3owZM0aS\n5Ha75XK5OsxUXl4uSRo3blyHc/urxx57TP/wD/8gSfr9739vcpq2KAwCAAAAAACAT/EoMQAAAAAA\n+re6ujqzIwwqU6dOlSSVlJSYnKQtCoMAAAAAAAAAAAAAAAAGuYiICBmGIY/Ho6+++qrdeWfPnpV0\n/VFZ3pSVlbW79ty5c5IkPz8/hYeHd5hp9OjRkqQzZ850OLc/a+7E1B9RGAQAAAAAAAAAAAAAADAI\nWCzXy0C8Far4+/vr7rvvliTl5+e3u8eePXskSZMmTfI6vnfv3nbXNo/FxcVp2LBhHeadNm2apOuP\nOSsqKupwfn/VnD06OtrkJG1RGAQAAAAAAAAAAAAAADAIhIaGSpJcLpfX8SeeeEKSlJ2drfPnz7cZ\nz83NVWFhoQzDUFpamtc9Tp8+rZycnDbnKysrtWHDBknS7NmzO5U3JiZGU6ZMkcfj0QsvvKCmpqZO\nretPPvzwQ+3fv1+SlJqaanKatigMAgAAAAAAAAAAAAAAGATi4uIkSdu3b9fly5fbjC9btky33Xab\nrl69qpSUFB06dEiS5Ha7tW3bNqWnp0uSHnzwQSUmJnq9RlhYmBYvXqw333xTbrdbknT06FE98sgj\ncjqdGjVqlJYuXdrpzGvWrJGfn5/279/fKpMkVVdXKycnR/Pnz+/0fu2pqamR0+lURUWFnE6nGhsb\nJUm1tbUt55xOp65evdpq3X/+539q8eLFKigoUE1NTcv5ixcvavXq1frhD38oSYqNjdUzzzzT45y+\nZnj684POeplhGJL697PeAAAAADM0/6ycr/bbyQ4FSUqSxHsGAOgqh8Mhh8NhdgwAAAAAwADU2c/x\nm+cNdL7+u8dTp04pPj5eDQ0N8vPzk9Vq1fDhw3XHHXe0dLUpLi5WSkpKS1eh4OBgNTY2qr6+XpIU\nHx+vvLw83Xrrra32zsjI0ObNm/Xiiy/+P/buPq7KOs//+Ps6IAKKCCokWUF3MC5Go3OyG10Bs1B2\nNtsS8a5oRh9ujtPkutPmNus5PJqbnbY17WbcrDVGqyFvsnE2SVBBnRRktHTNm9zUxDv0cCMEgoDn\n94c/zogcboQDF8Lr+XicR3Z9v9/rep+Lg48D5+Pnq+zsbOXl5cnHx0e9e/dWeXm5JKlPnz7KyMjQ\nqFGjGqzNyclRfHy8wsPDdfTo0Ua5P/roI6WkpLgy+Pr6ys/Pz5WxqXXXoz5/S2w2m2w2m+v/U1NT\nlZqa6vr/fv36yTAMXbhwwXXsnnvu0fr163Xrrbe2Ksv11qu0p76FjkEAAAAAAADwqKt/WQYAAAAA\nQEeYMGGC2RHarSOeQ2RkpLKyspSQkKCgoCCdO3dOBQUFOnXqlGvAUMxTAAAgAElEQVSO1WrVgQMH\nNG/ePEVGRqqurk4+Pj6yWq169dVXlZeX16go6Gq+vr7KycnRwoULFRERodraWoWEhGjKlCnas2dP\no6IgqeVCrsmTJ+vgwYOaO3euIiMjZbFYdPnyZQ0dOlSzZs1qVUFPSwzDaPXjapMmTdJLL72k+Ph4\n3Xbbbbp8+bKqqqoUFhamCRMmaPny5crPz291UVBno2OQ+Ne/AAAAwLXoGHQFHYMAoG3oGAQAAAAA\naCs+x++66jvu2O12LVy40Ow4NzQ6BgEAAAAAAOCGRVEQAAAAAABA10BhEAAAAAAAAAAAAAAAANAN\nURgEAAAAAAAAAAAAAAAAdEPeZgcAAAAAAAAAAAAAAABA12YYhgzDMDWD1WpVQUFBq+cnJydr8eLF\nHZio66MwCAAAAAAAAAAAAAAAAM1677339N5775maweFw6Pz5862eX1ZW1oFpbgwUBgEAAAAAAMCj\n7Ha77Ha72TEAAAAAAEA3c+zYMbMj3HAMp9PpNDuEWepbXPXgWwAAAAC4Vf9eOVvZJicxV5ziJPEz\nAwBcL8Mw+LsTAAAAANAmfI6PnuB6X+ft+b6wXPcKAAAAAAAAoBk2m83sCAAAAAAAABAdgyRRaQgA\nAABci45BV9AxCAAAAAAAAOhcfI6PnoCOQQAAAAAAAAAAAAAAAADahcIgAAAAAAAAAAAAAAAAoBui\nMAgAAAAAAAAAAAAAAADohigMAgAAAAAAAAAAAAAAALohCoMAAAAAAADgUXa73ewIAAAAAAAAkAcK\ng06ePKkf/ehHCgsLk6+vryIiIjRv3jyVlpa2an1xcbHeffddPf7447rzzjvl7++v/v37a/To0Vq+\nfLmcTmeTa3fs2KEJEyYoODhY/v7+iomJ0ZIlS3T58uX2Pi0AAAAAAAC0UWpqqtkRAAAAAAAAIMm7\nPYu/+eYbPfjggzp//rwmTpyoqKgo5eXlacmSJfrss8/0+eefKzg4uNlzrFq1SnPmzFFYWJji4uJ0\n66236uzZs/r44481c+ZMZWRkaPXq1Y3W/fGPf9QTTzwhf39/TZ48WcHBwVq/fr3mzZunzz//XKtW\nrWrPUwMAAAAAAEAb2Ww2syMAAAAAAABAkuFsriVPCx599FFlZWXpjTfe0E9+8hPX8fnz5+u1117T\n7NmztXTp0mbPkZ2drcrKSiUmJjY4XlhYqPvuu08FBQVas2aN/uEf/sE1VlZWpjvvvFPl5eX6/PPP\nNXz4cElSdXW14uPjtXPnTv3hD3/Q5MmTm722YRiS1GxXIgAAAKAnqn+vnK1sk5OYK05xkviZAQAA\nAAAAAOgsfI7fPeXk5Cg+Pl633Xabjh07ZnYc013v67w93xdt3krsm2++UVZWliIiIhoUBUlX2kX7\n+/vr/fffV2VlZbPniYuLa1QUJEmhoaH6x3/8R0nS1q1bG4ytWbNGDodDycnJrqIgSerdu7d++ctf\nSlKLBUkAAAAAAAAAAAAAAODGlJiYKMMwbuiHu1qJ9kpLS1Nqaqr27t3r8XN7Qn2Bixlyc3O1ZMkS\nTZ8+XVFRUbJYLLJYLFqwYMF1nWfNmjX6+7//e918883q3bu3brrpJj300EP6t3/7Nzkcjg5K33Zt\n3kosO/vKvxx+5JFHGo317dtXDz30kLKyspSbm6v4+Pi2hfP2bvDfelu2bJEkJSQkNFrzt3/7t/Lz\n89POnTtVU1OjXr16tenaAAAAAAAAAAAAAACga9qwYYPZEdqtI55DWlqatm3bpoiICMXExHj8/G3V\np08fRUZGasiQIaZlSEhIUFlZWaPjrS1WKi8v1xNPPKFNmzZJkry8vBQYGKiioiKdO3dOO3fu1Pjx\n4zVw4ECP5m6vNncMOnz4sCTp7rvvdjt+1113SZKOHDnSpvPX1tZqxYoVkhoXADV3bS8vL0VERKi2\ntlZHjx5t07UBAAAAAAAAAAAAAEDX57xBHz2N1WrVwYMHlZWVZVoGf39/jRw5UnPnzlVaWpruvffe\nVq+tq6tTYmKiNm3apNtuu03p6ekqLy+Xw+HQxYsXtX//fr388ssaMGBABz6Dtmlzx6ALFy5IkgID\nA92O1x8vLS1t0/lffPFFffXVV0pMTNS4ceMaXdswjGav7XQ623xtAAAAAAAAAAAAAACAG5XT2RPL\nj5p36tSpBt2Bli9f3uq1ixYt0p///GeFhobq888/V1hYmGvM29tbQ4cO1dChQz2a11Pa3DGoI73+\n+utatGiRvve972nlypVmxwEAAAAAAMB1sNvtZkcAAAAAAKBHSUtLk8Vi0bZt2yRJzzzzjCwWi+sR\nERHRYH5hYaHmz5+vqKgo+fv7KzAwUCNHjtSiRYt06dIlt9dISUmRxWJRamqqqqurZbPZFBUVJT8/\nP4WEhGjq1KlN7iqVk5PjNsfVCgoKNH/+fEVHRysgIEABAQEaOnSoZs6cqZycnLbdmKu0dsuwa9XU\n1OjVV1+VdOV3HlcXBd0I2twxqL5bT33noGvVH+/fv/91nffNN9/U888/r7/5m7/R5s2b3a6v7wjk\n6WsDAAAAAACg/VJTUykOAgAAAACgE/n7+ys0NFTFxcWqqalRYGCg/Pz8XOMhISGuP+/atUvjx49X\nSUmJDMNQQECAampqlJ+fr/z8fK1cuVKZmZkaNGiQ22tVV1crNjZWeXl56t27t3x9fVVUVKT09HSt\nX79eGRkZGj16tNu1TRXnrF27VjNmzFBVVZUkyc/PT35+fvr666916NAhbd68WceOHWvr7WmXrKws\nnT9/XhaLRcnJyaZkaI82dwyKioqSJB0+fNjteH0V2N13393qcy5evFjPPfechg0bpuzs7AYvzKtF\nRkY2ee3a2lodO3ZMvXr10u23396q6xqG0eQjNjZWhmE0+cssu93OOOOMM84444wzzjjj3W68KWlK\nU5zilKa0HjneVb4+jDPOOONdfdxms3XpfIwzzjjjjDPOOOOMM84444x33XG0TVJSks6cOaMHHnhA\nkrRkyRKdPn3a9cjLy5MklZSUaOLEiSopKdE999yjXbt2qbS0VOXl5Vq9erWCgoK0d+9eTZs2rclr\nLV26VPv379fKlSv13XffqaSkRHv27NHw4cNVWVmppKQklZaWtjr7jh07lJycrKqqKsXHxys/P18V\nFRVyOBwqLS3VunXrNHbs2PbdoHbYuXOnJCk8PFz9+vXTG2+8oZiYGPn5+SkoKEhxcXFasWJFu7dv\nq69PcfdoD8PZxmRHjx7VnXfeqYiICP3f//1fgyDl5eUaPHiwDMPQuXPnGlShNeW3v/2tFixYoO9/\n//vKyspScHBwk3Pfe+89/fjHP9ZTTz2ltLS0BmNbtmzRww8/rDFjxig7O7vZa9ZnZm89AAAAoKH6\n98rZav49dXcXpzhJ/MwAAAAAAAAAdJbWfo7vmtfhiTpGfYWFp3/3GBsbq23btiktLU1PPfVUo/GX\nX35ZNptNQUFBOnjwYKOGLVlZWXr00UclSZs3b1ZcXJxrLCUlRStWrJAkffDBB5oyZUqDtUVFRYqK\nilJRUZFefvllvfTSS66xnJwcxcfHKzw8XEePHm2wbuTIkcrPz9eYMWO0adMmeXl5te8mtFL9vXrx\nxRf161//usl5ycnJWrVqlaxWqwYPHqz169fLYrGof//+KisrU21trSTp8ccf1+rVq2WxtNyj53rr\nVdpT39LmjkG33367HnnkER07dkxvvfVWgzGbzabKykrNmDHDVRRUW1urQ4cONfoCS1deeAsWLNAP\nfvADbd68udmiIEl68sknNXDgQKWnp2v37t2u41VVVfrFL34hSXr22Wfb+tQAAAAAAAAAAAAAAAC6\nnTVr1kiSZs6c6XYXp3Hjxrm6Dq1atcrtOcLDwxsVBUnSgAEDNHv27AbXacmhQ4eUn58vwzD0yiuv\ndFpR0PWo7360e/durV+/XrNnz9a5c+fkcDjkcDi0YMECSdK6deuaLTAyi3d7Fv/ud7/Tgw8+qOee\ne06bN29WVFSU8vLylJOTo8jISP3qV79yzT158qSGDh2q2267rcG+b7///e9ls9nk5eWlUaNGafHi\nxY2uExERoaefftr1/wEBAXrnnXf05JNPKjY2VsnJyQoKCtL69ev19ddfa9KkSUpKSmrPUwMAAAAA\nAAAAAAAAAOg2Ll26pP3798swjAadgK4VHx+vnTt36osvvnA7PmbMmCbXjhkzRr/+9a/11Vdfqba2\nVt7ezZel5ObmSpKCg4NltVpb8Sw63+XLl13/HT16tJYuXeoa69evn371q1/pyJEjWrNmjRYtWqR/\n+Zd/Ua9evcyK20i7CoNuv/12/eUvf9HChQv12WefacOGDQoLC9Pzzz8vm82mwMDARmuu3fvs+PHj\nkq7cQHdFQdKV9k1XFwZJ0mOPPaatW7fqV7/6ldauXauqqirdddddeu211/Tcc8+152kBAAAAAAAA\nAAAAAAB0K8XFxXI6nTIMQzfffHOT8+rHzp8/3+y4O2FhYZKkuro6lZSUaNCgQc1mKiwslCTdeuut\nzc4zU9++fV1//tnPfuZ2zj/90z9pzZo1unDhgnbv3q3777+/s+K1qF2FQZI0ZMgQLV++vMV54eHh\nriqqq9lsNtlstjZd+8EHH9Snn37aprUAAAAAAAAAAAAAAAA9UVVVldkRbhj1hVCGYSgyMtLtnLvv\nvluS5HQ6dfLkyU7L1hoWswMAAAAAAACge7Hb7WZHAAAAAAAA1wgODpZhGHI6nfr222+bnFdf2NJU\nt59Tp041ufb06dOSJC8vLwUFBbWY6aabbpIknThxosW5ZomOjr6u+dfupGU2CoMAAAAAAADgUamp\nqWZHAAAAAACgR7JYrpSBOJ3ORmM+Pj4aNmyYJCk7O7vJc2zZskWSNHz4cLfjW7dubXJt/Vh0dLS8\nvVvexKp+y63i4mLl5eW1ON8MDz/8sKQr9/TQoUNu59QfNwxD4eHhnRWtVSgMAgAAAAAAgEe1ddt4\nAAAAAADQPv369ZMklZSUuB1/8sknJUlpaWk6e/Zso/HMzEzl5ubKMAwlJSW5Pcfx48eVnp7e6Hhx\ncbGWLVsmSZo0aVKr8kZGRuq+++6T0+nUCy+8oNra2lat60x33HGHHnjgAUnSkiVL3M557bXXJF3p\ngNRUQZVZKAwCAAAAAACAR7GVGAAAAAAA5qjf9urjjz9WWVlZo/G5c+dq8ODBunjxohISErR7925J\nUl1dndauXavk5GRJV7rkxMbGur1GYGCgZs2apQ8//FB1dXWSpH379unRRx+Vw+FQaGio5syZ0+rM\nixYtkpeXl7Zv394gkySVl5crPT1d06dPb/X5mlJRUSGHw6GioiI5HA7V1NRIkiorK13HHA6HLl68\n2Gjtb3/7W1ksFv35z3/Ws88+q6KiIklSWVmZXnrpJa1du1aGYchms3W5rcQMp7v+UT1E/RejB98C\nAAAAwK3698rZarqdbE8QpzhJ/MwAAAAAAAAAdJbWfo7vmtfhiTpGfemIp3/3ePjwYcXExOjSpUvy\n8vJSSEiIevXqpVtuuUXbt2+XJOXn5yshIcHVVahv376qqalRdXW1JCkmJkZZWVkaOHBgg3OnpKRo\nxYoVevHFF5Wdna28vDz5+Piod+/eKi8vlyT16dNHGRkZGjVqVIO1OTk5io+PV3h4uI4ePdoo90cf\nfaSUlBRXBl9fX/n5+bkyNrXuetTnb4nNZnPbDfntt9/W3LlzVVdXJ8Mw1L9/f124cEGXL1+WYRh6\n7rnnXJ2DWnK99SrtqW+hYxAAAAAAAAAAAAAAALghGTfoo6NERkYqKytLCQkJCgoK0rlz51RQUKBT\np0655litVh04cEDz5s1TZGSk6urq5OPjI6vVqldffVV5eXmNioKu5uvrq5ycHC1cuFARERGqra1V\nSEiIpkyZoj179jQqCpLUYhedyZMn6+DBg5o7d64iIyNlsVh0+fJlDR06VLNmzWpVQU9LDMNo9cOd\n2bNna+fOnZo8ebLCwsJUUVGhgQMH6oc//KEyMjJaXRTU2egYJP71LwAAAHAtOgZdQccgAAAAAAAA\noHO19nP8xMREbdiwoTMidZgJEybo008/NTtGq9V33LHb7Vq4cKHZcW5ondkxyPu6VwAAAAAAAAAA\nAAAAAJjoRiqoAczEVmIAAAAAAADwKLvdbnYEAAAAAAAAiMIgAAAAAAAAeFhqaqrZEQAAAAAAACC2\nEgMAAAAAAICH2Ww2syMAAAAAAAAPMwxDhmGYmsFqtaqgoKDV85OTk7V48eIOTNT1GU6n02l2CLPU\nv2B78C0AAAAA3Kp/r5ytbJOTmCtOcZL4mQEAAAAAAADoLHyOj+ZEREToxIkTrZ7/9NNPa/ny5R2Y\nqG2u93Xenu8LOgYBAAAAAAAAAAAAAACgyzt27JjZEW44FrMDAAAAAAAAAAAAAAAAAPA8CoMAAAAA\nAAAAAAAAAACAbojCIAAAAAAAAAAAAAAAAKAbojAIAAAAAAAAHmW3282OAAAAAAAAAEmG0+l0mh3C\nLIZhSJJ68C0AAAAA3Kp/r5ytbJOTmCtOcZL4mQEArpdhGPzdCQAAAABoEz7HR09wva/z9nxf0DEI\nAAAAAAAAHmWz2cyOAAAAAAAAANExSBKVhgAAAMC16Bh0BR2DAAAAAAAAgM7F5/joCegYBAAAAAAA\nAAAAAAAAAKBdKAwCAAAAAAAAAAAAAAAAuiEKgwAAAAAAAAAAAAAAAIBuiMIgAAAAAAAAAAAAAAAA\noBuiMAgAAAAAAAAeZbfbzY4AAAAAAAAAURgEAAAAAAAAD0tNTTU7AgAAAACgm0tMTJRhGDf0IzEx\n0ezb2GlycnJksVgUERFhdpQeh8IgAAAAAAAAeJTNZjM7AgAAAACgm9uwYYPZEdqtI55DWlqaUlNT\ntXfvXo+f2xMMwzDt2rm5uVqyZImmT5+uqKgoWSwWWSwWLViwoNl1aWlprrktPW6//fZOejat5212\nAAAAAAAAAHQvbCUGAAAAAOg02dlmJ2ibuLgOOW1aWpq2bdumiIgIxcTEdMg12qJPnz6KjIzUkCFD\nTMuQkJCgsrKyRsdbKlby9/dXaGhos/POnj0rSRoxYkT7QnYACoMAAAAAAAAAAAAAAADQYaxWqw4e\nPGhqBn9/f33ve9+T1WrVD37wAy1evFhffvlli+uSkpKUlJTU5PiXX36p4cOHS5JSUlI8FddjKAwC\nAAAAAAAAAAAAAADoRpxOp9kRupxTp0416PqzfPlyj5w3LS1NkhQaGqrx48d75JyeZDE7AAAAAAAA\nAAAAAAAAANouLS1NFotF27ZtkyQ988wzslgsrkdERESD+YWFhZo/f76ioqLk7++vwMBAjRw5UosW\nLdKlS5fcXiMlJUUWi0Wpqamqrq6WzWZTVFSU/Pz8FBISoqlTp+rIkSNu1+bk5LjNcbWCggLNnz9f\n0dHRCggIUEBAgIYOHaqZM2cqJyenbTfmKi1tGdYWNTU1+vDDDyVJ06ZNk8XS9cpw6BgEAAAAAAAA\nAAAAAABwA/P391doaKiKi4tVU1OjwMBA+fn5ucZDQkJcf961a5fGjx+vkpISGYahgIAA1dTUKD8/\nX/n5+Vq5cqUyMzM1aNAgt9eqrq5WbGys8vLy1Lt3b/n6+qqoqEjp6elav369MjIyNHr0aLdrmyrO\nWbt2rWbMmKGqqipJkp+fn/z8/PT111/r0KFD2rx5s44dO9bW29NhMjIy5HA4ZBiGnn76abPjuNX1\nSpUAAAAAAABwQ7Pb7WZHAAAAAACgR0lKStKZM2f0wAMPSJKWLFmi06dPux55eXmSpJKSEk2cOFEl\nJSW65557tGvXLpWWlqq8vFyrV69WUFCQ9u7dq2nTpjV5raVLl2r//v1auXKlvvvuO5WUlGjPnj0a\nPny4KisrlZSUpNLS0lZn37Fjh5KTk1VVVaX4+Hjl5+eroqJCDodDpaWlWrduncaOHdu+G9RBfv/7\n30uSYmJiNGzYMJPTuEdhEAAAAAAAADwqNTXV7AgAAAAAAMCNN998U2fPnlVQUJAyMzM1YsQISZLF\nYtETTzyh9PR0SdKmTZuUnZ3t9hwXLlzQsmXLNG3aNHl5eUm6UhizceNGDRgwQIWFhXrrrbdanWne\nvHmqq6vTmDFjtHHjRlcmSerbt68ee+wxvfvuu219yh2mqKhI//M//yPpyjZrXRWFQQAAAAAAAPAo\nm81mdgQAAAAAAODGmjVrJEkzZ85ssL1YvXHjxrm6Dq1atcrtOcLDwzVlypRGxwcMGKDZs2c3uE5L\nDh06pPz8fBmGoVdeecVVaHQj+MMf/qCamhr16tVLU6dONTtOkygMAgAAAAAAgEexlRgAAAAAAF3P\npUuXtH//fhmGobi4uCbnxcfHS5K++OILt+Njxoxpcm392FdffaXa2toWM+Xm5kqSgoODZbVaW5zf\nldRvIzZ+/HgNHDjQ5DRNozAIAAAAAAAAAAAAAACgmysuLpbT6ZQk3XzzzU3Oqx87f/58s+PuhIWF\nSZLq6upUUlLSYqbCwkJJ0q233tri3K7kwIED2r17t6SuvY2YRGEQAAAAAAAAAAAAAABAj1JVVWV2\nhBtafbegAQMG6O/+7u9MTtM8CoMAAAAAAAAAAAAAAAC6ueDgYBmGIafTqW+//bbJeSdPnpQkDRo0\nyO34qVOnmlx7+vRpSZKXl5eCgoJazHTTTTdJkk6cONHi3K6irq5O77//viRpypQp8vb2NjlR8ygM\nAgAAAAAAAAAAAAAA6AYslitlIPVbhl3Nx8dHw4YNkyRlZ2c3eY4tW7ZIkoYPH+52fOvWrU2urR+L\njo5uVcHM/fffL+nKNmd5eXktzu8KsrKydObMGRmG0eW3EZMoDAIAAAAAAICH2e12syMAAAAAANAj\n9evXT5JUUlLidvzJJ5+UJKWlpens2bONxjMzM5WbmyvDMJSUlOT2HMePH1d6enqj48XFxVq2bJkk\nadKkSa3KGxkZqfvuu09Op1MvvPCCamtrW7XOTPXbiA0dOrTJ4qmuhMIgAAAAAAAAeFRqaqrZEQAA\nAAAA6JGio6MlSR9//LHKysoajc+dO1eDBw/WxYsXlZCQoN27d0u6sj3W2rVrlZycLEl6+OGHFRsb\n6/YagYGBmjVrlj788EPV1dVJkvbt26dHH31UDodDoaGhmjNnTqszL1q0SF5eXtq+fXuDTJJUXl6u\n9PR0TZ8+vdXna0pFRYUcDoeKiorkcDhUU1MjSaqsrHQdczgcunjxYpPnuHDhgj755BNJ0tNPP93u\nTJ3BcLrrH9VDGIYhyX0LLQAAAKAnq3+vnK2m28n2BHGKk8TPDABwvex2O12DAAAAAABt0trP8evn\n3eg8/bvHw4cPKyYmRpcuXZKXl5dCQkLUq1cv3XLLLdq+fbskKT8/XwkJCa6uQn379lVNTY2qq6sl\nSTExMcrKytLAgQMbnDslJUUrVqzQiy++qOzsbOXl5cnHx0e9e/dWeXm5JKlPnz7KyMjQqFGjGqzN\nyclRfHy8wsPDdfTo0Ua5P/roI6WkpLgy+Pr6ys/Pz5WxqXXXoz5/S2w2m2w2m9uxd955R7Nnz5a3\nt7cKCgoUGhrapizXW6/SnvoWOgYBAAAAAADAoygKAgAAAAB0tAkTJpgdod064jlERkYqKytLCQkJ\nCgoK0rlz51RQUKBTp0655litVh04cEDz5s1TZGSk6urq5OPjI6vVqldffVV5eXmNioKu5uvrq5yc\nHC1cuFARERGqra1VSEiIpkyZoj179jQqCpJaLuSaPHmyDh48qLlz5yoyMlIWi0WXL1/W0KFDNWvW\nrFYV9LTEMIxWP5qyYsUKGYahcePGtbkoqLPRMUj8618AAADgWnQMuoKOQQAAAAAAAEDn4nP8rqu+\n447dbtfChQvNjnNDo2MQAAAAAAAAAAAAAAAAgHahMAgAAAAAAAAAAAAAAADohigMAgAAAAAAAAAA\nAAAAALohb7MDAAAAAAAAoHux2+2y2+1mxwAAAAAAAB5kGIYMwzA1g9VqVUFBQavnJycna/HixR2Y\nqOsznE6n0+wQZql/wfbgWwAAAAC4Vf9eOVvZJicxV5ziJPEzAwBcL8Mw+LsTAAAAANAmfI6P5kRE\nROjEiROtnv/0009r+fLlHZioba73dd6e7ws6BgEAAAAAAMCjbDab2REAAAAAAEA3dOzYMbMj3HDo\nGCQqDQEAAIBr0THoCjoGAQAAAAAAAJ2Lz/HRE3RmxyDLda8AAAAAAAAAAAAAAAAA0OVRGAQAAAAA\nAAAAAAAAAAB0QxQGAQAAAAAAAAAAAAAAAN0QhUEAAAAAAAAAAAAAAABAN0RhEAAAAAAAADzKbreb\nHQEAAAAAAACSDKfT6TQ7hFkMw5Ak9eBbAAAAALhV/145W9kmJzFXnOIk8TMDAFwvwzD4uxMAAAAA\n0CZ8jo+e4Hpf5+35vqBjEAAAAAAAADzKZrOZHQEAAAAAAACiY5AkKg0BAACAa9Ex6Ao6BgEAAAAA\nAACdi8/x0RPQMQgAAAAAAAAAAAAAAABAu1AYBAAAAAAAAAAAAAAAgA6Tk5Mji8WiiIgIs6P0OBQG\nAQAAAAAAAAAAAACAG0piYqIMw7ihH4mJiR6/L2lpaUpNTdXevXs9fm5PqN8Sywy5ublasmSJpk+f\nrqioKFksFlksFi1YsKBV648fP67nn39e0dHR6tu3r3x8fBQWFqbHHntMf/rTnzo4fdt5mx0AAAAA\nAAAAAAAAAADgemzYsMHsCO3WEc8hLS1N27ZtU0REhGJiYjx+/rbq06ePIiMjNWTIENMyJCQkqKys\nrNHx1hQrZWZm6vHHH9fFixclSd7e3vL391dhYaH+9Kc/6U9/+pOeeuoppaWleTp2u1EYBAAAAAAA\nAI+y2+2y2+1mxwAAAAAA9ADZyjY7QpvEKc7sCJ3KarXq4MGDpmbw9/fX9773PVmtVv3gBz/Q4sWL\n9eWXX7a4rqKiQtOmTdPFixd1xx136O2331ZsbKwsFosKCzV2YCAAACAASURBVAv18ssv63e/+51W\nrFihsWPHasaMGZ3wbFqPrcQAAAAAAADgUampqWZHAAAAAACgR3M6nWZH6HJOnTqlnTt36vXXX9dT\nTz2lfv36tWrdtm3bVFRUJMMwlJaWpvj4eFksV8ptQkND9eabb2rMmDGSpI8//rjD8rcVhUEAAAAA\nAADwKJvNZnYEAAAAAAB6lLS0NFksFm3btk2S9Mwzz8hisbgeERERDeYXFhZq/vz5ioqKkr+/vwID\nAzVy5EgtWrRIly5dcnuNlJQUWSwWpaamqrq6WjabTVFRUfLz81NISIimTp2qI0eOuF2bk5PjNsfV\nCgoKNH/+fEVHRysgIEABAQEaOnSoZs6cqZycnLbdmKu0Zsswd+q3D5Ok73//+27nDB8+XJJUWVnZ\npmt0JLYSAwAAAAAAgEexjRgAAAAAAJ3L399foaGhKi4uVk1NjQIDA+Xn5+caDwkJcf15165dGj9+\nvEpKSmQYhgICAlRTU6P8/Hzl5+dr5cqVyszM1KBBg9xeq7q6WrGxscrLy1Pv3r3l6+uroqIipaen\na/369crIyNDo0aPdrm2qOGft2rWaMWOGqqqqJEl+fn7y8/PT119/rUOHDmnz5s06duxYW29Pu9x7\n772yWCy6fPmy9uzZo1GjRjWas3v3bkl/LRDqSugYBAAAAAAAAAAAAAAAcANLSkrSmTNn9MADD0iS\nlixZotOnT7seeXl5kqSSkhJNnDhRJSUluueee7Rr1y6VlpaqvLxcq1evVlBQkPbu3atp06Y1ea2l\nS5dq//79Wrlypb777juVlJRoz549Gj58uCorK5WUlKTS0tJWZ9+xY4eSk5NVVVWl+Ph45efnq6Ki\nQg6HQ6WlpVq3bp3Gjh3bvhvUDrfffrt+9rOfSbrSNWnz5s2qra2VJJ09e1Zz587Vtm3bdPPNN+uf\n//mfTcvZFAqDAAAAAAAAAAAAAAAAeoA333xTZ8+eVVBQkDIzMzVixAhJksVi0RNPPKH09HRJ0qZN\nm5Sdne32HBcuXNCyZcs0bdo0eXl5SZJiYmK0ceNGDRgwQIWFhXrrrbdanWnevHmqq6vTmDFjtHHj\nRlcmSerbt68ee+wxvfvuu219yh7xn//5n/qv//ov+fr6aty4cfL19VW/fv0UFham9957T0899ZR2\n7dqlAQMGmJrTHQqDAAAAAAAAAAAAAAAAeoA1a9ZIkmbOnNlge7F648aNc3UdWrVqldtzhIeHa8qU\nKY2ODxgwQLNnz25wnZYcOnRI+fn5MgxDr7zyiqvQqKu5fPmyysvLVVlZKUlyOp2qqKiQYRiqqalR\neXm5iouLTU7pHoVBAAAAAAAAAAAAAAAA3dylS5e0f/9+GYahuLi4JufFx8dLkr744gu342PGjGly\nbf3YV1995dpuqzm5ubmSpODgYFmt1hbnm2XatGn6+c9/rvLycr399ts6fvy4ysrKlJubq4SEBK1b\nt04PPfSQ/vKXv5gdtREKgwAAAAAAAOBRdrvd7AgAAAAAAOAaxcXFcjqdkqSbb765yXn1Y+fPn292\n3J2wsDBJUl1dnUpKSlrMVFhYKEm69dZbW5xrloyMDH300UeyWCxat26dZs2apVtuuUV9+vSR1WrV\n+vXrNXbsWJWVlemnP/2p2XEboTAIAAAAAAAAHpWammp2BAAAAAAA0IyqqiqzI9wwPvnkE0nSiBEj\nNGrUKLdznn/+eUnSrl27XMVOXQWFQQAAAAAAAPAom81mdgQAAAAAAHCN4OBgGYYhp9Opb7/9tsl5\nJ0+elCQNGjTI7fipU6eaXHv69GlJkpeXl4KCglrMdNNNN0mSTpw40eJcs9Tfq4iIiCbnXD3W3L01\nA4VBAAAAAAAA8Ci2EgMAAAAAwBwWy5UykPotw67m4+OjYcOGSZKys7ObPMeWLVskScOHD3c7vnXr\n1ibX1o9FR0fL29u7xbz333+/pCvbnOXl5bU43wx9+/aV1HzBz9VjAQEBHZ7pelAYBAAAAAAAAAAA\nAAAA0A3069dPklRSUuJ2/Mknn5QkpaWl6ezZs43GMzMzlZubK8MwlJSU5PYcx48fV3p6eqPjxcXF\nWrZsmSRp0qRJrcobGRmp++67T06nUy+88IJqa2tbta4z1Rcv7d69W19++aXbOe+8844kKTAwUFFR\nUZ2WrTUoDAIAAAAAAAAAAAAAAOgGoqOjJUkff/yxysrKGo3PnTtXgwcP1sWLF5WQkKDdu3dLkurq\n6rR27VolJydLkh5++GHFxsa6vUZgYKBmzZqlDz/8UHV1dZKkffv26dFHH5XD4VBoaKjmzJnT6syL\nFi2Sl5eXtm/f3iCTJJWXlys9PV3Tp09v9fmaUlFRIYfDoaKiIjkcDtXU1EiSKisrXcccDocuXrzY\nYN3TTz+tgIAA1dbW6rHHHtP69etVXV0tSSooKNDMmTP1ySefSJLmzJkjwzDandWTDKe7/lE9RP0X\nowffAgAAAMCt+vfK2Wq6nWxPEKc4SfzMAAAAAAAAAHSW1n6Of6P/DrOjfvd4+PBhxcTE6NKlS/Ly\n8lJISIh69eqlW265Rdu3b5ck5efnKyEhwdVVqG/fvqqpqXEVu8TExCgrK0sDBw5scO6UlBStWLFC\nL774orKzs5WXlycfHx/17t1b5eXlkqQ+ffooIyNDo0aNarA2JydH8fHxCg8P19GjRxvl/uijj5SS\nkuLK4OvrKz8/P1fGptZdj/r8LbHZbLLZbA2OffbZZ5o0aZIqKiokXXn9+fn5qbKy0jXnhz/8odau\nXduqLdSut16lPfUtLacBAAAAAAAAAAAAAADoguoLbHBFZGSksrKy9Jvf/EZ/+ctfdO7cOV2+fFkW\ny183lLJarTpw4IBeeeUVbdiwQSdOnJCPj4/uueceTZ48WXPnzpWPj0+T1/D19VVOTo5+85vf6KOP\nPtKJEycUEhKisWPHym6366677mq0pqUuOpMnT9bIkSO1aNEiZWVlqaCgQJcvX9bQoUP10EMPacaM\nGW2/KVdlaE03H3dzEhIStH//fr3++uvatGmTjh07purqat10000aPny4ZsyYocmTJ7c7Y0egY5D4\n178AAADAtW70f23jKXQMAoC2sdvtstvtZscAAAAAANyAWvs5fmJiojZs2NAZkTrMhAkT9Omnn5od\no9XqO+7Y7XYtXLjQ7Dg3tM7sGGRpeQoAAAAAAADQeqmpqWZHAAAAAAB0c59++qmcTucN/biRioJw\n46IwCAAAAAAAAB5ls9nMjgAAAAAAAABRGAQAAAAAAAAPYxsxAAAAAACArsHb7AAAAAAAAAAAAAAA\nAADo2gzDkGEYpmawWq0qKCho9fzk5GQtXry4AxN1fRQGAQAAAAAAAAAAAAAAoFnvvfee3nvvPVMz\nOBwOnT9/vtXzy8rKOjDNjYHCIAAAAAAAAAAAAAAAAHR5x44dMzvCDcdidgAAAAAAAAAAAAAAAAAA\nnkdhEAAAAAAAADzKbrebHQEAAAAAAACSDKfT6TQ7hFkMw5Ak9eBbAAAAALhV/145W9kmJzFXnOIk\n8TMDAFwvwzD4uxMAAAAA0CZ8jo+e4Hpf5+35vqBjEAAAAAAAADzKZrOZHQEAbiiJiYkyDIPH/38k\nJiaa/SUBAAAAug06BolKQwAAAOBadAy6go5BAAAA6Az177/xV7wHBwCg5+JzfPQEndkxyPu6VwAA\nAAAAAAAAAM+zmx2gC7CbHQAAAADoXthKDAAAAAAAAAAAAAAAAOiGKAwCAAAAAAAAAAAAAAAAuiEK\ngwAAAAAAAAAAAAAAAIBuiMIgAAAAAAAAeJTdbjc7AgAAAAAAAERhEAAAAAAAADwsNTXV7AgAAAAA\nAAAQhUEAAAAAAADwMJvNZnYEAAAAAAAAiMIgAAAAAAAAeBhbiQEAAAAAOlpiYqIMw7ihH4mJiWbf\nxk6Tk5Mji8WiiIgIs6P0OBQGAQAAAAAAAAAAAACAG8qGDRvMjtBuHfEc0tLSlJqaqr1793r83J5g\nGIZp187NzdWSJUs0ffp0RUVFyWKxyGKxaMGCBa1aX1RUpJdeeknDhg1Tnz591K9fP40YMUL/8R//\noUuXLnVw+rbzNjsAAAAAAAAAAAAAAABAW2Rnm52gbeLiOua8aWlp2rZtmyIiIhQTE9MxF2mDPn36\nKDIyUkOGDDEtQ0JCgsrKyhodb02x0t69ezV+/HidPXtWkhQQEKDLly/riy++0BdffKEPPvhAW7Zs\nUXBwsMdztxcdgwAAAAAAAAAAAAAAANBhrFarDh48qKysLNMy+Pv7a+TIkZo7d67S0tJ07733tmrd\nd999px/+8Ic6e/asoqKitGPHDl24cEHl5eXatGmThgwZon379mnq1Kkd/Azaho5BAAAAAAAAAAAA\nAAAA3YjT6TQ7Qpdz6tSpBt2Bli9f3qp1//3f/62TJ0/K29tb69atU2RkpGssPj5eH3zwgcaMGaPM\nzExt2rRJDz/8sMeztwcdgwAAAAAAAOBRdrvd7AgAAAAAAPQoaWlpslgs2rZtmyTpmWeekcVicT0i\nIiIazC8sLNT8+fMVFRUlf39/BQYGauTIkVq0aJEuXbrk9hopKSmyWCxKTU1VdXW1bDaboqKi5Ofn\np5CQEE2dOlVHjhxxuzYnJ8dtjqsVFBRo/vz5io6OVkBAgAICAjR06FDNnDlTOTk5bbsxV2nNlmHu\nZGRkSJIeeeSRBkVB9UaPHq0RI0ZIklasWNH2gB2EjkEAAAAAAADwqNTUVIqDAAAAAADoRP7+/goN\nDVVxcbFqamoUGBgoPz8/13hISIjrz7t27dL48eNVUlIiwzAUEBCgmpoa5efnKz8/XytXrlRmZqYG\nDRrk9lrV1dWKjY1VXl6eevfuLV9fXxUVFSk9PV3r169XRkaGRo8e7XZtU8U5a9eu1YwZM1RVVSVJ\n8vPzk5+fn77++msdOnRImzdv1rFjx9p6e9rl22+/lSS3RUH1IiMjtXv3bm3atKmzYrUaHYMAAAAA\nAADgUTabzewIAAAAAAD0KElJSTpz5oweeOABSdKSJUt0+vRp1yMvL0+SVFJSookTJ6qkpET33HOP\ndu3apdLSUpWXl2v16tUKCgrS3r17NW3atCavtXTpUu3fv18rV67Ud999p5KSEu3Zs0fDhw9XZWWl\nkpKSVFpa2ursO3bsUHJysqqqqhQfH6/8/HxVVFTI4XCotLRU69at09ixY9t3g9qhvpiprq6uyTm1\ntbWSrnRiKikp6ZRcrUVhEAAAAAAAADyKbkEAAAAAAHRNb775ps6ePaugoCBlZma6tsCyWCx64okn\nlJ6eLknatGmTsrOz3Z7jwoULWrZsmaZNmyYvLy9JUkxMjDZu3KgBAwaosLBQb731VqszzZs3T3V1\ndRozZow2btzoyiRJffv21WOPPaZ33323rU+53cLDwyVJX331VZNzDhw44PrzmTNnOjrSdaEwCAAA\nAAAAAAAAAAAAoAdYs2aNJGnmzJkNtherN27cOFfXoVWrVrk9R3h4uKZMmdLo+IABAzR79uwG12nJ\noUOHlJ+fL8Mw9Morr7gKjbqSRx55RJK0ZcsW7dmzp9F4RkaG9u/fL0lyOp0qLy/v1Hwt8Uhh0MmT\nJ/WjH/1IYWFh8vX1VUREhObNm3ddraHWrFmjn/70pxo9erT69esni8WiGTNmNDn/+PHjslgsTT7c\nvQgBAAAAAAAAAAAAAAB6okuXLmn//v0yDENxcXFNzouPj5ckffHFF27Hx4wZ0+Ta+rGvvvrKtb1W\nc3JzcyVJwcHBslqtLc43w49//GOFhYXJ6XRq4sSJ+uMf/6iKigqVl5frD3/4g2bMmKFevXq55lss\nXatHj3d7T/DNN9/owQcf1Pnz5zVx4kRFRUUpLy9PS5Ys0WeffabPP/9cwcHBLZ7nl7/8pfbt26eA\ngAANGTJEhw4dcu3T1px7771XEydObHQ8Ojq6Tc8HAAAAAAAAAAAAAACguykuLpbT6ZRhGLr55pub\nnFc/dv78+WbH3QkLC5Mk1dXVqaSkRIMGDWo2U2FhoSTp1ltvbXaemQICAvTHP/5REyZM0MmTJ/X4\n4483GB84cKBSU1P1r//6rzIMQ/379zcpqXvtLgyaM2eOzp8/rzfeeEM/+clPXMfnz5+v1157TS+9\n9JKWLl3a4nkWL16sW265RXfccYe2bt3abHXa1e69914tXLiwzfkBAAAAAAAAAAAAAAB6kqqqKrMj\n3FBGjBihAwcO6I033lBmZqbOnDmjwMBAxcXF6YUXXtDGjRslSb169VJ4eLi5Ya/Rrv5F33zzjbKy\nshQREdGgKEiSUlNT5e/vr/fff1+VlZUtnis2NlZ33HGHpCt7rgEAAAAAAODGZLfbzY4AAAAAAACu\nERwcLMMw5HQ69e233zY57+TJk5LUZLefU6dONbn29OnTkiQvLy8FBQW1mOmmm26SJJ04caLFuWYb\nMGCA7Ha7duzYoWPHjunLL7/Ua6+9psGDB2vPnj2SpO9///sNthXrCtpVGJSdnS1JeuSRRxqN9e3b\nVw899JAqKipce8J1hFOnTuntt9/Wr3/9a7399tv63//93w67FgAAAAAAAFqWmppqdgQAAAAAAHok\ni+VKGYi7hiw+Pj4aNmyYpL/We7izZcsWSdLw4cPdjm/durXJtfVj0dHR8vZueROr+++/X9KVbc7y\n8vJanN8VXbp0SWvXrpUkTZ061eQ0jbWrMOjw4cOSpLvvvtvt+F133SVJOnLkSHsu06ysrCw9++yz\n+sUvfqFnn31WMTExio+PV0FBQYddEwAAAAAAAE2z2WxmRwAAAAAAoEfq16+fJKmkpMTt+JNPPilJ\nSktL09mzZxuNZ2ZmKjc3V4ZhKCkpye05jh8/rvT09EbHi4uLtWzZMknSpEmTWpU3MjJS9913n5xO\np1544QXV1ta2al1XYrfbdebMGQ0ePFgpKSlmx2mkXYVBFy5ckCQFBga6Ha8/Xlpa2p7LuNWnTx8t\nXLhQe/bsUWlpqUpLS7V161bFxcUpJydHY8eObdUWZgAAAAAAAPAsthIDAAAAAMAc0dHRkqSPP/5Y\nZWVljcbnzp2rwYMH6+LFi0pISNDu3bslSXV1dVq7dq2Sk5MlSQ8//LBiY2PdXiMwMFCzZs3Shx9+\nqLq6OknSvn379Oijj8rhcCg0NFRz5sxpdeZFixbJy8tL27dvb5BJksrLy5Wenq7p06e3+nxNqaio\nkMPhUFFRkRwOh2pqaiRJlZWVrmMOh0MXL15stPa3v/2t1q1b16Dg6vDhw/rxj3+sf//3f5e3t7fe\neecdBQQEtDunp7Xct6mLGjRoUKNfMo0ePVqZmZkaNWqU8vLy9O677+q5554zJyAAAAAAAAAAAAAA\nAOhQcXFmJ+haZsyYoVdffVV//vOfNWDAAIWEhKhXr1665ZZbtH37dvXv31+ffPKJEhIStG/fPlmt\nVvXt21c1NTWqrq6WJMXExOiDDz5o8hrPPvussrOzNX36dP3oRz9S7969VV5eLulKk5fVq1c32WDG\nnQcffFDvv/++UlJStGXLFlmtVvn6+srPz89ViBMeHt72m/L//eQnP9GKFSsaHX/99df1+uuvu/7f\nZrM16oackZGhBQsWSJL8/f3ldDpdBUQBAQF65513NGHChHZn7Ajt6hhU/4Ws7xx0rfrj/fv3b89l\nrouXl5dmzpwpSdq+fXunXRcAAAAAAAAAAAAAAHSOrlqEcT064jlERkYqKytLCQkJCgoK0rlz51RQ\nUKBTp0655litVh04cEDz5s1TZGSk6urq5OPjI6vVqldffVV5eXkaOHBgk9fw9fVVTk6OFi5cqIiI\nCNXW1iokJERTpkzRnj17NGrUqEZrDMNoNvfkyZN18OBBzZ07V5GRkbJYLLp8+bKGDh2qWbNmuS3o\nuV6GYbT6ca2f/exnmjx5su68805ZLBZ5e3srOjpaP//5z3XgwIEmt13rCtpVGBQVFSXpSnskd44c\nOSJJuvvuu9tzmetW/wKtqKho1fzmvtixsbH6f+zdb2xdZR0H8N+BIWwigwWiDBNoZVtjTEAToxYR\nimYx9AUYMWCyIUF9wVDC8BVCdp4T/iQL0YGAhEhkWTCKQR0k1AUyWjRMGpDINGFjW0sEE7KZuIFb\nSBjUF13L5lq29Z7tuT39fJKTm/R377nf29vd3q7fPk9RFJMugZ1SMjc3Nzc3Nzc3N2/cfDKrY3X0\nRE+sjtUzct4uz4+5ubm5ubm5uXmz5pPqj4i073IGztvl+TE3Nzc3Nzc/tvPD9eSTT8bIyMi0Pp58\n8snDfrxH4sILL4y+vr7Yvn17vPvuu/Hee+/F0NDQAdf5+Mc/Hj/5yU/ilVdeid27d8euXbticHAw\nbrrppvjIRz5yyPs48cQTI6U0fvs333wzfvWrX8WCBQsmvP5FF10U77///kE59nfOOefEz372s3jl\nlVfiv//9b/znP/+Jf/zjH/Hggw9OWDY6Ug8//HC89957hzxWrFhx0G2/8Y1vxK9//et49dVX4623\n3opdu3bFxo0bY+XKlXHWWWe1nC0ixvspEx2tKEZGRkameuOhoaE499xzo6OjI7Zu3XpAmLfffjvO\nPPPMKIoitm/fHrNnzz7s8w4MDMQll1wSS5YsmVLr6+abb46VK1fGsmXL4r777pv0emN5W/gUAABA\nI429V+6f9H/wZ4aeGF2H2M8MAAAcTeP/t56yxmgPafTCe3AAmLn8Hr99XXPNNbFmzZpIKU1YnuHw\nHenXeSv/LlpaMaizszMWL14cw8PDcf/99x8wK8sy9uzZE0uXLh0vBe3duzc2bdr0oQ2ww/XSSy9N\n+IDXr18fq1atiqIoYsmSJS3fDwAAAABH5kj+whMAAACAo2dWqyf4+c9/Ht3d3XHDDTfE+vXro6ur\nKwYHB2NgYCAWLVoUd9xxx/h133jjjfj0pz8dZ599dgwPDx9wnrVr18batWsjIuLNN9+MiIgNGzbE\nNddcExERZ5xxRtx1113j17/pppti69at0d3dPb4s08aNG6O/vz+KoojbbrstvvjFL7b68AAAAAA4\nQlVVKQcBAAAAtIGWi0GdnZ3x4osvxooVK2LdunXR19cX8+fPjxtvvDHKsoy5c+cedJuJ9j97+eWX\nY82aNeOzoihieHh4fHWhc84554Bi0NVXXx1/+MMf4oUXXog//vGP8e6778YnPvGJuPLKK+MHP/hB\nXHDBBa0+NAAAAACmoCzL3BEAAACAmhVFMWHf41j6/Oc/H6+//vphX/+qq66Ku++++ygman/FyAze\nmM/ehAAAMLGx98r90Z85SV490RMRfmYAAODoGv/lSsoaoz2k0QvvwQFg5vJ7fD5MR0dH/POf/zzs\n63/nO9+JX/7yl0cx0dQc6dd5K/8uWl4xCAAAAAAAAAAAjrbh4eHcEaad43IHAAAAAAAAAAAA6qcY\nBAAAAAAAAAAADaQYBAAAAAAAAAAADaQYBAAAAECtUkq5IwAAAAAQikEAAAAA1KyqqtwRAAAAAAjF\nIAAAAABqVpZl7ggAAAAAhGIQAAAAADWzlRgAAABAe5iVOwAAAAAAAAAAwP6KosgdARrBikEAAAAA\nAAAAQFu49NJLc0eAY+JYfa1bMQgAAAAAAAAAaAtPPvlk7gjQKFYMAgAAAAAAAACABlIMAgAAAKBW\nKaXcEQAAAAAIxSAAAAAAalZVVe4IAAAAAIRiEAAAAAA1K8sydwQAAAAAQjEIAAAAgJrZSgwAAACg\nPSgGAQAAAAAAAABAAykGAQAAAAAAAABAAykGAQAAAAAAAABAAykGAQAAAAAAAABAAykGAQAAAFCr\nlFLuCAAAAACEYhAAAAAANauqKncEAAAAAEIxCAAAAICalWWZOwIAAAAAoRgEAAAAQM1sJQYAAADQ\nHhSDAAAAAAAAAACggRSDAAAAAAAAAACggRSDAAAAAAAAAACggRSDAAAAAAAAAACggRSDAAAAAKhV\nSil3BAAAAABCMQgAAACAmlVVlTsCAAAAAKEYBAAAAEDNyrLMHQEAAACAUAwCAAAAoGa2EgMAAABo\nD4pBAAAAAAAAAADQQIpBAAAAAAAAAADQQIpBAAAAAAAAAADQQIpBAAAAAAAAAADQQIpBAAAAANQq\npZQ7AgAAAAChGAQAAABAzaqqyh0BAAAAgFAMAgAAAKBmZVnmjgAAAABAKAYBAAAAUDNbiQEAAAC0\nB8UgAAAAAAAAAABoIMUgAAAAAAAAAABoIMUgAAAAAAAAAABoIMUgAAAAAAAAAABoIMUgAAAAAGqV\nUsodAQAAAIBQDAIAAACgZlVV5Y4AAAAAQCgGAQAAAFCzsixzRwAAAAAgFIMAAAAAqJmtxAAAAADa\ng2IQAAAAAAAAAAA0kGIQAAAAAAAAAAA0kGIQAAAAAAAAAAA0kGIQAAAAAAAAAAA0kGIQAAAAALVK\nKeWOAAAAAEAoBgEAAABQs6qqckcAAAAAIBSDAAAAAKhZWZa5IwAAAAAQikEAAAAA1MxWYgAAAADt\nQTEIAAAAAAAAAAAaSDEIAAAAAAAAAAAaSDEIAAAAAAAAAAAaSDEIAAAAAAAAAAAaSDEIAAAAgFql\nlHJHAAAAACAUgwAAAACoWVVVuSMAAAAAEIpBAAAAANSsLMvcEQAAAAAIxSAAAAAAamYrMQAAAID2\noBgEAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAQK1S\nSrkjAAAAABCKQQAAAADUrKqq3BEAAAAACMUgAAAAAGpWlmXuCAAAAACEYhAAAAAANbOVGAAAAEB7\nUAwCAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAoFYp\npdwRAAAAAAjFIAAAAABqVlVV7ggAAAAAhGIQAAAAADUryzJ3BAAAAABCMQgAAACAmtlKDAAAAKA9\nKAYBAAAAAAAAAEADKQYBAAAAAAAAAEADKQYBAAAAuklF+gAAIABJREFUAAAAAEADKQYBAAAAAAAA\nAEADKQYBAAAAUKuUUu4IAAAAAIRiEAAAAAA1q6oqdwQAAAAAQjEIAAAAgJqVZZk7AgAAAAChGAQA\nAABAzWwlBgAAANAeFIMAAAAAAAAAAKCBFIMAAAAAAAAAAKCBFIMAAAAAAAAAAKCBFIMAAAAAAAAA\nAKCBFIMAAAAAqFVKKXcEAAAAAEIxCAAAAICaVVWVOwIAAAAAoRgEAAAAQM3KsswdAQAAAIBQDAIA\nAACgZrYSAwAAAGgPikEAAAAAAAAAANBAikEAAAAAAAAAANBAikEAAAAAAAAAANBAikEAAAAAAAAA\nANBAikEAAAAA1CqllDsCAAAAAKEYBAAAAEDNqqrKHQEAAACAUAwCAAAAoGZlWeaOAAAAAEAoBgEA\nAABQM1uJAQAAALQHxSAAAAAAAAAAAGggxSAAAAAAAAAAAGggxSAAAAAAAAAAAGggxSAAAAAAAAAA\nAGggxSAAAAAAapVSyh0BAAAAgKihGPTGG2/EtddeG/Pnz4+TTjopOjo6Yvny5bFz587DPsdjjz0W\nP/zhD+PCCy+MU045JY477rhYunTpIW+3YcOGuPTSS2PevHkxZ86cOO+88+Kee+6J999/v5WHBAAA\nAEALqqrKHQEAAACAiJjVyo23bdsW3d3dsWPHjrj88sujq6srBgcH45577ol169bFc889F/PmzTvk\neW6//fbYuHFjfOxjH4tPfvKTsWnTpiiK4kNv8/jjj8c3v/nNmDNnTlx55ZUxb968eOKJJ2L58uXx\n3HPPxW9/+9tWHhoAAAAAU1SWZe4IAAAAAESLKwYtW7YsduzYEffee2/8/ve/jzvvvDPWr18fy5cv\nj82bN8ctt9xyWOe5++67Y8uWLbFr16544IEHDnn9t956K77//e/HCSecEAMDA/GLX/wiVq5cGX/7\n29/iS1/6Ujz22GPx6KOPtvLQAAAAAJgiW4kBAAAAtIcpF4O2bdsWTz/9dHR0dMT1119/wKyqqpgz\nZ0488sgjsWfPnkOe6+KLL45PfepTERExMjJyyOs/9thj8e9//zuuuuqq+NznPjf+8RNPPDFuv/32\niIjDKhgBAAAAAAAAAEBTTbkY1N/fHxERixcvPmh28sknxwUXXBC7d++O559/furpJvHMM89ERMTX\nv/71g2Zf+cpXYvbs2fGXv/wl3n333drvGwAAAAAAAAAApoMpF4M2b94cERELFy6ccL5gwYKIiNiy\nZctU72JK93388cdHR0dH7N27N4aGhmq/bwAAAAAAAAAAmA6mXAzatWtXRETMnTt3wvnYx3fu3DnV\nu/jQ+y6K4kPve2Rk5KjcNwAAAAAAAAAATAdTLgYBAAAAwERSSrkjAAAAABAtFIPGVusZWzno/419\n/NRTT53qXXzofY+MjGS5bwAAAAA+XFVVuSMAAAAAEC0Ug7q6uiIiYvPmzRPOt2zZEhERCxcunOpd\nTGrRokWT3vfevXtjeHg4TjjhhOjs7Dys8xVFMelx8cUXR1EUk/6lW0rJ3Nzc3Nzc3NzcvHHzyayO\n1dETPbE6Vs/Iebs8P+bm5ubtPi/Lsq3zmZubm7fbfFL9EZH2Xc7Aebs8P+bm5ubm5ubm5ubHYj7W\nT5noaEUxMjIyMpUbDg0NxbnnnhsdHR2xdevWA4K8/fbbceaZZ0ZRFLF9+/aYPXv2YZ93YGAgLrnk\nkliyZEmsWbNmwus8/PDD8d3vfjeuvvrqWL169QGzZ555Jr72ta/FRRddFP39k/20MWos8xQ/BQAA\n0Fhj75X7J/0f/JmhJ3oiws8MAAAcXeP/v56yxmgPafTCe3AAAPhAK/2WKa8Y1NnZGYsXL47h4eG4\n//77D5iVZRl79uyJpUuXjpeC9u7dG5s2bYqhoaGp3uW4K664Ik4//fT4zW9+E3/961/HP/7OO+/E\nrbfeGhER1113Xcv3AwAAAAAAAAAA09WUVwyKGF01qLu7O7Zv3x6XXXZZdHV1xeDgYAwMDMSiRYti\nw4YNcdppp0VExGuvvRadnZ1x9tlnx/Dw8AHnWbt2baxduzYiIt5888146qmnorOzM7785S9HRMQZ\nZ5wRd9111wG3efzxx+OKK66Ik046Ka666qo47bTT4oknnohXX301vvWtb8Wjjz566AdvxSAAAJiQ\nFYNGWTEIAIBjwYpB+0mjF96DAwDAB1rpt8xq5Y47OzvjxRdfjBUrVsS6deuir68v5s+fHzfeeGOU\nZRlz586dNOz+Xn755VizZs34rCiKGB4eHl9d6JxzzjmoGHTZZZfFs88+G3fccUf87ne/i3feeScW\nLFgQq1atihtuuKGVhwUAAAAAAAAAANNeSysGTXdWDAIAgIlZMWiUFYMAADgWrBi0nzR64T04AAB8\noJV+y3F1hwEAAABgZksp5Y4AAAAAQCgGAQAAAFCzqqpyRwAAAAAgFIMAAAAAqFlZlrkjAAAAABCK\nQQAAAADUzFZiAAAAAO1BMQgAAAAAAAAAABpIMQgAAAAAAAAAABpIMQgAAAAAAAAAABpIMQgAAAAA\nAAAAABpIMQgAAACAWqWUckcAAGik3t7eKIrCse/o7e3N/ZQAQNsrRkZGRnKHyKUoioiImMGfAgAA\nmNDYe+X+6M+cJK+e6IkIPzMAHKmiKLx2AhyBsfffkbLGaA9p9ML3EZjY+OsF47xeADATtNJvmVV3\nGAAAAABmtrIsc0cAAGi0/pn9dzwREdHTkzsBAEwPthIDAAAAoFa2EgMAAABoD4pBAAAAAAAAAADQ\nQIpBAAAAAAAAAADQQIpBAAAAAAAAAADQQIpBAAAAAAAAAADQQIpBAAAAANQqpZQ7AgAAAAChGAQA\nAABAzaqqyh0BAAAAgFAMAgAAAKBmZVnmjgAAAABAKAYBAAAAUDNbiQEAAAC0B8UgAAAAAAAAAABo\nIMUgAAAAAAAAAABoIMUgAAAAAAAAAABoIMUgAAAAAAAAAABoIMUgAAAAAGqVUsodAQAAAIBQDAIA\nAACgZlVV5Y4AAAAAQCgGAQAAAFCzsixzRwAAAAAgFIMAAAAAqJmtxAAAAADag2IQAAAAAAAAAAA0\nkGIQAAAAAAAAAAA0kGIQAAAAAAAAAAA0kGIQAAAAAAAAAAA0kGIQAAAAALVKKeWOAAAAAEAoBgEA\nAABQs6qqckcAAAAAIBSDAAAAAKhZWZa5IwAAAAAQikEAAAAA1MxWYgAAAADtQTEIAAAAmJLe3t4o\nisKx7+jt7c39lAAAAADAARSDAAAAgCnp6+vLHaGt+HwAAAAA0G5m5Q4AAAAATHMpd4A2kHIHAAAA\nAICDWTEIAAAAAAAAAAAaSDEIAAAAgFqllHJHAAAAACAUgwAAAACoWVVVuSMAAAAAEIpBAAAAANSs\nLMvcEQAAAAAIxSAAAAAAamYrMQAAAID2oBgEAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAAAAA\nAAANpBgEAAAAAAAAAAANpBgEAAAAQK1SSrkjAAAAABCKQQAAAADUrKqq3BEAAAAACMUgAAAAAGpW\nlmXuCAAAAACEYhAAAAAANbOVGAAAAEB7UAwCAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAAAAA\nAIAGUgwCAAAAAAAAAIAGUgwCAAAAoFYppdwRAAAAAAjFIAAAAABqVlVV7ggAAAAAhGIQAAAAADUr\nyzJ3BAAAAABCMQgAAACAmtlKDAAAAKA9KAYBAAAAAAAAAEADKQYBAAAAAAAAAEADKQYBAAAAAAAA\nAEADKQYBAAAAAAAAAEADKQYBAAAAUKuUUu4IAAAAAIRiEAAAAByR3t7eKIrCURS5nwraWFVVuSMA\nAAAAEIpBAAAAcET6+vpyR4C2V5Zl7ggAAAAARMSs3AEAAABgehrJHaANWDWIidlKDAAAAKA9WDEI\nAAAAAAAAAAAaSDEIAAAAAAAAAAAaSDEIAAAAAAAAAAAaSDEIAAAAAAAAAAAaSDEIAAAAgFqllHJH\nAAAAACAUgwAAAACoWVVVuSMAAAAAEIpBAAAAANSsLMvcEQAAAAAIxSAAAAAAamYrMQAAAID2oBgE\nAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAAAAAAAANpBgEAAAAQK1SSrkj\nAAAAABCKQQAAAADUrKqq3BEAAAAACMUgAAAAAGpWlmXuCAAAAACEYhAAAAAANbOVGAAAAEB7UAwC\nAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAAAAAAIAGUgwCAAAAoFYppdwR\nAAAAAAjFIAAAAABqVlVV7ggAAAAAhGIQAAAAADUryzJ3BAAAAABCMQgAAACAmtlKDAAAAKA9KAYB\nAAAAAAAAAEADKQYBAAAAAAAAAEADKQYBAAAAAAAAAEADKQYBAAAAAAAAAEADKQYBAAAAUKuUUu4I\nAAAAAIRiEAAAAAA1q6oqdwQAAAAAQjEIAAAAgJqVZZk7AgAAAAChGAQAAABAzWwlBgAAANAeFIMA\nAAAAAAAAAKCBFIMAAAAAAAAAAKCBFIMAAAAAAAAAAKCBFIMAAAAAAAAAAKCBFIMAAAAAqFVKKXcE\nAAAAAEIxCAAAAICaVVWVOwIAAAAAoRgEAAAAQM3KsswdAQAAAIBQDAIAAACgZrYSAwAAAGgPikEA\nAAAAAAAAANBAtRSD3njjjbj22mtj/vz5cdJJJ0VHR0csX748du7cedTO89prr8Vxxx036fHtb3+7\njocGAAAAAAAAAADT0qxWT7Bt27bo7u6OHTt2xOWXXx5dXV0xODgY99xzT6xbty6ee+65mDdv3lE7\nz/nnnx+XX375QR//zGc+0+pDAwAAAAAAAACAaavlYtCyZctix44dce+998b1118//vEf/ehHsWrV\nqrjlllvigQceOGrnOf/882PFihWtPgwAAAAAAAAAAGiUlrYS27ZtWzz99NPR0dFxQJknIqKqqpgz\nZ0488sgjsWfPnmNyHgAAAADySynljgAAAABAtFgM6u/vj4iIxYsXHzQ7+eST44ILLojdu3fH888/\nf9TO869//SsefPDBuPPOO+PBBx+Mv//971N5KAAAAADUpKqq3BEAAAAAiBaLQZs3b46IiIULF044\nX7BgQUREbNmy5aid5+mnn47rrrsubr311rjuuuvivPPOi0suuSRef/31w3sQAAAAANSqLMvcEQAA\nAACIFotBu3btioiIuXPnTjgf+/jOnTtrP89HP/rRWLFiRbz00kuxc+fO2LlzZzz77LPR09MTAwMD\n8dWvftXWYwAAAAAZ2EoMAAAAoD20VAzK6YwzzoiUUpx//vlxyimnxCmnnBIXXnhhPPXUU/GFL3wh\ntm7dGg899FDumAAAAAAAAAAAkEVLxaCxlXzGVvz5f2MfP/XUU4/JeSIijj/++Pje974XERF//vOf\nD3l9AAAAAAAAAABoopaKQV1dXRERsXnz5gnnW7ZsiYiIhQsXHpPzjDn99NMjImL37t2Hdf2iKCY9\nLr744iiKYtIlsFNK5ubm5ubm5ubm5o2bT2Z1rI6e6InVsXpGztvl+THPO59ciohi3+UMnPfvG/VP\ncvOmz/fJ/fVpbm5ubj4955PK/f0t87xdnh9z83acr14d0dMzejlT5x8m9/Njbm5ubm4+lflYP2Wi\noxXFyMjIyFRvPDQ0FOeee250dHTE1q1bDwjz9ttvx5lnnhlFUcT27dtj9uzZR/08Y26++eZYuXJl\nLFu2LO67775Jrzd2Py18CgAAoJHG3iv3H+o34A3XEz0R4WcGDvTBz6y+LiL2fS5S1hDtIY1eeL0A\nYCrG31+krDHaQxq98D0VJjb+8/rM/nE9IkaLQxFeLwCYGVrpt7S0YlBnZ2csXrw4hoeH4/777z9g\nVpZl7NmzJ5YuXTpe5tm7d29s2rQphoaGWjpPRMRLL7004QNev359rFq1KoqiiCVLlrTy8AAAAACY\ngsn+8g0AAACAY6ulFYMiRlf76e7uju3bt8dll10WXV1dMTg4GAMDA7Fo0aLYsGFDnHbaaRER8dpr\nr0VnZ2ecffbZMTw8POXzRIwuobR169bo7u6Os846KyIiNm7cGP39/VEURdx2223x4x//+MMfvBWD\nAABgQlYMGmXFICZixaD9Wd1gXBq98HoxqigKnwuAI2DFoP2k0QvfR2BiVgz6gBWDAJhJsq0YFDG6\n2s+LL74Y11xzTQwODsZPf/rTGB4ejhtvvDGef/75A8o8/x+4lfNcffXV8dnPfjZeeOGFeOihh+KB\nBx6Ibdu2xZVXXhl/+tOfDlkKAgAAAODoKMsydwQAAAAAooYVg6YzKwYBAMDErBg0yopBTMSKQfuz\nusG4NHrh9QKAqbBi0H7S6IXvqTAxKwZ9wIpBAMwkWVcMAgAAAAAAAAAA2o9iEAAAAAAAAAAANJBi\nEAAAAAAAAAAANJBiEAAAAAAAAAAANJBiEAAAAAC1SinljgAAAABAKAYBAAAAULOqqnJHAAAAACAU\ngwAAAACoWVmWuSMAAAAAEIpBAAAAANTMVmIAAAAA7UExCAAAAAAAAAAAGkgxCAAAAAAAAAAAGkgx\nCAAAAAAAAAAAGkgxCAAAAAAAAAAAGkgxCAAAAIBapZRyRwAAAAAgFIMAAAAAqFlVVbkjAAAAABCK\nQQAAAADUrCzL3BEAAAAACMUgAAAAAGpmKzEAAACA9qAYBAAAAAAAAAAADaQYBAAAAAAAAAAADaQY\nBAAAAAAAAAAADaQYBAAAAAAAAAAADaQYBAAAAECtUkq5IwAAAAAQikEAAAAA1KyqqtwRAAAAAAjF\nIAAAAABqVpZl7ggAAAAAhGIQAAAAADWzlRgAAABAe1AMAgAAAAAAAACABlIMAgAAAAAAAACABlIM\nAgAAAAAAAACABlIMAgAAAAAAAACABlIMAgAAAKBWKaXcEQAAAAAIxSAAAAAAalZVVe4IAAAAAIRi\nEAAAAAA1K8sydwQAAAAAQjEIAAAAgJrZSmxUb29vFEXh2Hf09vbmfkoAAABgxlEMAgAAAICjoK+v\nL3eEtuLzAQAAAMferNwBAAAAAKDJ+qM/d4TseqIndwQAAACYkawYBAAAAAAAAAAADaQYBAAAAAAA\nAAAADaQYBAAAAECtUkq5IwAAAAAQikEAAAAA1KyqqtwRAAAAAAjFIAAAAABqVpZl7ggAAAAAhGIQ\nAAAAADWzlRgAAABAe1AMAgAAAAAAAACABlIMAgAAAAAAAACABlIMAgAAAAAAAACABlIMAgAAAAAA\nAACABlIMAgAAAKBWKaXcEQAAAAAIxSAAAAAAalZVVe4IAAAAAIRiEAAAAAA1K8sydwQAAAAAQjEI\nAADG9fb2RlEUjqLI/VQAMM3ZSgwAAACgPSgGAQDAPn19fbkjAAAAAAAA1GZW7gAAANB2+vtzJ8iv\npyd3AgAAAAAAoEVWDAIAAAAAAAAAgAZSDAIAAAAAAAAAgAZSDAIAAACgViml3BEAAAAACMUgAAAA\nAGpWVVXuCAAAAACEYhAAAAAANSvLMncEAAAAAEIxCAAAAICa2UoMAAAAoD0oBgEAAAAAAAAAQAMp\nBgEAAAAAAAAAQAMpBgEAAAAAAAAAQAMpBgEAAAAAAAAAQAMpBgEAAABQq5RS7ggAAAAAhGIQAAAA\nADWrqip3BAAAAABCMQgAAACAmpVlmTsCAAAAAKEYBAAAAEDNbCUGAAAA0B4UgwAAAAAAAAAAoIEU\ngwAAAAAAAAAAoIEUgwAAAAAAAAAAoIEUgwAAZrje3t4oisJRFLmfCgAAAAAAgFopBgEAzHB9fX25\nIwAADZNSyh0BAAAAgFAMAgBgnxEHAFCTqqpyRwAAAAAgFIMAAAAAqFlZlrkjAAAAABCKQQAAAADU\nzFZiAAAAAO1BMQgAAAAAAAAAABpIMQgAAAAAAAAAABpIMQgAAAAAAAAAABpIMQgAAAAAAAAAABpI\nMQgAAACAWqWUckcAAAAAIBSDAAAAAKhZVVW5IwAAAAAQikEAAAAA1Kwsy9wRAAAAAAjFIAAAAABq\nZisxAAAAgPagGAQAAAAAAAAAAA2kGAQAAAAAAAAAAA2kGAQAAAAAAEDb6u3tjaIoHEWR+6kAAKah\nWbkDAAAAAAAAcKDe3t7o6+vLHQMAgGlOMQgAAIBD8ksJ4EiklCKllDsGAExr3n8frD/6c0fIrid6\nckcAAKYZxSAAAAAOyS8lgCNRVZViEADUpV8ZJnqUYQAApuq43AEAAAAAaJayLHNHAAAAACAUgwAA\nAAComdWCAAAAANqDYhAAAAAAAAAAADSQYhAAAAAAAAAAADSQYhAAAAAAAAAAADSQYhAAAAAAAAAA\nADSQYhAAAAAAtUop5Y5AmyqKwlEU0dvbm/upAAAAYIZQDAIAAACgVlVV5Y4Aba2vry93BAAAAGaI\nWbkDAAAAANAsZVnmjkCb6u/PnSC/np7cCQAAAJhJrBgEAAAAQK1sJQYAAADQHhSDAAAAAAAAAACg\ngRSDAAAAAAAAAACggRSDAAAAAAAAAACggRSDAAAAAAAAAACggWblDgAAHDu9vb3R19eXOwbAtFMU\nRe4IwDTh9QI4XF4v4MP5NwIAAPWwYhAAzCBKQQAAAAAAADBzWDEIAGakkdwB2sC+vzxMWUO0h5Q7\nALS//v7cCfLr6cmdAKYH77LG32V58Yzw4gmHzavnfq+e7OOrwlcFAAD1sGIQAAAAAAAAAAA0kGIQ\nAAAAAAAAAAA0kGIQAAAAAAAAAAA0kGIQAPC/9u48zuq63h/46wxDsqgs4jZqLCJomgguqahAiKbi\nTQMDcrlKmVpa19L6pZVbLpXa9WFc7hVvCS6lmKRp2PWGiIrgFpoLoIIkoLLE4jIgMOf3R9fJEdQD\nwhxn5vn8y/P5fs73vL48zmPm8fj6mvcXAAAAAAAAaIQUgwAAAAAAAAAAoBFSDAIAAAAAAAAAgEbo\nYxeD5s6dm+HDh6eqqiotWrRI586dc/bZZ2fp0qWb/DyTJ0/OkUcemfbt26dVq1bp0aNHrrnmmtTU\n1HzcywIAAAAAAAAAgAat8uO8+aWXXsqBBx6YhQsX5phjjsmuu+6aqVOn5pprrsm9996bhx9+OO3b\nt98k57nzzjszaNCgtGrVKkOGDEn79u1z11135eyzz87DDz+c22677eNcGgAAAAAAAAAANGgfa2LQ\nN77xjSxcuDDXXntt7rjjjlx22WX585//nLPPPjszZszI+eefv0nOs3z58px66qlp3rx5Jk6cmFGj\nRuWnP/1ppk2blgMOOCC33357br311o9zaQAAAAAAAAAA0KBtcDHopZdeyn333ZfOnTvnm9/8Zp1j\nF110UVq1apWbbropb7/99kY/z+23355FixZl6NCh6dWrV+36Zpttlp/85CdJkpEjR27opQEAAAAA\nAAAAQIO3wcWg+++/P0ly2GGHrXVs8803T+/evfPWW29lypQpG/08EyZMSJJ84QtfWOs9hxxySFq2\nbJlHHnkkq1atKv2CAAAAAAAAAACgEdngYtCMGTOSJN26dVvn8V122SVJ8sILL2z083zYe5o1a5bO\nnTtn9erVmTVr1od+NgAAAAAAAAAANFYbXAxatmxZkqRNmzbrPP7u+tKlSzf6eZYtW5ZCofCh7ykW\nix/52QAAAAAAAAAA0FhtcDEIAAAAAAAAAAD45Krc0De+O63n3Yk/7/fuetu2bTf6ed6dCPRxP/td\nhUKhpH0A0Hj43VfrwnIH+OTwrXiPfv3KneATo1/8WyS+EnwQPzlrXVjuAJ8cvhXv4YdnLb9P/8nX\ngnXz07PWheUO8MnhW/EefnjW8jv1n3wt/sn/5wOAD7fBE4N23XXXJMmMGTPWefyFF15IknTr1m2j\nn6d79+4f+J7Vq1dn9uzZad68ebp06fKhn10sFj/0OAAAAAAAAAAAlNsFF1ywQe/b4IlB/f6vinzf\nffelWCzWaeO+8cYbefjhh9O6devsv//+G/08/fv3zy233JJ77703Q4cOrXO+SZMmpbq6On369Enz\n5s0/8jqUgwAAAAAAAAAAaIw2eGJQly5dcthhh2X27NkZMWJEnWMXXHBB3n777Zx44olp2bJlkn9M\n8pk+fXpmzZr1sc6TJIMHD06HDh3y29/+Nk888UTt+ooVK/LDH/4wSXLGGWds6KUBAAAAAAAAAECD\nVyh+jJE5s2bNyoEHHpgFCxbki1/8YnbddddMnTo1EydOTPfu3TN58uS0a9cuSfLyyy+nS5cu6dix\nY2bPnr3B53nXnXfemcGDB6dFixYZOnRo2rVrl7vuuiszZ87Mcccdl1tvvXVDLwsAAAAAAAAAABq8\nj1UMSpK5c+fmxz/+ce69994sXrw4VVVVOfbYY3PBBRekTZs2tfveLQZ16tRpralB63Oe95o8eXIu\nvfTSPPLII1mxYkV22WWXDB8+PN/61rfqPJIMAAAAAAAAAACamo9dDAIAAAAAAAAAAD55KsodAAAA\nAAAAAAAA2PgUgwAAAAAAAAAAoBFSDAIAAAAAAAAAgEZIMQgAAACAjeaNN97IggULUlNTU+4oAAAA\nAE2eYhAAAAAAJVu0aFGee+65tYo/o0ePzq677pq2bdtm++23T7t27fK1r30tf//738uUFAAAAIBC\nsVgsljsEAAAAAA3DySefnP/5n//J/Pnza9cuvfTS/OhHP0qSNG/ePFtuuWUWL16cJOnevXumTp2a\nLbfcsix5AQAAAJoyE4MAAAAAKNkjjzySPn361L6eP39+Lr744myzzTa56667Ul1dnYULF+bVV1/N\nCSeckBkzZuSyyy4rY2IAAACApksxCAAAAICSzZs3Lx07dqx9/ac//SmrVq3KyJEjM3DgwFRU/ON2\n07bbbptf//rX6dGjR+64445yxQUAAABo0hSDAAAAAChZs2bNsmbNmtrXr732WpLk0EMPXefevn37\nZs6cOfWWDwAAAIB/UgwCAAAAoGTdunXL1KnxYZFkAAAgAElEQVRTa19vs802SZK///3v69y/ZMmS\ntG7dul6yAQAAAFCXYhAAAAAAJRs6dGgeeuih3HPPPUmSgQMHpmXLlrnyyivX2jt79uyMGzcun/vc\n5+o7JgAAAABJCsVisVjuEAAAAAA0DCtXrsy+++6bF154IWeffXaGDRuWKVOm5Bvf+EYGDBiQY489\nNm3bts1f//rXjBgxIkuXLs2ECRPSp0+fckcHAAAAaHIUgwAAAABYL6+99lq+/OUv56GHHkqSFAqF\nrOsWU6tWrfIf//EfOemkk+o7IgAAAABRDAIAAABgA9TU1OT3v/99brnlljz22GNZsGBBampq0rZt\n23Tv3j0DBgzI8OHDs8MOO5Q7KgAAAECTpRgEAAAAAAAAAACNUEW5AwAAAAAAAAAAABtfZbkDAAAA\nANCwrVy5MkuXLk1FRUXat2+fZs2alTsSAAAAADExCAAAAIAN8MQTT+SrX/1qOnfunFatWqWqqirb\nbbddWrVqlf322y///u//nurq6nLHBAAAAGjSCsVisVjuEAAAAAA0HBdccEF+8pOf5P23ldq0aZPV\nq1fnrbfeSpJ07do1d955Z3bbbbdyxAQAAABo8kwMAgAAAKBkY8eOzSWXXJJevXpl3LhxmTZtWu64\n447ss88+ad++fWbMmJEXX3wxP/7xj/PKK69kwIABWbp0abljAwAAADRJJgYBAAAAULKDDz44r7zy\nSp599tm0bt26dv2tt97K7rvvnr59++aGG25Iktx33335whe+kO9///u57LLLypQYAAAAoOkyMQgA\nAACAkj399NM56qij6pSCkqR169Y56qij8sc//rF2bcCAAenfv39+//vf13dMAAAAAKIYBAAAAMB6\nWL16dSoq1n1LqVAoZPny5XXWevXqlZdffrkekgEAAADwfopBAAAAAJSsa9eu+eMf/5jq6uo66ytW\nrMj48ePTsWPHtdabN29enxEBAAAA+D+KQQAAAACU7Pjjj8/s2bMzYMCAjB8/PjNmzMj48eNz6KGH\nZvbs2Rk8eHCd/TNmzFirLAQAAABA/SgUi8ViuUMAAAAA0DC88847Ofzww/PAAw8k+cfjw969vdSj\nR4889NBDad26dZJk+fLl2XXXXXPCCSfkZz/7WdkyAwAAADRVikEAAAAArJd33nknI0aMyLhx4/La\na6+lQ4cOGThwYL797W/XloIAAAAAKD/FIAAAAAAAAAAAaIQqyh0AAAAAAAAAAADY+BSDAAAAACjZ\nvHnzyh0BAAAAgBIpBgEAAABQsp122ik9evTIL3/5yyxfvrzccQAAAAD4EIVisVgsdwgAAAAAGoaK\nin/+nVmrVq1y3HHH5bTTTsv+++9fxlQAAAAArItiEAAAAAAlq6ioyJe+9KU0b94848aNyzvvvJNC\noZA99tgjX//613PiiSdmyy23LHdMAAAAAOJRYgAAAACspz333DO/+c1vMnfu3Pz85z/PLrvskr/+\n9a8566yzUlVVleHDh2fKlCnljgkAAADQ5CkGAQAAALBBOnTokO9+97uZPn167r///gwbNiyrV6/O\nDTfckN69e6dHjx4ZMWJEli9fXu6oAAAAAE2SYhAAAAAAH1ufPn1y8803Z/78+bnqqqvSvXv3OlOE\nAAAAAKh/ikEAAAAAbDTt27fP2Wefneeeey4PPPBAjj/++NTU1JQ7FgAAAECTpBgEAAAAwCZx8MEH\n58Ybb8y8efPKHQUAAACgSVIMAgAAAGCTateuXbkjAAAAADRJleUOAAAAAEDDMWHChHTu3LncMQAA\nAAAoQaFYLBbLHQIAAAAAAAAAANi4PEoMAAAAAAAAAAAaIY8SAwAAAGC9vfnmm7n99ttz//33Z+bM\nmVm6dGmSpG3btunWrVs+//nPZ9CgQdl8883LnBQAAACg6fIoMQAAAADWy1133ZVTTz01Cxcu/NB9\n22yzTUaNGpWjjz66npIBAAAA8F6KQQAAAACU7JFHHskhhxySZs2aZciQITniiCPStWvXtGnTJkmy\nbNmyvPDCCxk/fnxuvfXWFIvFTJo0Kfvvv3+ZkwMAAAA0PYpBAAAAAJTsqKOOyqRJk3L//fdnn332\n+dC9jz32WPr165e+ffvm7rvvrqeEAAAAALyrotwBAAAAAGg4pkyZkiFDhnxkKShJ9t133wwZMiSP\nPPJIPSQDAAAA4P0UgwAAAAAoWXV1dbbaaquS92+11Vaprq7ehIkAAAAA+CAeJQYAAABAyfbcc8+s\nXr0606ZNy6c+9akP3bty5cr07NkzlZWVefrpp+spIQAAAADvMjEIAAAAgJKdcsopmT59evr3758H\nHnggNTU1a+1Zs2ZNJk6cmP79+2f69OkZPnx4GZICAAAAYGIQAAAAACVbs2ZNhg4dmt/97ndJktat\nW6dLly5p06ZNkmTZsmWZNWtW3nrrrSTJ4MGD85vf/CbNmjUrW2YAAACApkoxCAAAAID1UiwW89vf\n/jYjR47M5MmT15oaVFFRkd69e+eMM87I0KFDy5QSAAAAAMUgAAAAADbYihUr8tJLL2XZsmVJkjZt\n2mTnnXdOixYtypwMAAAAAMUgAAAAAAAAAABohCrLHQAAAACAhm3FihV1JgaZFgQAAADwyVBR7gAA\nAAAANDxTpkzJySefnI4dO6Z169apqqpKVVVVWrdunY4dO+aUU07J1KlTyx0TAAAAoEnzKDEAAAAA\n1su5556bq666qvZ1q1at0qZNmyTJsmXL8vbbbydJCoVCvvvd7+ZnP/tZWXICAAAANHUmBgEAAABQ\nsjFjxuSqq67KzjvvnP/+7//O/Pnz8+abb2bevHmZN29e7X9ff/316dy5c6688srceOON5Y4NAAAA\n0CSZGAQAAABAyfbff//Mnz8/Tz/9dNq2bfuhe5csWZI999wzVVVVHisGAAAAUAYmBgEAAABQsmef\nfTbHHXfcR5aCkqRdu3YZPHhwnnvuuXpIBgAAAMD7KQYBAAAAULKKioq88847Je9ftWpVCoXCJkwE\nAAAAwAdRDAIAAACgZD179sytt96av/3tbx+5d86cObn11lvTq1evekgGAAAAwPspBgEAAABQsnPO\nOSeLFi3K3nvvnYsuuihTp07NkiVLUlNTk5qamixZsiRTpkzJhRdemL333juLFy/OOeecU+7YAAAA\nAE1SoVgsFssdAgAAAICG45e//GXOOeec2keKvf9RYe/ebtpss83y85//PGeeeWa9ZwQAAABAMQgA\nAACADfDyyy/nV7/6VSZMmJAZM2Zk2bJlSZI2bdqke/fu6d+/f0455ZR06tSpvEEBAAAAmjDFIAAA\nAAAAAAAAaIQqyh0AAAAAAAAAAADY+CrLHQAAAACAxmPFihWZOXNmisVi9thjjzRr1qzckQAAAACa\nLBODAAAAAFgv8+fPz0UXXZSzzjoro0ePTk1NTZJk1KhRqaqqSs+ePdOrV69sv/32uf3228ucFgAA\nAKDpKhSLxWK5QwAAAADQMMydOzf77LNPFixYULt2yimn5Mtf/nKOPPLIFIvFtGvXLm+88UZWr16d\nZs2aZcqUKdl7773LmBoAAACgaTIxCAAAAICSXXHFFVmwYEGOPvroXHPNNTn66KMzZsyYXHTRRdlz\nzz3zwgsvZPHixXn77bdz9dVXZ82aNbn66qvLHRsAAACgSTIxCAAAAICSdevWLS1btsxTTz1Vu9az\nZ8889dRTuf/++9OnT586+/v27ZvZs2dnzpw59R0VAAAAoMkzMQgAAACAks2dOzd9+/ats3bIIYck\nSXr16rXW/l69euW1116rj2gAAAAAvI9iEAAAAAAlW7FiRbbaaqs6a+3atUuSbLHFFmvt33LLLbNq\n1ap6yQYAAABAXYpBAAAAAAAAAADQCCkGAQAAAAAAAABAI1QoFovFcocAAAAAoGGoqKhI27Zt07Zt\n29q1JUuWZNmyZenUqdNa+5csWZLly5dnzZo19ZgSAAAAgEQxCAAAAID1UFGxYQOoa2pqNnISAAAA\nAD5KZbkDAAAAANBwzJo1q9wRAAAAACiRiUEAAAAAAAAAANAIbdjsZwAAAAAAAAAA4BNNMQgAAACA\nkl100UWZNGlSnbXXX389Tz/99Dr333nnnRk+fHh9RAMAAADgfRSDAAAAACjZRRddlIkTJ9ZZGzly\nZHr27LnO/X/5y18yevToekgGAAAAwPspBgEAAADwsRWLxQ06BgAAAMCmoxgEAAAAAAAAAACNkGIQ\nAAAAAAAAAAA0QopBAAAAAAAAAADQCCkGAQAAAAAAAABAI1RZ7gAAAAAANCwvv/xyJk2alCQpFouZ\nM2dOktSuvde7xwAAAACof4VisVgsdwgAAAAAGoaKivUfQF0oFLJmzZpNkAYAAACAD2NiEAAAAAAl\nO+SQQ9b7PYVCYRMkAQAAAOCjmBgEAAAAAAAAAACN0PrPfgYAAAAAAAAAAD7xFIMAAAAA2GRWrVqV\nESNGlDsGAAAAQJOkGAQAAADARldTU5Mbbrgh3bp1y7e+9a1yxwEAAABokirLHQAAAACAhmXx4sW5\n9tpr88QTT2SzzTZL3759c9ppp6V58+ZJkrvvvjvf+973Mn369BQKhRx77LFlTgwAAADQNBWKxWKx\n3CEAAAAAaBgWLVqUfffdN3PmzKmzftRRR+XOO+/M6aefnuuvvz5JMnDgwFx88cXZa6+9yhEVAAAA\noMkzMQgAAACAkl1xxRWZM2dOevTokeOPPz7FYjE33nhj7rnnnhxzzDG5++6787nPfS7XXHNN9ttv\nv3LHBQAAAGjSTAwCAAAAoGSf+cxn8vbbb2fGjBnZbLPNkiTV1dXp3r175s6dmyFDhuSWW25JoVAo\nc1IAAAAAKsodAAAAAICGY86cOTnqqKNqS0FJ0rJlywwcODBJcskllygFAQAAAHxCKAYBAAAAULLq\n6upsu+22a61vs802SZKdd965viMBAAAA8AEUgwAAAADYaEwLAgAAAPjkqCx3AAAAAAAalmnTpmXM\nmDF11p566qkkWWv9XSeddNImzwUAAABAXYVisVgsdwgAAAAAGoaKivUfQF0oFLJmzZpNkAYAAACA\nD2NiEAAAAAAl25DJPx4vBgAAAFAeJgYBAAAAAAAAAEAjtP6znwEAAAAAAAAAgE88xSAAAAAAAAAA\nAGiEKssdAAAAAICG5e67787SpUszbNiwNGvWLEkyevTo3HDDDSkUCnX2HnTQQbn44ovLERMAAACg\nyVMMAgAAAKBkM2fOzDHHHJNTTz01J5xwQu367Nmz88ADD6y1/8EHH8yJJ56YXXbZpT5jAgAAABCP\nEgMAAABgPdx0000pFAr5wQ9+sM7jL7zwQmbOnJmZM2fm0UcfTZKMGTOmPiMCAAAA8H9MDAIAAACg\nZBMnTsw+++yTT3/60+s8vvPOO9d53adPn0ycOLEekgEAAADwfiYGAQAAAFCy6dOnZ5999il5/y67\n7JIZM2ZswkQAAAAAfBATgwAAAAAo2dKlS9O2bdu11o855ph07tx5rfWtttoqS5curY9oAAAAALyP\nYhAAAAAAJWvZsmWWL1++1vpee+2Vvfbaa6315cuXp2XLlvURDQAAAID38SgxAAAAAEq200475S9/\n+UvJ+6dNm5Ydd9xxEyYCAAAA4IMoBgEAAABQsoMOOigPP/xwnn/++Y/cO3369EyePDkHH3xwPSQD\nAAAA4P0UgwAAAAAo2amnnppisZhhw4ZlwYIFH7hvwYIFGTZsWGpqanLqqafWY0IAAAAA3lUoFovF\ncocAAAAAoOE4/fTTc91116VDhw457bTT8vnPfz477LBDkmTevHn585//nOuuuy6LFi3K17/+9fzn\nf/5nmRMDAAAANE2KQQAAAACsl3feeSennXZaRo8eXbtWKBSSJO+91XTyySfnv/7rv9K8efN6zwgA\nAACAYhAAAAAAG2jSpEkZNWpUHn744bz22mtJku222y4HHXRQvva1r+WQQw4pc0IAAACApk0xCAAA\nAIBNavXq1amsrCx3DAAAAIAmp6LcAQAAAABonF588cV873vfy4477ljuKAAAAABNkj/VAgAAAGCj\neeedd/K73/0uo0aNysSJE5MkFRX+Ng0AAACgHBSDAAAAAPjYpk+fnlGjRmXMmDFZvHhxkqRjx445\n5ZRTMnz48DKnAwAAAGiaFIMAAAAA2CArV67M2LFjc9111+Whhx5KkjRv3jxJMnjw4Nx6660pFArl\njAgAAADQpCkGAQAAALBenn322Vx33XW56aabsmTJkiRJr169cvLJJ2fYsGHZeuut07ZtW6UgAAAA\ngDJTDAIAAACgZL17984jjzySJOnQoUPOPvvsnHzyyfnsZz9b5mQAAAAAvJ9iEAAAAAAle7cUdM45\n5+Syyy5LZaXbSwAAAACfVBXlDgAAAABAw9G1a9ckyZVXXpndd989l19+eebNm1fmVAAAAACsi2IQ\nAAAAACWbOXNm/vznP2fIkCGZM2dOzj///HTq1ClHHHFEbrvttqxcubLcEQEAAAD4P4VisVgsdwgA\nAAAAGp7Fixdn9OjRGTVqVGbMmJEkadeuXZYsWZKvfOUruemmm8qcEAAAAKBpUwwCAAAA4GN78MEH\nc9111+X222+vnRq0++6756tf/WpOOumktG/fvswJAQAAAJoexSAAAAAANpolS5ZkzJgxGTVqVJ57\n7rkkyWabbZbq6uoyJwMAAABoehSDAAAAANgkJk+eXDtF6M033yx3HAAAAIAmRzEIAAAAgE1q+fLl\n2XLLLcsdAwAAAKDJqSh3AAAAAAAajlNOOSVXX311yftHjx6dY445ZhMmAgAAAOCDVJY7AAAAAAAN\nx+jRo1MoFDJ16tSMHj06LVq0+ND9s2fPzsSJE+snHAAAAAB1mBgEAAAAwHqpqKjI2LFjc9BBB2X+\n/PnljgMAAADAB1AMAgAAAGC9fOc738mgQYPy5JNPZt99981jjz1W7kgAAAAArINiEAAAAADrpXXr\n1hk7dmzOP//8vPrqq+nbt29+85vflDsWAAAAAO+jGAQAAADABrnkkkty8803p6amJieccEJ++MMf\nljsSAAAAAO+hGAQAAADABhs2bFgeeOCBbLvttrnssssyaNCgVFdXlzsWAAAAAFEMAgAAAOBj2m+/\n/fLoo4+mZ8+eGTduXA488MC88sor5Y4FAAAA0OQpBgEAAADwse2444558MEHM2jQoDz11FPZb7/9\nMmXKlHLHAgAAAGjSFIMAAAAA2ChatWqV2267LT/84Q/z+uuvp1+/fhk/fny5YwEAAAA0WYpBAAAA\nAGw0hUIhF198cW655ZYkyWOPPZZCoVDmVAAAAABNk2IQAAAAACX79Kc/nTZt2nzkvqFDh+aBBx7I\ndtttl2KxWA/JAAAAAHi/QtGdGQAAAAA2kTfeeCOLFy9Op06dyh0FAAAAoMlRDAIAAAAAAAAAgEao\nstwBAAAAAGj4Fi9enFGjRuWxxx5LdXV1OnfunKFDh+bggw8udzQAAACAJsvEIAAAAABKdvXVV2fc\nuHGZOHFimjVrliR5/PHHc+SRR2bRokV19hYKhXznO9/Jz3/+83JEBQAAAGjyFIMAAAAAKNkBBxyQ\nzTffPPfdd1+SZNWqVdlll13yt7/9LV/60pdy7LHHpm3btnnmmWfyi1/8IgsXLswtt9ySIUOGlDk5\nAAAAQNOjGAQAAABAybbeeusMHTo01157bZLknnvuydFHH51zzz03P/3pT+vsnTt3bvbcc8/sscce\nmTRpUjniAgAAADRpFeUOAAAAAEDD8eabb6ZNmza1r5977rkkyTe/+c219u6444455phj8tRTT9Vb\nPgAAAAD+STEIAAAAgJJtt912mT17du3rZs2aJUmdstB7bbHFFlm1alW9ZAMAAACgLsUgAAAAAEp2\n6KGH5u67786CBQuSJAcddFCS5N57711r75o1azJhwoR07dq1XjMCAAAA8A+KQQAAAACU7Pvf/35W\nrlyZI488MjNmzMh+++2XwYMH58wzz8xtt92WlStXJklmzZqVoUOH5tlnn81JJ51U5tQAAAAATVOh\nWCwWyx0CAAAAgIbjjjvuyFe+8pWsXr06PXr0SMeOHfOHP/wha9asSUVFRVq0aJHq6uoUi8Ucdthh\n+cMf/pDmzZuXOzYAAABAk6MYBAAAAMB6e+aZZ3LeeeflnnvuybpuL3Xp0iVnnnlmzjrrrDRr1qwM\nCQEAAABQDAIAAABggy1fvjxPPPFEFixYkJqamrRr1y7du3dP586dyx0NAAAAoMlTDAIAAAAAAAAA\ngEaootwBAAAAAAAAAACAjU8xCAAAAICS/eQnP8mTTz5Z7hgAAAAAlMCjxAAAAAAoWUVFRQqFQnr2\n7JnTTjstX/nKV9K6detyxwIAAABgHRSDAAAAAChZRUVFKisrs3r16iTJFltskWHDhuXrX/96evXq\nVeZ0AAAAALyXR4kBAAAAsF7OO++8jB8/Pscee2yqq6tz3XXXZd99982+++6bUaNG5a233ip3RAAA\nAACiGAQAAADAeqqoqMjhhx+e3/3ud3nllVdy6aWXplOnTnniiSdy2mmnpaqqKqeffnr+8pe/lDsq\nAAAAQJOmGAQAAADABtt2223zgx/8IC+++GL+9Kc/ZdCgQbVThPbZZ5/aKUIAAAAA1D/FIAAAAAA+\ntkKhkAEDBmTs2LGZO3duLr/88nTp0iVPPPFETj/99HLHAwAAAGiSFIMAAAAA2Ki22WabfP/738/M\nmTNz33335bjjjit3JAAAAIAmqbLcAQAAAABonAqFQvr375/+/fuXOwoAAABAk2RiEAAAAAAl+/Sn\nP502bdqUOwYAAAAAJSgUi8ViuUMAAAAAAAAAAAAbl4lBAAAAAAAAAADQCCkGAQAAAAAAAABAI6QY\nBAAAAMB6mzdvXi655JL069cvVVVVadmyZVq3bp3OnTvny1/+cn7/+9+XOyIAAABAk1coFovFcocA\nAAAAoOH41a9+lbPOOivV1dUfuq93794ZO3Zstttuu3pKBgAAAMB7KQYBAAAAULIJEybk0EMPzU47\n7ZTvfOc76dy5c2bNmpVf/OIX6dChQ2677bbMmTMnY8aMyZgxY/KZz3wmjz/+eFq0aFHu6AAAAABN\njmIQAAAAACX7whe+kCeffDLPPvtstt5669r1hQsXZo899sjQoUNzzTXXJEluvPHG/Ou//msuu+yy\n/L//9//KFRkAAACgyVIMAgAAAKBk7du3z6BBgzJq1Ki1jp166qkZP3585s6dW7t24IEHZsWKFXny\nySfrMyYAAAAASSrKHQAAAACAhqO6ujpbbLHFOo+1bt06CxcurLPWu3fvzJw5sz6iAQAAAPA+ikEA\nAAAAlKxjx4753//939TU1NRZr6mpyYQJE1JVVbXWOgAAAADloRgEAAAAQMkGDRqUZ555JkOGDMnz\nzz+flStX5vnnn8/QoUPzzDPPZODAgXX2z5o1KzvuuGOZ0gIAAAA0bYVisVgsdwgAAAAAGoY33ngj\n+++/f55//vkUCoXa9WKxmJ122imPPfZYttlmmyTJm2++mW233TbDhg3L9ddfX67IAAAAAE2WYhAA\nAAAA62XJkiW58MILM27cuLz22mvp0KFDBg4cmIsvvjjbbbdd7b5isZi33norLVq0SGVlZRkTAwAA\nADRNikEAAAAAAAAAANAIVZQ7AAAAAAAAAAAAsPEpBgEAAACwyZx77rnp0qVLuWMAAAAANEmKQQAA\nAABsMgsXLszLL79c7hgAAAAATZJiEAAAAAAAAAAANEKV5Q4AAAAAQMNx4oknplAolLx/8uTJ67Uf\nAAAAgI2nUCwWi+UOAQAAAEDDUFGx/gOoC4VC1qxZswnSAAAAAPBhTAwCAAAAoGSbb755dtxxx4wc\nOTKl/L3ZFVdckfvuu68ekgEAAADwfopBAAAAAJSsR48eefrpp9OnT5+S9t9www2bNhAAAAAAH2j9\nZz8DAAAA0GTttddeeeONN/LSSy+V/B5PsgcAAAAoDxODAAAAAChZnz598uCDD+aVV17Jzjvv/JH7\njznmmHTu3LkekgEAAADwfoWiP9kCAAAAAAAAAIBGx6PEAAAAAAAAAACgEVIMAgAAAAAAAACARkgx\nCAAAAAAAAAAAGiHFIAAAAAAAAAAAaIQUgwAAAAAAAAAAoBFSDAIAAAAAAAAAgEZIMQgAAAAAAAAA\nABohxSAAAAAAAAAAAGiEFIMAAAAAmqhOnTqlc+fO5Y6xloqKivTr16/k/RMnTkxFRUUuuuiiTZgK\nAAAAoOFRDAIAAABowgqFQrkjrNOG5PqkXgsAAABAuVSWOwAAAAAAvNf06dPTqlWrcscAAAAAaPAU\ngwAAAAD4ROnWrVu5IwAAAAA0Ch4lBgAAANDI/fKXv8zuu++eli1bZscdd8xZZ52VZcuWrXPvypUr\nc8UVV+Szn/1sWrdunTZt2uSQQw7J2LFjP/D8jz76aIYMGZIddtghLVq0SFVVVQ4//PAPfc+Hqaio\nSL9+/dZaf/311/PVr3412267bVq1apWePXtmzJgxG/QZAAAAAE2BiUEAAAAAjdi3v/3tXHvttamq\nqsppp52WysrK3HnnnZk6dWpWrVqVzTbbrHbvO++8k8MPPzyTJk3KbrvtljPPPDNvvfVWbr/99gwZ\nMiTTpk3LpZdeWuf8o0aNyhlnnJHmzZvnX/7lX7LLLrvk9ddfz+OPP56RI0fmuOOO26DchUKhzutF\nixblwAMPzOzZs3PwwQfnoIMOyvz583P66adnwIABG/QZAAAAAI2dYhAAAABAIzV58uRce+216dq1\nax599NG0bds2SXLppZemX79+efXVV9OpU6fa/VdddVUmTZqUI488MnfddVcqKv4xbPqCCy7Ifvvt\nl8svvzwDBw7MAQcckCR57rnn8o1vfCNt27bNgw8+mN12263O58+fP3+jXct5552X2bNn5+yzz85V\nV11Vu37mmWfW5gEAAACgLo8SAwAAADMai9IAAATISURBVGikfv3rXydJzj///NpSUJJsttlmufzy\ny9fa/6tf/SoVFRW5+uqra0tBSbL11lvnRz/6UZLk+uuvr10fOXJk1qxZkx/96EdrlYKSpKqqaqNc\nx6pVq3LzzTdnyy23zIUXXljn2N57753jjz9+o3wOAAAAQGOjGAQAAADQSD355JMpFArp06fPWsd6\n9+5dp/zzxhtv5KWXXkpVVVW6deu21v7Pf/7zSZJp06bVrk2ZMiVJcsQRR2zs6HVMnz491dXV2Wuv\nvbLFFlusdXxd1wcAAACAYhAAAABAo7Vs2bIkybbbbrvWscrKynTo0GGtvdtvv/06z7XddtslSZYu\nXVq7tnTp0hQKheywww4bLfO6fNh1vDcbAAAAAHUpBgEAAAA0Um3atEmSvPbaa2sdW716dRYtWlTS\n3iR59dVX6+xLUvt4srlz526cwB/g3c98/fXX13n8gzIDAAAANHWKQQAAAACN1N57751isZgHHnhg\nrWMPPfRQampqal9vscUW2XnnnTN37ty8+OKLa+2///77kyS9evWqXTvggANSLBYzfvz4TZD+n3bb\nbbe0bNky06ZNy/Lly9c6PnHixE36+QAAAAANlWIQAAAAQCN18sknJ0kuvfTSLFmypHZ9xYoV+cEP\nfrDW/uHDh6dYLObcc8+tUxpatGhRLrnkkhQKhQwfPrx2/YwzzkhlZWUuueSSPP/882udb2NNEqqs\nrMwJJ5yQ5cuX58ILL6xz7PHHH8/NN9+8UT4HAAAAoLEpFIvFYrlDAAAAALBpfPvb3861116b7bff\nPoMGDUrz5s1z5513ZquttsrcuXPzqU99KrNnz06SrFq1Kv37989DDz2U3XffPUcccUTefvvtjB07\nNosWLcr3vve9XH755XXOf/311+f0009PZWVlvvjFL6Zr165ZvHhxHnvssbRp0yYTJkxY78wVFRXp\n27dvnfcuXrw4n/vc5zJr1qwcdNBB6d27d1599dXcdtttOeyww3LXXXflwgsvzI9//OOP9w8GAAAA\n0IgoBgEAAAA0ciNGjMiIESMya9asdOjQIccee2wuvfTS9OjRI4VCIbNmzardu3Llylx99dW55ZZb\n8tJLL6V58+bp0aNHvvnNb2bIkCHrPP+UKVNy5ZVX5sEHH8zSpUuz9dZbZ88998zXvva1fOlLX1rv\nvOsqBiXJ66+/nvPOOy9/+MMf8uabb2bXXXfNv/3bv6Vjx47p16+fYhAAAADA+ygGAQAAAAAAAABA\nI1RR7gAAAAAAAAAAAMDGpxgEAAAAAAAAAACNUGW5AwAAAADQeC1btiy/+MUvStp7yimnpGPHjps4\nEQAAAEDTUSgWi8VyhwAAAACgcXr55ZfTpUuXFAqFfNhtqEKhkPvvvz+HHHJIPaYDAAAAaNwUgwAA\nAAAAAAAAoBGqKHcAAAAAAAAAAABg41MMAgAAAAAAAACARkgxCAAAAAAAAAAAGiHFIAAAAAAAAAAA\naIQUgwAAAAAAAAAAoBFSDAIAAAAAAAAAgEZIMQgAAAAAAAAAABohxSAAAAAAAAAAAGiEFIMAAAAA\nAAAAAKARUgwCAAAAAAAAAIBGSDEIAAAAAAAAAAAaIcUgAAAAAAAAAABohBSDAAAAAAAAAACgEfr/\nVkT2izpL9UIAAAAASUVORK5CYII=\n", + "png": "iVBORw0KGgoAAAANSUhEUgAACPkAAAV/CAYAAADFXaq3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xl0VPX9//HXnZA9IQuQsMkmEGQRDIR9RxBNKVEpgiwC\nFe3PWgFRtBVJ0BYtAhWr1S+iRqCKCLhQ1kgIawlh34WybwkBkpCFkG1+f9CZEjOTnUwCz8c59zje\nz3Lfd5k5x9y3749hNpvNAgAAAAAAAAAAAAAAAFBpmRwdAAAAAAAAAAAAAAAAAIDCkeQDAAAAAAAA\nAAAAAAAAVHIk+QAAAAAAAAAAAAAAAACVHEk+AAAAAAAAAAAAAAAAQCVHkg8AAAAAAAAAAAAAAABQ\nyZHkAwAAAAAAAAAAAAAAAFRyJPkAAAAAAAAAAAAAAAAAlRxJPgAAAAAAAAAAAAAAAEAlR5IPAAAA\nAAAAAAAAAAAAUMmR5AMAAAAAAAAAAAAAAABUciT5AAAAAAAAAAAAAAAAAJUcST4AAAAAAAAAAAAA\nAABAJUeSDwAAAAAAAAAAAAAAAFDJkeQDAAAAAEAlNWbMGJlMJk2fPt3RoQB3NZPJJJPJpLNnzzo6\nFIeIjIyUyWRSnz59ynVefsMAAAAAAChfJPkAAAAAAFBBLC+8i9rmzp2bb5xhGBUW4/fff6+IiAht\n3Lix1HNYEgZ+ufn6+qphw4bq16+fXnvtNW3fvr0cI8edEBkZqenTp2vfvn0lHtuoUaNiPe+/3Bo3\nbnwHzqRoFfE9a9WqlUwmk15++WW7fb755hvrtZgwYYLdfsuWLbP2u3r1arnEd6euQWnm3bt3ryIi\nIvTll1/egYgAAAAAAKiaqjk6AAAAAAAA7jXOzs6qUaOG3XYvLy9JUt26ddWiRQvVrFmzokLT999/\nrwULFshkMqlXr15lnq927drWz+np6Tp//rzOnTunDRs26L333lNwcLA+++wztW3btszHQvmLjIzU\npk2b1Lhx4xLfo4CAAGVlZRXYn5ycrMzMTLvfg4CAgFLHW1pBQUEyDEPOzs539Di9evXSkSNHtGnT\nJrt9bm8rTr9WrVoV+ntSHL6+vgoKClKDBg3KNE952rt3r9566y317t1bzzzzjKPDAQAAAACgUiDJ\nBwAAAACACtatWzdFR0cX2W/GjBmaMWNGBUR0ZxiGoYsXL+bbl52drV27dmnZsmWaN2+edu/erU6d\nOmnFihXq37+/gyLFnbBjxw6b+8eOHasvv/yy2N+DinDkyJEKOU6vXr30ySefaP/+/UpNTZW3t3eB\nPps3b5YkBQYG6sCBA0pJSZGPj0+BfpYkn549e5Y5rrCwMIWFhZV5HgAAAAAAcGexXBcAAAAAACjA\nbDbfkXmdnZ3VuXNnvffee9q9e7eaNm2qrKwsDR06VPHx8XfkmCi78nwe7tSzVRVYEnJyc3O1devW\nAu1JSUk6ePCgmjRporCwMOXl5WnLli0F+qWkpGj//v2SVC4VtwAAAAAAQNVAkg8AAAAAAJXUmDFj\nZDKZNH369Hz7T58+LZPJJJPp1n/Wb9++XUOGDFGdOnXk5OSkSZMmWfueOnVK/+///T81b95c7u7u\n8vDwUMOGDdW7d2+9++67unr1qiQpJiZGJpNJCxYskCRNnz7deozbj1We7r//fi1btkxOTk5KSUnR\nrFmzbPa7efOm5syZo06dOsnHx0fu7u4KCgrS5MmTlZCQUOgxsrOzNW/ePPXr10+1atWSq6urGjZs\nqAEDBujTTz9VRkaGta/lGjRu3NjufJGRkTKZTOrTp0+BNst1OnPmjH7++WeNHDlSderUkYeHh9q1\na6fIyEhrX7PZrHnz5qlDhw7y9vaWv7+/hg0bprNnzxZ6PqdPn9Yf/vAHBQUFycPDQ97e3mrfvr1m\nzpyZ71xsxXX27FmdPXtW48ePV/369eXq6qrGjRvr1VdfVWpqqs3ztFSLGTt2bL5nobBrVFalud+/\nvC9ffvmlOnfurOrVq8vHx0cPP/yw1q5da/eYt18jW9LT0zVr1ix17dpV/v7+cnNzU5MmTTR48GB9\n9dVXysnJKda51alTR02bNpXZbLa5FJcloadHjx7q3r27pP9V9rnd1q1bZTabZRhGgSSfvLw8LVy4\nUP3791etWrXk4uKiunXratiwYXarKxX2XEu3kpLef/99Pfjgg3J3d1etWrU0aNAgbdu2TVLR188S\n1/vvv6+2bdvKw8ND/v7+GjRokHbt2lWgr8lk0rhx4yT973t5+7Zx40Zr39TUVL399ttq3769vL29\nrefboUMHTZkyRYcOHbIbEwAAAAAAVQ3LdQEAAAAAUMkZhmF3/zfffKORI0cqLy9PPj4+cnZ2tvbf\nvXu3evfurbS0NBmGIWdnZ3l4eOj8+fM6d+6cNm3apODgYA0YMECurq4KDAxUSkqKMjMz5enpaXMp\nofLWpk0bDRo0SN9//72++uqrAok+iYmJeuSRR7R3715Jkpubm1xdXXX8+HH97W9/U2RkpFatWqVO\nnToVmPvChQv61a9+pX379kmSnJyc5Ovrq8uXL+vcuXP66aef1Lx58wJJEvaud3H6GIahHTt26Le/\n/a3S0tLk6+urrKws7d+/X+PGjdOlS5f0+uuv66mnntLSpUvl4uIiFxcXpaSkaMmSJdq2bZv27Nmj\nGjVqFJh7+fLlGjFihG7evCnDMOTh4aHs7Gzt2bNHe/bs0T//+U9FRUUpICDAZlx79+7V2LFjlZSU\npOrVq0uSzpw5o9mzZ2vjxo3atm2bqlW79aciDw8PBQYG6tq1a8rOzrYm21jYOkZ5KMv9tpg0aZLm\nzp0rJycnVa9eXSkpKYqOjlZ0dLTee+89TZ482eY4e/f08OHDCg0N1ZkzZyTdqkZVvXp1XbhwQadP\nn9aKFSvUvXt3NWjQoFjn2LNnT/3nP/+xmeRj2dejRw/16NEj3z5b/Zo2barAwEDr/tTUVD3xxBNa\nv369pFvJMt7e3kpISNCSJUu0dOlSzZ07V7///e+LfQ2ys7M1ePBgrVmzxnr+eXl5WrlypdauXauv\nv/7a7tjb53jssce0bt06ubi4yNXVVSkpKVq5cqXWr1+v6Ohode7c2do/MDBQmZmZSklJkbOzc4Hv\ng6urq6RbFY26du1qXW7NyclJPj4+SkxMVHx8vHbv3i0nJye98847dmMDAAAAAKAqoZIPAAAAAABV\nlNls1vjx4/X444/r1KlTunbtmtLT0zVhwgRJ0iuvvKK0tDR17txZu3fvVmZmpq5evar09HTFxcVp\n0qRJ8vHxkSR16dJFly5d0lNPPSVJevXVV3Xx4sV8253y6KOPSpISEhJ04sSJfG2jR4/W3r175e/v\nr2+//Vbp6elKTk5WXFyc2rRpo6SkJIWFhVkrElncvHlTgwYN0r59+1SrVi0tWLBA169fV2JiojIy\nMrRr1y5NmjRJHh4e5XouZrNZzz33nPr06WO9J0lJSfrd734nSXr77bf16quvas2aNVq0aJHS0tJ0\n/fp1bdq0SbVr19b58+f17rvvFpg3Li5Ow4YNU15enqZOnarz588rNTVVN27c0LZt29ShQwcdOHBA\no0ePthvXmDFjFBwcrIMHDyo5OVmpqan67LPP5Orqqp07d+rTTz+19h86dKguXbqkLl26SJLmzp2b\n71mIjY0t1+tmUdr7bbFnzx7NnTtXr7/+uq5du6arV6/q/PnzGjFihCRpypQpNpfJsufatWsaOHCg\nzpw5oyZNmuiHH35Qenq69TnasmWLxo0bZ02OKg5LUtmuXbuUmZmZr81StadHjx5q0KCB6tWrp927\nd+vGjRv5+lmSfH6ZoDZ69GitX79e7du317p165SRkaGkpCRdvXpVf/7zn+Xk5KQJEyZYK/AUx5//\n/GetWbNG1apV09y5c3X9+nVdvXpVp0+f1sCBAzV+/Pgi5/joo4+0a9cuLVmyRGlpaUpJSdHevXvV\nunVrZWZmWn+zLC5duqT3339fktStW7cCv0WWhKC5c+fqyJEjCggI0MqVK3Xz5k1duXJFmZmZOnbs\nmN599101bdq02OcKAAAAAEBlR5IPAAAAAAAVbOvWrapdu7bNzbJETXG1a9dOS5YssVYRcXJyUsOG\nDSXdWsbLMAzNnTtXbdu2tY5xc3NT+/btNXv27AIVUcxmcxnPruTatGlj/Xz69Gnr582bN2vt2rUy\nDENff/21nnzySWu1kPbt2ysqKkp+fn5KSEjQBx98kG/Ozz77THv37pWbm5vWr1+vkSNHWivRGIah\nhx56SLNnz1ZISEi5n09gYKC+++47633w9vbWRx99pKZNmyozM1Nz5szRP/7xDz399NPW5JBu3bpp\n5syZkqRly5YVmHPSpEnKycnRhx9+qLfeekt16tSxnkvnzp21du1a1alTR+vWrbO5/JEk1a9fX6tW\nrVLLli0lSS4uLho7dqw1SWPp0qXleyFKqCz32+L69esaP368ZsyYYa1EVbt2bS1cuFB9+vSR2WxW\nREREsWN69913df78edWqVUubN2/WoEGDrPfMyclJXbt21fz581W3bt1iz9mzZ09JUlZWlrZv327d\nn5GRod27dyswMFDNmjWTdCvZJysrS//+97+t/W7cuKGdO3dKyp/k89NPP+mHH35QixYtFB0drYcf\nflguLi6SJF9fX/3pT3/SW2+9pby8vGJXtklNTdXs2bMlSW+99Zb+8Ic/WKvoNGjQQMuXL7c+54VJ\nSUnRDz/8oCFDhlivX5s2baxL2O3cuVPnzp3LN6Y4v0WW6zd58mQ9+uij1mUFnZyc1LRpU02ZMkW/\n/e1vi3WuAAAAAABUBST5AAAAAABQwbKzs5WYmGhzS05OLtFc9pYekqTq1avLbDbf0So85cHPz0/S\nrZf6165ds+63JJ106NBB/fv3LzAuICDAWiFnyZIl+doWLFggSRo7dqxat259R+K255VXXrEmG1gY\nhqG+fftKku677z6NHDmywLh+/fpJurWE1u2VW06cOKFt27bJz8/PbhKYn5+fBg4cKEmKioqy2efl\nl1+Ws7Nzgf1hYWGSpEOHDhV1andUWe63hWEY+tOf/mSz7Y9//KMkacOGDUpKSipWTJbn6JVXXrEm\nVpVVw4YN1aBBA5nN5nxLcf373/9WTk6OdZkuSdbPlgo/0q3ElpycHBmGYU0YkqQvv/xSkjR+/Hi7\nS+09/fTTkqSYmJhiJdFYqgG5u7vrpZdeKtBerVo1vfzyy0XO06NHD3Xt2rXA/uDgYNWrV09ms7lU\nz5+lElll/40DAAAAAKC8kOQDAAAAAEAF6927t3Jzc21uy5cvL/Y8hmFYl1OyJTQ0VNKtJXz++Mc/\nKjY2Vjk5OWWOv7zZSzbYvXu3JKlPnz52x1oSZ44fP25NjMnOztauXbtkGIYee+yxco62cIZh5KtM\ndLtatWpJkrWSzi8FBARYP9+e7GVZWik1NVX16tWzWwXqm2++kaQCFVEscdmrWmSpQlPcxJc7pbT3\n+3YNGjSwW1mme/fuMplMMpvN2rt3b5HxnD59WpcvX74jz5ElOef2JB/L59uTfLp37263X8OGDXXf\nffdZ91uek7ffftvuM2J5BtLT0+0ueXa7PXv2SLpVMcze0na3x2tPYRWz6tWrJ6l0z5/lvnzwwQca\nPXq01qxZo7S0tBLPAwAAAABAVUGSDwAAAAAAVZglccSW9957T127dlVqaqr++te/qkuXLvL29la/\nfv30ySefKDMzswIjtc/yct8wDPn7+1v3JyYmSvpfEoAtljaz2awrV65Ikq5du6bc3FxJsi5jVpHs\nVXxxcnIqVrt0K1HJ4tKlS5KknJwcuxWgEhMTdePGDRmGYTP5RZLd6i5ubm7W+R2ptPfbVrstbm5u\n8vPzszv2lxISEqyfy/s5siT5xMbGWp9VS7We25NmWrduLR8fn3z9LEk+ty/VJf3vOUlOTi70OZFu\nfdcyMjKKjNNynQqrYlScCkf2nj3pf8/f7c98cY0aNUrPPfeczGazFi1apMcee0w+Pj4KDg5WeHi4\n4uPjSzwnAAAAAACVGUk+AAAAAABUYYZh2G3z9/fXli1bFBUVpZdeeknBwcHKycnRhg0b9MILL6h1\n69a6cOFCBUZr2/79+62fmzRpUqC9siQjOUpeXp6kW9VU7FWAun37/PPPHRxx2dwL99uSoJORkaGd\nO3cqOztb27dvV/Xq1dW2bVtrP8Mw1K1bN2VkZCguLs7aT1K+pbqk/z0n33//faHPR15ennJzcx2S\nAHcnfPLJJzp48KCmTZum3r17y93dXXv37tXbb7+tZs2a6aeffnJ0iAAAAAAAlBuSfAAAAAAAuMv1\n69dP77//vnbu3KnExET93//9n/z9/XXy5ElNmjTJ0eFp9erVkm4tG9W4cWPrfkuVojNnztgde/78\neUm3kiFq1qwp6VZyk6UqzunTp4sdR7Vq1SQVnmSSkpJS7PnKS+3atSXZXobrblLa+327ixcv2h2b\nmZmppKQkGYZRaAUsC8t1l0r2HBVHs2bNFBgYKLPZrI0bN2rnzp3KzMxU165dCyTu3b5k165du6wV\nm35ZyScwMFBS4devpCzX2FIlyJbC2ipKy5YtFRERoejoaCUlJWnFihVq06aN0tPT9cwzzzi8ShUA\nAAAAAOWFJB8AAAAAAO4hvr6+Gj9+vGbMmCHpf0v/WJhMt/5UYDabKySe/fv361//+pck6emnn87X\n1r59e0nSxo0b7Y6Pjo6WJDVv3lzu7u6SJGdnZ3Xo0EFms1mrVq0qdix+fn6SpMuXL9tdOiguLq7Y\n85WXLl26SLq1DNmOHTsq9NgV+TyU9n7f7syZM3aTXLZs2aK8vDwZhqF27doVGU/Dhg1Vu3btEj9H\nxWVJ0tm0aZP1e/jL6jzS/5bv2rRpk3VJr7p16xaoetW1a1dJ/0uaKw/BwcGSpL179yo9Pd1mH0tM\n5a20z56zs7NCQ0P17bffSpLi4+N1/Pjxco8PAAAAAABHIMkHAAAAAIC7kNlsLrR6hZubmyTp5s2b\n+fZXr15dkpSUlHTngvuvEydO6Mknn1ReXp78/Pz0yiuv5GsfMmSIJOnQoUP64YcfCoxPSEjQJ598\nIkkaOnRovrbRo0dLkiIjI3XgwIFixdO8eXO5uLgoLy9PK1asKND+n//8R8uWLSvWXOUpKChInTt3\nltls1pQpUwq9rxkZGcrKyiq3Y1fk81CW+21hNpv1zjvv2Nz/7rvvSrpV2crX17dYMY0aNUqSNHv2\n7EKrBJWGJaFn69at1sQmS0LP7Tp06CBXV1dt3bpVMTEx+cbebsyYMZKktWvXau3atYUeOzk5uVgx\nDhgwQJ6enrpx44Y++uijAu05OTn629/+Vqy5Ssry7BUWq71kPOl/v3GSyvU7AQAAAACAI5HkAwAA\nAADAXSglJUVNmzbVjBkzdPDgQeXm5kqS8vLytH79er3xxhuSpEceeSTfuNatW0uS1qxZo/j4+HKP\nKysrS7GxsXr11Vf10EMP6cSJE3J1ddXSpUsLLKHUvXt3DRw4UJI0btw4LVu2THl5eZKkXbt2acCA\nAUpOTlbt2rU1YcKEfGN/+9vfql27drp586b69eunRYsW6caNG5Kk3Nxc7dy5U+PHj89XGcfZ2Vlh\nYWGSpEmTJmnr1q0ym83Ky8vTunXr1L9/f3l4eJT7NSmODz74QK6urtq0aZP69eunrVu3Wq9Fbm6u\n9u7dq/DwcN1///3let8sz8Py5ct1/fr1cpvXlrLcb4vq1atr3rx5euONN6zxxsfH65lnnlF0dLRM\nJpPCw8OLHdNrr72mevXq6cqVK+rRo4dWrFhhTSzJzs7Wxo0bNWzYMF24cKHE52up5JOSkqJ169bJ\nzc1NHTt2LNDP1dVVISEhSklJsSbv/HKpLunWd/mJJ56Q2WzW448/rlmzZunKlSvW9itXrmjp0qUK\nDQ3Vyy+/XKwYvby8rEv6TZ06VR9++KF1ObuzZ89qyJAh5b6UmYXl2Tt06JDdClb9+vXThAkTtHnz\nZuv32zLGkvRUp04dtWnT5o7ECAAAAABARSPJBwAAAACAu9TZs2c1depUPfjgg3J3d1eNGjXk4uKi\n/v3768KFC7r//vs1Z86cfGMef/xx+fv769ixY6pXr57q1KmjRo0aqXHjxiU+vtlsVu3ata1b9erV\n5ebmpi5dumj27NlKT09Xhw4dFBcXpz59+ticY8GCBWrXrp2SkpL0m9/8Rp6enqpevbpCQkJ04MAB\n+fv767vvvrMutWXh4uKiH3/8Ua1bt9aVK1c0evRoeXt7q2bNmvLw8FDHjh31+eefWxMWLN555x3V\nqFFD586dU48ePeTl5SVPT08NHDhQ/v7+ioiIKPKcy8rWHB06dNB3330nHx8fbd68WT169JCHh4dq\n1qwpNzc3BQcH6+2339bly5dlGEa5xTVq1Ci5uLhoy5YtqlGjhurVq6dGjRrZrDhTHkp7vy2Cg4M1\nceJE63309/dX3bp1tWjRIhmGoZkzZ1qXtfolW9fI399fq1evVv369XXq1CkNHjxYnp6e1ueoT58+\n+vbbb61JdCXRsmVL+fv7S7qVfBcSEiJnZ2ebfbt3727tJ9lO8pFuXb+wsDBlZmZqypQpCggIkJ+f\nn7y9vRUQEKChQ4dq9erVNp8Re958800NGDBAOTk5eumll+Tt7S0/Pz81atRIq1ev1meffWbt6+rq\nWux5i9K0aVP17NlTOTk56ty5s2rUqGH9LYqNjZUkpaam6u9//7t69eolLy8v+fv7y93dXW3atFFM\nTIw8PT21cOFC69JfAAAAAABUdfwXLgAAAAAAFcQwjBK9XC9p/9v5+PjoX//6lyZOnKhOnTopMDBQ\n6enp8vb2VseOHTVjxgzt3btXdevWzTeuRo0a2rBhg5544gkFBgbq6tWrOnfunM6ePVuiuC3/TExM\nVGJioq5cuSKTyaT77rtPffv21WuvvaZt27Zpx44d1oodttSsWVP//ve/NWvWLOuyRTk5OWrevLkm\nTZqkQ4cOqVOnTjbH1q9fXzt37tQHH3yg7t27y8fHRxkZGapXr54GDhyo+fPnKyQkJN8YSwLB8OHD\nFRAQILPZrAYNGmjq1KnaunWrdQmhos7dXltx7qe9PgMHDtSxY8c0depUtW/fXu7u7rp+/br8/PzU\nrVs3/fGPf9SuXbt03333lSiuwgQFBSkqKkoDBw6Un5+fLl++rHPnzpWqcs3tsdiLpyz322LOnDn6\n4osv1L59e+Xl5al69erq27evVq9eXWgFG3sxtW7dWocOHdKf//xndejQwbp8VaNGjfT444/r66+/\nVr169Yp/AW47nmXZLcMwCk2csrQZhqGAgAAFBQXZ7Ofh4aHly5frX//6l5544gnVr19fmZmZysvL\nU7NmzfTUU08pMjJSf//734t17tKtClcrV67U7Nmz1bp1azk7O8vZ2Vm/+tWvFBMTo759+1r7/nIZ\ntOI884X1Wb58uV544QU1adJEGRkZ1t8iyzKD8+fP1/Tp09W3b181atRIN2/elMlk0gMPPKA//OEP\nOnjwoN0EQgAAAAAAqiLDXB7/ixkAAAAAAADgIJGRkRo3bpx69+6t6OhoR4dzT1m/fr369++vRo0a\n6eTJk44OBwAAAACAuxqVfAAAAAAAAACUynvvvSdJ6t+/v4MjAQAAAADg7lcuST7nz5/XuHHjVLdu\nXbm5ualx48aaNGmSkpOTiz1Ho0aNZDKZbG516tQpjzABAAAAAAAAlEBubq6GDBmitWvXKiUlxbr/\n0KFDGjJkiNatWycXFxe99NJLDowSAAAAAIB7Q7WyTnDixAl17dpViYmJCgsLU4sWLRQbG6u5c+dq\nzZo12rp1q/z9/Ys1l6+vryZOnFhgv5eXV1nDBAAAAAAAAFBCZrNZy5cv1/LlyyVJ3t7eysnJ0Y0b\nNyRJTk5O+vDDD9WqVStHhgkAAAAAwD2hzEk+L7zwghITE/X3v/9dv//97637J0+erL/97W964403\n9PHHHxdrLl9fX02bNq2sIQEAAAAAAOAeYhiGo0O4a1WrVk3/+Mc/tG7dOh04cECXL1+W2WxWo0aN\n1LNnT02cOFHt2rVzdJgAAAAAANwTDLPZbC7t4BMnTqhZs2Zq3LixTpw4ka8tLS1NtWvXlmEYSkhI\nkIeHR6FzWZbrOnnyZGnDAQAAAAAAAAAAAAAAAO5KZarks2HDBknSgAEDCrR5eXmpW7duioqK0vbt\n29W3b98i58vMzNSiRYt09uxZeXp6qm3bturZs6dMJlNZwgQAAAAAAAAAAAAAAACqtDIl+fz888+S\npObNm9tsb9asmaKionT8+PEik3wMw1B8fLxGjx6db3/jxo31xRdfqGfPnmUJFQAAAAAAAAAAAAAA\nAKiyylQiJyUlRZLk4+Njs92yPzk5uci5xo4dq+joaCUkJCgjI0MHDhzQ888/r9OnT+vRRx/V/v37\nyxIqAAAAAAAAAAAAAAAAUGWVqZJPeZo2bVq+f2/VqpU+/vhjeXl5afbs2YqIiNDy5cuLnMcwjDsV\nIgAAAAAAAAAAAAAAAFBmZrO5xGPKVMnHUqnHUtHnlyz7fX19S32M3/3ud5KkzZs3F9mXBB8AAAAA\nAAAAAAAAAABUdqXJcSlTJZ8WLVpIkn7++Web7cePH5ckNW/evNTHqFmzpiQpPT292GNKk+0EAAAA\nAAAA2wzD4O8tAAAAAAAA5aS0RWzKVMmnT58+kqSoqKgCf+hJTU3V1q1b5enpqc6dO5f6GNu3b5ck\nNWnSpPSBAgAAAAAAAAAAAAAAAFVYmZJ8mjRpogEDBujUqVP66KOP8rWFh4crIyNDo0aNkru7uyQp\nJydHR48e1cmTJ/P1PXr0qM1KPadPn9aLL74oSRo5cmRZQgUAAAAAAAAAAAAAAACqLMNcxlrLJ0+e\nVNeuXXX58mUNHjxYLVq0UGxsrGJiYhQUFKRt27bJz89P0q2knSZNmqhhw4Y6deqUdY6IiAjNnj1b\nvXr1UoMGDeTt7a0TJ05o5cqVunnzpkJDQ/Xdd9+pWrXCVxezlDOifDQAAAAAAED5YbkuAAAAAACA\n8lPa/JZYyopuAAAgAElEQVTCs2aKoUmTJtq5c6emTZumNWvWaNWqVapbt64mTpyo8PBw+fj42A3W\nom/fvjp27Jj27NmjrVu3Kj09XX5+furZs6dGjRpFFR8AAAAAAAAAAAAAAADc08pcyacyoZIPAAAA\nAABA+aOSDwAAAAAAQPkpbX6L6U4EAwAAAAAAAAAAAAAAAKD8kOQDAAAAAACAQoWHhzs6BAAAAAAA\ngHsey3UBAAAAAAAAAAAAAAAAFYTlugAAAAAAAHBHREREODoEAAAAAACAex6VfAAAAAAAAFAowzD4\newsAAAAAoMRCQ0O1atUqR4cBVIjHHntMK1euLFbf0ua3kOQDAAAAAACAQkVERFDNBwAAAABQYpZ3\n+MC9orj5KiT5iCQfAAAAAAAAAAAAAAAqC97h415R0me9tN8NU8nCAgAAAAAAAAAAAAAAAFDRSPIB\nAAAAAAAAAAAAAAAAKjmSfAAAAAAAAAAAAAAAAIBKjiQfAAAAAAAAAAAAAAAAoJIjyQcAAAAAAACF\nioiIcHQIAAAAAAAA9zzDbDabHR1EeTEMQ5J0F50SAAAAAACAwxmGwd9bAAAAAAAlxjt83CtK+qyX\n9rtBJR8AAAAAAAAUKjw83NEhAAAAAAAA3POo5AMAAAAAAAAAAAAAAMod7/Bxr6CSDwAAAAAAAAAA\nAAAAACqVmJgYmUwmNW7c2NGh3HNI8gEAAAAAAAAAAAAAAA4TGhoqwzCq9BYaGlru1yUyMlLTp0/X\nvn37yn3u8mCpRuMoeXl5mjdvnrp06SJfX195e3srODhYs2bNUnZ2dpHjf/rpJw0aNEgBAQFyc3PT\n/fffr4kTJ+ry5csVEH3psFwXAAAAAAAAAAAAAAAod8V9h+/oZJHyUt65Cr1799amTZsUGRmp0aNH\nl+vcZREXF6fRo0erfv36ioqKckgM2dnZCgsL0+rVqyVJrq6ucnJyUkZGhiQpJCRE0dHR8vT0tDn+\nL3/5i958801JkpOTk7y8vJSSkiJJqlWrlqKjo9WqVatix8NyXQAAAAAAAAAAAAAA4B5irqLbvSUk\nJERHjhxxWIKPJE2dOlWrV6+Wu7u7vvzyS2VkZCgtLU0rVqyQv7+/4uLi9Pzzz9scu2rVKr355psy\nDEOvvPKKkpOTlZSUpIMHD6pdu3ZKTEzU4MGDlZWVVcFnVTSSfAAAAAAAAFCoiIgIR4cAAAAAAMA9\ni9WM8ouPj9fcuXMlSX/96181atQoa2Wc0NBQff7555Kkr7/+WgcOHCgw/k9/+pMk6fHHH9fMmTOt\n1X5atmypFStWyMvLSydPntS8efMq4nRKhCQfAAAAAAAAFGr69OmODgEAAAAAgHtGZGSkTCaTNm3a\nJEkaO3asTCaTdWvcuHG+/gkJCZo8ebJatGghDw8P+fj4qFOnTpozZ47dajRjxoyRyWTS9OnTdfPm\nTYWHh6tFixZyd3dXQECAnn76aR0/ftzm2JiYGJtx3O7cuXOaPHmyWrduLW9vb3l7e6tly5Z69tln\nFRMTU7oL81/Lli1TVlaWfH199dxzzxVo//Wvf63mzZvLbDbrq6++ytd26NAh7d+/X4Zh6NVXXy0w\ntl69eho+fLgk6Z///GeZ4rwTqjk6AAAAAAAAAFRu4eHhjg4BAAAAAIB7hoeHhwIDA3Xt2jVlZ2fL\nx8dH7u7u1vaAgADr5x07dujRRx9VUlKSDMOQt7e3srOzFRcXp7i4OC1cuFDr1q1TrVq1bB7r5s2b\n6t27t2JjY+Xq6io3NzddvXpVixcv1o8//qjVq1erR48eNsdaquf80rJlyzRq1ChlZmZKktzd3eXu\n7q5jx47p6NGjWr9+vU6dOlXay6MNGzZIknr27CkXFxebfQYMGKBjx44pOjra5lhLIpQtjzzyiD79\n9FPFxcUpPT3dWumnMqCSDwAAAAAAAArFcl0AAAAAAFScoUOH6tKlS+rSpYskae7cubp48aJ1i42N\nlSQlJSUpLCxMSUlJevDBB7Vjxw4lJycrNTVV3377rfz8/LRv3z6NGDHC7rE+/vhjHTx4UAsXLlRa\nWpqSkpK0e/duBQcHKyMjQ0OHDlVycnKxY9+2bZuGDRumzMxM9e3b15ooc+XKFSUnJ+u7775Tv379\nynR9Dh8+LElq1aqV3T4tW7aUJB09etTm2AceeKDIsWazucB4RyPJBwAAAAAAAAAAAAAAoIr58MMP\nFR8fLz8/P61bt07t27eXJJlMJj355JNavHixJOmnn36yVrD5pZSUFM2bN08jRoyQk5OTJKlt27Za\nu3atatSooYSEBH300UfFjmnSpEnKzc1Vr169tHbtWmtMkuTl5aXBgwdr/vz5pT1lSdKlS5ckSXXr\n1rXbp06dOpKktLQ0paenl2qsJMXHx5cp1vJGkg8AAAAAAAAAAAAAAEAVs3TpUknSs88+m28JL4v+\n/ftbqwEtWbLE5hyNGjXS8OHDC+yvUaOGnn/++XzHKcrRo0cVFxcnwzA0c+ZMa9JQebMk7dy+hNkv\neXh4WD+npaWVaqzZbM43tjIgyQcAAAAAAAAAAAAAAKAKycrK0sGDB2UYhvr06WO3X9++fSVJe/bs\nsdneq1cvu2MtbYcOHVJOTk6RMW3fvl2S5O/vr5CQkCL7o+RI8gEAAAAAAAAAAAAAAKhCrl27JrPZ\nLEmqV6+e3X6WtsTExELbbbEsaZWbm6ukpKQiY0pISJAkNWjQoMi+ZeHp6SlJunHjht0+GRkZ1s9e\nXl6lGmsYRr6xlQFJPgAAAAAAAChURESEo0MAAAAAAAB2ZGZmOjqECmVJPrp48aLdPpY2Ly8va2JP\nScdKUp06dcoUa3kjyQcAAAAAAACFmj59uqNDAAAAAAAAt/H395dhGDKbzTpz5ozdfufPn5ck1apV\ny2b7hQsX7I61JLs4OTnJz8+vyJhq164tSTp79myRfcuiVatWkqSDBw/a7XP48GFJ0gMPPGBz7JEj\nR6yVkOyNNQyjwHhHI8kHAAAAAAAAhQoPD3d0CAAAAAAA3HNMplspHbaSUVxcXNSmTRtJ0oYNG+zO\nER0dLUkKDg622b5x40a7Yy1trVu3VrVq1YqMt3PnzpJuLSUWGxtbZP/S6tOnjyRpy5Ytunnzps0+\nUVFRkqR+/frZHJuSkqK4uDibY9etWydJ6tSpk9zd3csl5vJCkg8AAAAAAAAKxXJdAAAAAABUvOrV\nq0uSkpKSbLYPGTJEkhQZGan4+PgC7evWrdP27dtlGIaGDh1qc47Tp09r8eLFBfZfu3ZN8+bNkyT9\n5je/KVa8QUFB6tixo8xms6ZMmaKcnJxijSupJ554Qq6urkpKStL8+fMLtK9YsULHjh2TyWTS8OHD\n87U98MADatu2rcxms957770CYy9evKivv/5akjRixIg7En9ZkOQDAAAAAAAAAAAAAABQybRu3VqS\ntHz5cl2/fr1A+4svvqg6deroxo0bGjhwoHbt2iVJys3N1bJlyzRs2DBJ0sMPP6zevXvbPIaPj4/G\njx+vr776Srm5uZKk/fv365FHHtGVK1cUGBioF154odgxz5kzR05OTtq8eXO+mCQpNTVVixcv1siR\nI4s9ny2BgYGaMGGCJGnKlClatGiR8vLyJEmrVq3S2LFjJUnDhw+3XsPbzZgxQ5K0bNkyvfbaa0pL\nS5N0a5muQYMGKS0tTffff7/Gjx9fpjjvBMNsb5GxKsgwDEm2S1UBAAAAAAAAAAAAAICKU9x3+JZ+\nUlV9139nchV+/vlntW3bVllZWXJyclJAQICcnZ113333afPmzZKkuLg4DRw40Frtx8vLS9nZ2dZl\nrNq2bauoqCjVrFkz39xjxozRggUL9Prrr2vDhg2KjY2Vi4uLXF1dlZqaKkny9PTU6tWr1b1793xj\nY2Ji1LdvXzVq1EgnT54sEPc333yjMWPGWGNwc3OTu7u7NUZ740oiJydHYWFhWrVqlaRby5c5OTnp\nxo0bkqSOHTtq/fr18vT0tDn+L3/5i958801Jt5ZF8/T0tJ53rVq1tGHDBrVs2bLY8ZQ0X6W0+S1U\n8gEAAAAAAAAAAAAAAJWAUUW3OyMoKEhRUVEaOHCg/Pz8dPnyZZ07d04XLlyw9gkJCdHhw4c1adIk\nBQUFKTc3Vy4uLgoJCdGsWbMUGxtbIMHndm5uboqJidG0adPUuHFj5eTkKCAgQMOHD9fu3bsLJPhI\ntydl2fbUU0/pyJEjevHFFxUUFCSTyaS8vDy1bNlS48eP14IFC0p/Uf6rWrVqWrFihT755BN17txZ\n7u7ucnJy0kMPPaSZM2dqy5YtdhN8JOmNN95QVFSUQkNDVaNGDWVnZ+v+++/XhAkTdPDgwRIl+FQk\nKvkAAAAAAAAAAAAAAIByV9x3+KGhodaKLFXVY489ppUrVzo6jGKzVPKJiIjQtGnTHB1OlUclHwAA\nAAAAAFQKERERjg4BAAAAAHAXW7lypcxmc5XeqlKCD6ouknwAAAAAAABQqOnTpzs6BAAAAAAAgHse\nST4AAAAAAAAoVHh4uKNDAAAAAAAAuOdVc3QAAAAAAAAAqNxYrgsAAAAAgLuLYRgyDMOhMYSEhOjc\nuXPF7j9s2DC9//77dzCiyo8kHwAAAAAAAAAAAAAAgHvIF198oS+++MKhMVy5ckWJiYnF7n/9+vU7\nGE3VYJjNZrOjgygvliyzu+iUAAAAAAAAAAAAAACokniHj3tFSZ/10n43TCULCwAAAAAAAAAAAAAA\nAEBFI8kHAAAAAAAAAAAAAAAAqORI8gEAAAAAAEChIiIiHB0CAAAAAADAPc8w30WL37GeHwAAAAAA\nQPkzDIO/twAAAAAASox3+LhXlPRZL+13g0o+AAAAAAAAKFR4eLijQwAAAAAAALjnUckHAAAAAAAA\nAAAAAACUO97h415BJR8AAAAAAAAAAAAAAAAAkkjyAQAAAAAAAAAAAAAAACo9knwAAAAAAAAAAAAA\nAACASo4kHwAAAAAAAAAAAAAAAKCSI8kHAAAAAAAAhYqIiHB0CAAAAAAAAPc8w2w2mx0dRHkxDEOS\ndBedEgAAAAAAgMMZhsHfWwAAAAAAJcY7/LtTTEyM+vbtq4YNG+rUqVOODqdSKOmzXtrvBpV8AAAA\nAAAAUKjw8HBHhwAAAAAAuIuFhobKMIwqvYWGhpb7dYmMjNT06dO1b9++cp+7PFgSVRwlLy9P8+bN\nU5cuXeTr6ytvb28FBwdr1qxZys7Otjvu+PHj+vzzz/XCCy8oJCRErq6uMplM6tKlSwVGXzpU8gEA\nAAAAAAAAAAAAAOWuuO/wHZ0sUl7KO1ehd+/e2rRpkyIjIzV69Ohynbss4uLiNHr0aNWvX19RUVEO\niSE7O1thYWFavXq1JMnV1VVOTk7KyMiQJIWEhCg6Olqenp4FxoaFhenHH38ssL9z587atm1bqeKp\nqEo+1UoWFgAAAAAAAAAAAAAAwB0Q4egASinC0QFUrJCQEB05csShMUydOlWrV6+Wu7u7PvnkE40c\nOVKGYWjlypV65plnFBcXp+eff16LFi0qMLZatWpq2bKlQkJC1KFDB+3YsUMLFy50wFmUHEk+AAAA\nAAAAAAAAAAAAlRSrGeUXHx+vuXPnSpL++te/atSoUda20NBQff755woLC9PXX3+t1157TW3atMk3\nfsmSJTKZTNZ/T0xMrJjAy4Gp6C4AAAAAAAAAAAAAAACoCJGRkTKZTNq0aZMkaezYsTKZTNatcePG\n+fonJCRo8uTJatGihTw8POTj46NOnTppzpw5ysrKsnmMMWPGyGQyafr06bp586bCw8PVokULubu7\nKyAgQE8//bSOHz9uc2xMTIzNOG537tw5TZ48Wa1bt5a3t7e8vb3VsmVLPfvss4qJiSndhfmvZcuW\nKSsrS76+vnruuecKtP/6179W8+bNZTab9dVXXxVovz3Bp6qhkg8AAAAAAAAAAAAAAEAl4eHhocDA\nQF27dk3Z2dny8fGRu7u7tT0gIMD6eceOHXr00UeVlJQkwzDk7e2t7OxsxcXFKS4uTgsXLtS6detU\nq1Ytm8e6efOmevfurdjYWLm6usrNzU1Xr17V4sWL9eOPP2r16tXq0aOHzbGGYdjcv2zZMo0aNUqZ\nmZmSJHd3d7m7u+vYsWM6evSo1q9fr1OnTpX28mjDhg2SpJ49e8rFxcVmnwEDBujYsWOKjo4u9XEq\no6qbngQAAAAAAIAKERER4egQAAAAAAC4ZwwdOlSXLl1Sly5dJElz587VxYsXrVtsbKwkKSkpSWFh\nYUpKStKDDz6oHTt2KDk5Wampqfr222/l5+enffv2acSIEXaP9fHHH+vgwYNauHCh0tLSlJSUpN27\ndys4OFgZGRkaOnSokpOTix37tm3bNGzYMGVmZqpv376Ki4tTenq6rly5ouTkZH333Xfq169fma7P\n4cOHJUmtWrWy26dly5aSpKNHj5bpWJUNST4AAAAAAAAo1PTp0x0dAgAAAAAA+IUPP/xQ8fHx8vPz\n07p169S+fXtJt5ajevLJJ7V48WJJ0k8//WStfvNLKSkpmjdvnkaMGCEnJydJUtu2bbV27VrVqFFD\nCQkJ+uijj4od06RJk5Sbm6tevXpp7dq11pgkycvLS4MHD9b8+fNLe8qSpEuXLkmS6tata7dPnTp1\nJElpaWlKT08v0/EqE5J8AAAAAAAAUKjw8HBHhwAAAAAAAH5h6dKlkqRnn3023xJeFv3797dWA1qy\nZInNORo1aqThw4cX2F+jRg09//zz+Y5TlKNHjyouLk6GYWjmzJnWpKHyZknauX0Js1/y8PCwfk5L\nS7sjcTgCST4AAAAAAAAoFMt1AQAAAABQuWRlZengwYMyDEN9+vSx269v376SpD179ths79Wrl92x\nlrZDhw4pJyenyJi2b98uSfL391dISEiR/VFyJPkAAAAAAAAAAAAAAABUIdeuXZPZbJYk1atXz24/\nS1tiYmKh7bZYlsPKzc1VUlJSkTElJCRIkho0aFBk37Lw9PSUJN24ccNun4yMDOtnLy+vOxpPRSLJ\nBwAAAAAAAAAAAAAAoIrKzMx0dAgVypJ8dPHiRbt9LG1eXl7WpKC7AUk+AAAAAAAAAAAAAAAAVYi/\nv78Mw5DZbNaZM2fs9jt//rwkqVatWjbbL1y4YHesJVHGyclJfn5+RcZUu3ZtSdLZs2eL7FsWrVq1\nkiQdPHjQbp/Dhw9Lkh544IE7GktFI8kHAAAAAAAAAAAAAACgkjGZbqV0WJblup2Li4vatGkjSdqw\nYYPdOaKjoyVJwcHBNts3btxod6ylrXXr1qpWrVqR8Xbu3FnSraXEYmNji+xfWn369JEkbdmyRTdv\n3rTZJyoqSpLUr1+/OxaHI5DkAwAAAAAAgEJFREQ4OgQAAAAAAO451atXlyQlJSXZbB8yZIgkKTIy\nUvHx8QXa161bp+3bt8swDA0dOtTmHKdPn9bixYsL7L927ZrmzZsnSfrNb35TrHiDgoLUsWNHmc1m\nTZkyRTk5OcUaV1JPPPGEXF1dlZSUpPnz5xdoX7FihY4dOyaTyaThw4ffkRgchSQfAAAAAAAAFGr6\n9OmODgEAAAAAgHtO69atJUnLly/X9evXC7S/+OKLqlOnjm7cuKGBAwdq165dkqTc3FwtW7ZMw4YN\nkyQ9/PDD6t27t81j+Pj4aPz48frqq6+Um5srSdq/f78eeeQRXblyRYGBgXrhhReKHfOcOXPk5OSk\nzZs354tJklJTU7V48WKNHDmy2PPZEhgYqAkTJkiSpkyZokWLFikvL0+StGrVKo0dO1aSNHz4cOs1\nvF1WVpauXLli3TIyMiRJOTk5unr1qnW/rWvuaIbZVl2nKsowDEm2S1UBAAAAAACgdCIiIqjmAwAA\nAAAoseK+w7f0U8QdDuhOibj1j/LOVfj555/Vtm1bZWVlycnJSQEBAXJ2dtZ9992nzZs3S5Li4uI0\ncOBAa7UfLy8vZWdnW5exatu2raKiolSzZs18c48ZM0YLFizQ66+/rg0bNig2NlYuLi5ydXVVamqq\nJMnT01OrV69W9+7d842NiYlR37591ahRI508ebJA3N98843GjBljjcHNzU3u7u7WGO2NK4mcnByF\nhYVp1apVkm4tX+bk5KQbN25Ikjp27Kj169fL09OzwNjIyEiNGzeuyGP06tWr0KXQblfSfJXS5rcU\nvWgaAAAAAAAA7mkk+AAAAAAAKkSEowOoXIKCghQVFaV33nlHO3fu1OXLl5WXlyeT6X+LNoWEhOjw\n4cOaOXOmVq1apbNnz8rFxUUPPvignnrqKb344otycXGxeww3NzfFxMTonXfe0TfffKOzZ88qICBA\n/fr1U0REhJo1a1ZgjDUpy46nnnpKnTp10pw5cxQVFaVz584pLy9PLVu2VLdu3TRq1KjSX5T/qlat\nmlasWKFPP/1UkZGROnLkiHJzc/XQQw9p+PDhmjhxoqpVs50SY4m/qPMoqt0RqOQDAAAAAAAAAAAA\nAADKXXHf4YeGhlorslRVjz32mFauXOnoMIrNUsknIiJC06ZNc3Q4VR6VfAAAAAAAAAAAAAAAwF2v\nKiXHAI5kKroLAAAAAAAAAAAAAAAAAEciyQcAAAAAAAAAAAAAAACo5FiuCwAAAAAAAIWKiIhQRESE\no8MAAAAAAADlxDAMGYbh0BhCQkJ07ty5YvcfNmyY3n///TsYUeVnmM1ms6ODKC+WB/AuOiUAAAAA\nAACHMwyDv7cAAAAAAEqMd/goTOPGjXX27Nli93/mmWf0+eef38GISq+kz3ppvxtU8gEAAAAAAECh\nwsPDHR0CAAAAAAC4y5w6dcrRIVQ5VPIBAAAAAAAAAAAAAADljnf4uFdUVCUfU8nCAgAAAAAAAAAA\nAAAAAFDRSPIBAAAAAAAAAAAAAAAAKjmSfAAAAAAAAAAAAAAAAIBKjiQfAAAAAAAAAAAAAAAAoJIj\nyQcAAAAAAACFioiIcHQIAAAAAAAA9zzDbDabHR1Eefn/7N17cNT1vf/x13cXcg8hYBLAS0nnaDAg\nqbHhoiIhKCKZgxwvQORisCCVQ1VkZDxzlN10fpUjw1DTanUilVQYDCLakZIUIkkEawkrKIrhYitK\nuCQSsoEkQK77+wN3Tcxu7mED+3zM7Lju5/P97Ou7bP745vvO+2MYhiTpKjolAAAAAAAArzMMg9+3\nAAAAAAA6jHv48BUd/a539meDTj4AAAAAAABolcVi8XYEAAAAAAAAn0cnHwAAAAAAAAAAAAAA0O24\nhw9fQScfAAAAAAAAAAAAAAAAAJIo8gEAAAAAAAAAAAAAAAB6PYp8AAAAAAAAAAAAAAAA0C4FBQUy\nmUyKjo72dhSfQ5EPAAAAAAAAAAAAAADwmuTkZBmGcUU/kpOTu/1zyczMVFpamvbv39/ta3cHwzC8\n+v6NjY3KyMjQ2LFj1b9/f4WGhio+Pl6rVq1SXV2dx+N27typZ599VmPHjtWAAQPUt29fRUZGatKk\nSfrLX/4ih8NxGc+iYwxHb07XQc4v0FV0SgAAAACAHpacnKzs7Gxvx+g1pkyZoq1bt3o7BnoZq9Uq\nq9Xq7RgAAAAAgCtMe+/he7tYpLt0d61CYmKidu7cqczMTM2dO7db1+4Km82muXPn6rrrrlNubq5X\nMtTV1WnatGnKycmRJPn7+8tsNuv8+fOSpISEBOXl5Sk4OLjZcb/73e/0wgsvuP6/T58+CgkJ0dmz\nZ13/fuPGjdPf/vY3hYaGtjtPR+tVOlvfQicfAAAAAIBPo8CnOT4PuJOWlubtCAAAAAAAH+C4Qh++\nJiEhQQcPHvRagY8kPf/888rJyVFgYKD+8pe/6Pz586qqqtKWLVs0YMAA2Ww2LVy4sMVx9fX1Gjhw\noJ555hnt3r1bFy9eVHl5ucrKymSxWGQ2m7Vr1y7Nnz/fC2fVNop8AAAAAACQ5P1fB/WGB+CexWLx\ndgQAAAAAAHwWuxk1V1JSovT0dEnSSy+9pDlz5rg64yQnJ+vNN9+UJL399tv68ssvmx37X//1Xzp6\n9KhWrVqlUaNGyWS6VDYTHh4ui8Xi6vKzadMmHTt27HKdUrtR5AMAAAAAAIBWsVUXAAAAAACXT2Zm\npkwmk3bu3ClJmjdvnkwmk+sRHR3dbH5paamWLl2qYcOGKSgoSGFhYRo9erRWr16t2tpat++Rmpoq\nk8mktLQ01dTUyGKxaNiwYQoMDFRkZKQeeeQRff31126PLSgocJujqeLiYi1dulQjRoxQaGioQkND\nFRsbq/nz56ugoKBzH8wPNm/erNraWvXv31+PP/54i/GpU6fqpptuksPh0IYNG5qNjRw5UiEhIR7X\nTk1NlXRpO629e/d2KWdP6OPtAAAAAAAAAAAAAAAAALgkKChIUVFRKi8vV11dncLCwhQYGOgaj4yM\ndD3fs2eP7rvvPtntdhmGodDQUNXV1clms8lms2ndunXavn27IiIi3L5XTU2NEhMTVVhYKH9/fwUE\nBOjMmTPKysrSBx98oJycHI0bN87tsc7uOT+1efNmzZkzRxcvXpQkBQYGKjAwUEeOHNGhQ4e0Y8cO\nHT16tLMfj/Lz8yVJd911l/z8/NzOmTRpko4cOaK8vLwOrT1gwABJl7onNTY2djpjT6GTDwAAAAAA\nAAAAAAAAQC8xffp0nTp1SmPHjpUkpaen6+TJk65HYWGhJMlut2vatGmy2+0aOXKk9uzZo4qKClVW\nVmrTpk0KDw/X/v37NWvWLI/v9dprr+nAgQNat26dqqqqZLfbtW/fPsXHx+v8+fOaPn26Kioq2p39\nk08+0cyZM3Xx4kUlJSXJZrOpurpaZWVlqqio0Pvvv6+JEyd26fMpKiqSJA0fPtzjnNjYWEnSoUOH\nOrT2Rx99JOlSAdOIESM6mbDnUOQDAAAAAAAAAAAAAABwhXnllVdUUlKi8PBwbd++XbfddpskyWQy\n6cEHH1RWVpYk6cMPP3R1v/mps2fPKiMjQ7NmzZLZbJYkxcXFadu2bRo4cKBKS0v16quvtjvTkiVL\n1MkEqM8AACAASURBVNDQoPHjx2vbtm2uTJIUEhKi+++/X2vWrOnsKUuSTp06JUkaMmSIxzmDBw+W\nJFVVVam6urpd6zY2NspisUiSxowZo5iYmC7l7AkU+QAAAAAAAAAAAAAAAFxh3n33XUnS/Pnzm23h\n5XTPPfe4ugG98847btcYOnSoUlJSWrw+cOBALVy4sNn7tOXQoUOy2WwyDEMrV650FQ11N2fRTtMt\nzH4qKCjI9byqqqpd677wwgvat2+f+vbtq/T09K6F7CEU+QAAAAAAAKBVVqvV2xEAAAAAAEATtbW1\nOnDggAzD0IQJEzzOS0pKkiR99tlnbsfHjx/v8Vjn2FdffaX6+vo2M+3evVuSNGDAACUkJLQ5vzd5\n++23tWLFChmGoRUrVuiXv/yltyO5RZEPAAAAAAAAWpWWlubtCAAAAAAAoIny8nI5HA5J0rXXXutx\nnnPs9OnTrY6749wOq6GhQXa7vc1MpaWlkqQbbrihzbldERwcLEm6cOGCxznnz593PQ8JCWl1va1b\nt+rRRx+VJD355JN65plnuiFlz6DIBwAAAAAAAK1y7kcPAAAAAAB6n4sXL3o7wmXlLD46efKkxznO\nsZCQEFdRkDs7duzQQw89pPr6ej322GP6/e9/371huxlFPgAAAAAAAGgV23UBAAAAANC7DBgwQIZh\nyOFw6LvvvvM47/jx45KkiIgIt+MnTpzweKyzUMZsNis8PLzNTIMGDZIkHTt2rM25XTF8+HBJ0oED\nBzzOKSoqkiTdfPPNHud8/PHHmjp1qmpqajRjxgy98cYb3Ru0B1DkAwAAAAAAAAAAAAAA0MuYTJdK\nOpzbcjXl5+enW265RZKUn5/vcY28vDxJUnx8vNvxjz76yOOxzrERI0aoT58+beYdM2aMpEtbiRUW\nFrY5v7MmTJgg6VKRTk1Njds5ubm5kqSJEye6Hd+zZ4+Sk5N14cIFTZ06VevXr5dhGD0TuBtR5AMA\nAAAAAAAAAAAAANDL9OvXT5Jkt9vdjj/00EOSpMzMTJWUlLQY3759u3bv3i3DMDR9+nS3a3z77bfK\nyspq8Xp5ebkyMjIkSQ8//HC78sbExGjUqFFyOBxatmyZ6uvr23VcRz3wwAPy9/eX3W7XmjVrWoxv\n2bJFR44ckclkUkpKSovx/fv3a/LkyaqsrNSkSZO0adMmmc3mHsna3SjyAQAAAAAAAAAAAAAA6GVG\njBghSXrvvfd07ty5FuOLFy/W4MGDdeHCBU2ePFl79+6VJDU0NGjz5s2aOXOmJOnuu+9WYmKi2/cI\nCwvTggULtGHDBjU0NEiSvvjiC917770qKytTVFSUFi1a1O7Mq1evltls1q5du5plkqTKykplZWVp\n9uzZ7V7PnaioKD311FOSpGXLlmn9+vVqbGyUJGVnZ2vevHmSpJSUFNdn6HT48GFNmjRJFRUVSkxM\n1F//+lf17du3S3kuJ8Phrq/TFcrZOukqOiUAAAAAQA/7sQ0v15IS19UAAAAAAKD7tPcevmtejyfq\nGa7fLnXz71QOHz6suLg41dbWymw2KzIyUn379tX111+vXbt2SZJsNpsmT57s6vYTEhKiuro61zZW\ncXFxys3N1TXXXNNs7dTUVL311lt67rnnlJ+fr8LCQvn5+cnf31+VlZWSpODgYOXk5OjOO+9sdmxB\nQYGSkpI0dOhQffPNNy1yb9y4Uampqa4MAQEBCgwMdGX0dFxH1NfXa9q0acrOzpZ0afsys9msCxcu\nSJJGjRqlHTt2KDg4uNlxjz32mDIzMyVJ4eHhrRb4PPvss1q6dGm78nS0XqWz9S108gEAAAAAAECr\nrFartyMAAAAAAHyAcYU+ekpMTIxyc3M1efJkhYeH6/vvv1dxcbFOnDjhmpOQkKCioiItWbJEMTEx\namhokJ+fnxISErRq1SoVFha2KPBpKiAgQAUFBVq+fLmio6NVX1+vyMhIpaSkaN++fS0KfKSmfzTn\n3owZM3Tw4EEtXrxYMTExMplMamxsVGxsrBYsWKC33nqr8x/KD/r06aMtW7bo9ddf15gxYxQYGCiz\n2axbb71VK1eu1Mcff9yiwEe6VFRjGIYMw1BFRYVOnz7t8VFdXd3lnN2NTj4AAAAAAJ9GJ5+muK6G\ne4Zh8L0AAAAAAHRYe+/hJycnuzqyXKmmTJmirVu3ejtGuzk7+VitVi1fvtzbca54l6uTT5+OxQIA\nAAAAAICvsVgs3o4AAAAAALiKXUnFMYA3sV0XAAAAAAAAWsV2XQAAAAAAAN5HkQ8AAAAAAAAAAAAA\nAADQy7FdFwAAAAAAAAAAAAAAgA8xDEOGYXg1Q0JCgoqLi9s9f+bMmXr55Zd7MFHvR5EPAAAAAAAA\nAAAAAACAD1m7dq3Wrl3r1QxlZWU6ffp0u+efO3euB9NcGQyHw+Hwdoju4qwyu4pOCQAAAADQw378\niyWuJSWuqwEAAAAAQPfhHj58RUe/65392TB1LBYAAAAAAAB8jdVq9XYEAAAAAAAAn0cnHwAAAACA\nT6OTT1NcV8M9wzD4XgAAAAAAOox7+PAVdPIBAAAAAABAr2CxWLwdAQAAAAAAwOfRyQcAAAAA4NPo\n5NMU19UAAAAAAKD7cA8fvoJOPgAAAAAAAAAAAAAAAAAkUeQDAAAAAAAAAAAAAAAA9HoU+QAAAAAA\nAAAAAAAAAAC9HEU+AAAAAAAAAAAAAAAAQC9HkQ8AAAAAAABaZbVavR0BAAAAAADA5xkOh8Ph7RDd\nxTAMSdJVdEoAAAAAgB7mvJaUuJaUuK6Ge4Zh8L0AAAAAAHQY9/DhKzr6Xe/szwadfAAAAAAAANAq\ni8Xi7QgAAAAAAAA+j04+AAAAAACfRiefpriuBgAAAAAA3Yd7+FengoICJSUl6Wc/+5mOHj3q7Ti9\nAp18AAAAAAAAAAAAAADAVS85OVmGYVzRj+Tk5G7/XDIzM5WWlqb9+/d3+9rd4cc/nvOOxsZGZWRk\naOzYserfv79CQ0MVHx+vVatWqa6uzuNxb731lp544gmNHj1a1113nQICAhQSEqKbb75ZTzzxhL76\n6qvLeBYdQycfAAAAAIBPo5NPU1xXAwAAAACA7tPee/jeLhbpLt39O5XExETt3LlTmZmZmjt3breu\n3RU2m01z587Vddddp9zcXK9kqKur07Rp05STkyNJ8vf3l9ls1vnz5yVJCQkJysvLU3BwcItjAwIC\nVFtbK8MwZDKZFBYWprNnz6qhoUGSZDablZ6erkWLFrU7z+Xq5NOnQ7MBAAAAAAAAAAAAAAB6Qn6+\ntxN0zoQJ3k5wWSUkJOjgwYNezfD8888rJydHgYGBev311zV79mwZhqGtW7fq0Ucflc1m08KFC7V+\n/foWx/7617/W2LFjdfvtt+vaa6+VyWRSY2Oj/vnPf+rZZ5/V7t279eSTT+r222/XL37xCy+cnWds\n1wUAAAAAAAAAAAAAANBL0XW5uZKSEqWnp0uSXnrpJc2ZM8fVGSc5OVlvvvmmJOntt9/Wl19+2eL4\nl19+WTNmzND1118vk+lS2YzJZNIdd9yhv//97woJCVFjY6M2bdp0mc6o/SjyAQAAAAAAQKusVqu3\nIwAAAAAA4DMyMzNlMpm0c+dOSdK8efNkMplcj+jo6GbzS0tLtXTpUg0bNkxBQUEKCwvT6NGjtXr1\natXW1rp9j9TUVJlMJqWlpammpkYWi0XDhg1TYGCgIiMj9cgjj+jrr792e2xBQYHbHE0VFxdr6dKl\nGjFihEJDQxUaGqrY2FjNnz9fBQUFnftgfrB582bV1taqf//+evzxx1uMT506VTfddJMcDoc2bNjQ\nobX79eun//iP/5AkVVVVdSlnT2C7LgAAAAAAALQqLS2NQh8AAAAAAC6ToKAgRUVFqby8XHV1dQoL\nC1NgYKBrPDIy0vV8z549uu+++2S322UYhkJDQ1VXVyebzSabzaZ169Zp+/btioiIcPteNTU1SkxM\nVGFhofz9/RUQEKAzZ84oKytLH3zwgXJycjRu3Di3xzq75/zU5s2bNWfOHF28eFGSFBgYqMDAQB05\nckSHDh3Sjh07dPTo0c5+PMr/YVu3u+66S35+fm7nTJo0SUeOHFFeXl6H1j5z5oyOHDki6dK2ZL0N\nnXwAAAAAAADQKovF4u0IAAAAAAD4jOnTp+vUqVMaO3asJCk9PV0nT550PQoLCyVJdrtd06ZNk91u\n18iRI7Vnzx5VVFSosrJSmzZtUnh4uPbv369Zs2Z5fK/XXntNBw4c0Lp161RVVSW73a59+/YpPj5e\n58+f1/Tp01VRUdHu7J988olmzpypixcvKikpSTabTdXV1SorK1NFRYXef/99TZw4sUufT1FRkSRp\n+PDhHufExsZKkg4dOtTmeg6HQ99//722bt2qSZMm6fz58xo/fnyrn5u3UOQDAAAAAACAVtHFBwAA\nAACA3ueVV15RSUmJwsPDtX37dt12222SJJPJpAcffFBZWVmSpA8//NDV/eanzp49q4yMDM2aNUtm\ns1mSFBcXp23btmngwIEqLS3Vq6++2u5MS5YsUUNDg8aPH69t27a5MklSSEiI7r//fq1Zs6azpyxJ\nOnXqlCRpyJAhHucMHjxY0qUtt6qrq93O+X//7//JZDLJbDZr0KBB+s///E+dOXNGK1euVG5ursdO\nRd5EkQ8AAAAAAAAAAAAAAMAV5t1335UkzZ8/v9kWXk733HOPqxvQO++843aNoUOHKiUlpcXrAwcO\n1MKFC5u9T1sOHTokm80mwzC0cuVKV9FQd3MW7TTdwuyngoKCXM+rqqrczgkNDdWgQYMUERHhKug5\nceKEdu7cqRMnTnRj4u5DkQ8AAAAAAAAAAAAAAMAVpLa2VgcOHJBhGJowYYLHeUlJSZKkzz77zO34\n+PHjPR7rHPvqq69UX1/fZqbdu3dLkgYMGKCEhIQ253vbU089pZMnT6q0tFTV1dXKzs5WbGys/va3\nv2nMmDG9stCHIh8AAAAAAAAAAAAAAIArSHl5uRwOhyTp2muv9TjPOXb69OlWx91xbofV0NAgu93e\nZqbS0lJJ0g033NDm3K4IDg6WJF24cMHjnPPnz7ueh4SEtLlmQECAJk+erH/84x8aOnSoSktLlZaW\n1vWw3YwiHwAAAAAAAAAAAAAAgCvUxYsXvR3hsnIWH508edLjHOdYSEiIqyioPUJCQvToo49KkvLy\n8rqQsmdQ5AMAAAAAAIBWWa1Wb0cAAAAAAABNDBgwQIZhyOFw6LvvvvM47/jx45KkiIgIt+OtbUnl\nLJQxm80KDw9vM9OgQYMkSceOHWtzblcMHz5cknTgwAGPc4qKiiRJN998c4fXb08RkbdQ5AMAAAAA\nAIBW9cb21AAAAAAAXO1MpkslHc5tuZry8/PTLbfcIknKz8/3uIazG018fLzb8Y8++sjjsc6xESNG\nqE+fPm3mHTNmjKRLW4kVFha2Ob+zJkyYIEn6+OOPVVNT43ZObm6uJGnixIkdXv/o0aOSpMjIyE4m\n7DkU+QAAAAAAAKBVFovF2xEAAAAAAPA5/fr1kyTZ7Xa34w899JAkKTMzUyUlJS3Gt2/frt27d8sw\nDE2fPt3tGt9++62ysrJavF5eXq6MjAxJ0sMPP9yuvDExMRo1apQcDoeWLVum+vr6dh3XUQ888ID8\n/f1lt9u1Zs2aFuNbtmzRkSNHZDKZlJKS0mysoaGh1bXLysq0du1aSZ0rEOppFPkAAAAAAACgVWzX\nBQAAAADA5TdixAhJ0nvvvadz5861GF+8eLEGDx6sCxcuaPLkydq7d6+kS4Usmzdv1syZMyVJd999\ntxITE92+R1hYmBYsWKANGza4CmC++OIL3XvvvSorK1NUVJQWLVrU7syrV6+W2WzWrl27mmWSpMrK\nSmVlZWn27NntXs+dqKgoPfXUU5KkZcuWaf369WpsbJQkZWdna968eZKklJQU12fotGLFCqWmpiov\nL09VVVWu16urq/Xee+/p9ttvV2lpqYKCgvQ///M/XcrZEwyHu75OVyjDMCS5b1UFAAAAAIA7zmtJ\niWtJietqAAAAAADQfdp7D9/1+5lWtp3q1X7YPqq7f6dy+PBhxcXFqba2VmazWZGRkerbt6+uv/56\n7dq1S5Jks9k0efJkV7efkJAQ1dXVubaxiouLU25urq655ppma6empuqtt97Sc889p/z8fBUWFsrP\nz0/+/v6qrKyUJAUHBysnJ0d33nlns2MLCgqUlJSkoUOH6ptvvmmRe+PGjUpNTXVlCAgIUGBgoCuj\np+M6or6+XtOmTVN2drakS9uXmc1mXbhwQZI0atQo7dixQ8HBwc2OS0tLa7Yteb9+/WQ2m1VRUeH6\n94uIiNDbb7+tpKSkdufpaL1KZ+tb2t40DQAAAAAAAAAAAAAAoKf9UCyDS2JiYpSbm6sVK1bo008/\n1ffff6/GxkaZTD9u2pSQkKCioiKtXLlS2dnZOnbsmPz8/DRy5EjNmDFDixcvlp+fn8f3CAgIUEFB\ngVasWKGNGzfq2LFjioyM1MSJE2W1WnXjjTe2OObHP5pzb8aMGRo9erRWr16t3NxcFRcXq7GxUbGx\nsbrjjjs0Z86czn8oP+jTp4+2bNmiN954Q5mZmTp48KAaGhp06623KiUlRU8//bT69GlZEvPYY48p\nPDxc+fn5OnjwoEpLS1VdXa2IiAjFxsZqypQp+tWvfqXw8PAuZ+wJdPIBAAAAAPg0Ovk0xXU1AAAA\nAADoPu29h5+cnOzqyHKlmjJlirZu3ertGO3m7ORjtVq1fPlyb8e54tHJBwAAAAAAAAAAAAAAXPWu\npOIYwJtMbU8BAAAAAACAL7Nard6OAAAAAAAA4PMo8gEAAAAAAECr0tLSvB0BAAAAAADA57FdFwAA\nAAAAAFplsVi8HQEAAAAAAHQjwzBkGIZXMyQkJKi4uLjd82fOnKmXX365BxP1fobD4XB4O0R3cX4B\nr6JTAgAAAAD0sB9/mcG1pMR1NQAAAAAA6D7cw0droqOjdezYsXbPf/TRR/Xmm2/2YKLO6+h3vbM/\nGxT5AAAAAAB8GkU+TXFdDQAAAAAAug/38OErLleRj6ljsQAAAAAAAAAAAAAAAABcbhT5AAAAAAAA\nAAAAAAAAAL0cRT4AAAAAAAAAAAAAAABAL0eRDwAAAAAAAFpltVq9HQEAAAAAAMDnGQ6Hw+HtEN3F\nMAxJ0lV0SgAAAACAHua8lpS4lpS4roZ7hmHwvQAAAAAAdBj38OErOvpd7+zPBp18AAAAAAAA0CqL\nxeLtCAAAAAAAAD6PTj4AAAAAAJ9GJ5+muK4GAAAAAADdh3v48BV08gEAAAAAAAAAAAAAAAAgiSIf\nAAAAAAAAAAAAAAAAoNejyAcAAAAAAAAAAAAAAADo5SjyAQAAAAAAAAAAAAAAAHo5inwAAAAAAADQ\nKqvV6u0IAAAAAACglygoKJDJZFJ0dLS3o/gcinwAAAAAAADQqrS0NG9HAAAAAABcxZKTk2UYxhX9\nSE5O7vbPJTMzU2lpadq/f3+3r90dDMPw6vs3NjYqIyNDY8eOVf/+/RUaGqr4+HitWrVKdXV1HVrr\nr3/9q0wmk+vRW/XxdgAAAAAAAAD0bhaLxdsRAAAAAABXsezsbG9H6LKeOIfMzEzt3LlT0dHRiouL\n6/b1Oys4OFgxMTG67rrrvJahrq5O06ZNU05OjiTJ399fZrNZn3/+uT7//HNt2rRJeXl5Cg4ObnOt\nqqoq/eY3v3H9v7eLl1pDkQ8AAAAAAABaxXZdAAAAAIDLIV/53o7QKRM0wdsRLquEhAQdPHjQqxme\nf/555eTkKDAwUK+//rpmz54twzC0detWPfroo7LZbFq4cKHWr1/f5lovvPCCTpw4odGjR6uwsPAy\npO+83ttjCAAAAAAAAAAAAAAAwMc5HA5vR+hVSkpKlJ6eLkl66aWXNGfOHFf3neTkZL355puSpLff\nfltffvllq2vt27dPf/zjH/XLX/5Sjz/+eM8G7wYU+QAAAAAAAAAAAAAAAPQSmZmZMplM2rlzpyRp\n3rx5MplMrkd0dHSz+aWlpVq6dKmGDRumoKAghYWFafTo0Vq9erVqa2vdvkdqaqpMJpPS0tJUU1Mj\ni8WiYcOGKTAwUJGRkXrkkUf09ddfuz22oKDAbY6miouLtXTpUo0YMUKhoaEKDQ1VbGys5s+fr4KC\ngs59MD/YvHmzamtr1b9/f7eFOVOnTtVNN90kh8OhDRs2eFynsbFRCxculGEYeu2113r1Nl1ObNcF\nAAAAAAAAAAAAAADQSwQFBSkqKkrl5eWqq6tTWFiYAgMDXeORkZGu53v27NF9990nu90uwzAUGhqq\nuro62Ww22Ww2rVu3Ttu3b1dERITb96qpqVFiYqIKCwvl7++vgIAAnTlzRllZWfrggw+Uk5OjcePG\nuT3WU1HM5s2bNWfOHF28eFGSFBgYqMDAQB05ckSHDh3Sjh07dPTo0c5+PMrPv7St21133SU/Pz+3\ncyZNmqQjR44oLy/P4zqvvPKK9u7dqyeeeEK33XZbm11/egM6+QAAAAAAAAAAAAAAAPQS06dP16lT\npzR27FhJUnp6uk6ePOl6FBYWSpLsdrumTZsmu92ukSNHas+ePaqoqFBlZaU2bdqk8PBw7d+/X7Nm\nzfL4Xq+99poOHDigdevWqaqqSna7Xfv27VN8fLzOnz+v6dOnq6Kiot3ZP/nkE82cOVMXL15UUlKS\nbDabqqurVVZWpoqKCr3//vuaOHFilz6foqIiSdLw4cM9zomNjZUkHTp0yO34iRMn9PzzzysyMlIv\nvvhil/JcThT5AAAAAAAAoFVWq9XbEQAAAAAAwE+88sorKikpUXh4uLZv367bbrtNkmQymfTggw8q\nKytLkvThhx+6ut/81NmzZ5WRkaFZs2bJbDZLkuLi4rRt2zYNHDhQpaWlevXVV9udacmSJWpoaND4\n8eO1bds2VyZJCgkJ0f333681a9Z09pQlSadOnZIkDRkyxOOcwYMHS5KqqqpUXV3dYvw3v/mNqqqq\ntHLlSoWFhXUpz+VEkQ8AAAAAAABalZaW5u0IAAAAAADgJ959911J0vz585tt4eV0zz33uLoBvfPO\nO27XGDp0qFJSUlq8PnDgQC1cuLDZ+7Tl0KFDstlsMgxDK1eudBUNdTdn0U7TLcx+KigoyPW8qqqq\n2diWLVv017/+VePGjdPcuXN7JGNPocgHAAAAAAAArbJYLN6OAAAAAAAAmqitrdWBAwdkGIYmTJjg\ncV5SUpIk6bPPPnM7Pn78eI/HOse++uor1dfXt5lp9+7dkqQBAwYoISGhzfneUF1drcWLF6tv3776\n05/+5O04HUaRDwAAAAAAAFrFdl0AAAAAAPQu5eXlcjgckqRrr73W4zzn2OnTp1sdd8e5HVZDQ4Ps\ndnubmUpLSyVJN9xwQ5tzuyI4OFiSdOHCBY9zzp8/73oeEhLier58+XIVFxfrySef1PDhw3suZA/p\n4+0AAAAAAAAAAAAAAAAA6JyLFy96O8JlNWTIEJ09e1YnT570OMc5FhIS4ioK+te//qX09HRFRUVp\n6dKlLbbxqqmpcT2vrq6Ww+GQv7+/+vbt2wNn0Tl08gEAAAAAAAAAAAAAALiCDBgwQIZhyOFw6Lvv\nvvM47/jx45KkiIgIt+MnTpzweKyzUMZsNis8PLzNTIMGDZIkHTt2rM25XeHswHPgwAGPc4qKiiRJ\nN998s+u148ePq7GxUaWlpRoyZIj69evX7PHEE09IkhwOh0JDQ9WvXz+9+OKLPXgmHUeRDwAAAAAA\nAAAAAAAAQC9jMl0q6XBuy9WUn5+fbrnlFklSfn6+xzXy8vIkSfHx8W7HP/roI4/HOsdGjBihPn3a\n3ihqzJgxki5tJVZYWNjm/M6aMGGCJOnjjz9u1n2nqdzcXEnSxIkTXa8ZhuH6r7tHU55e9zaKfAAA\nAAAAAAAAAAAAAHqZfv36SZLsdrvb8YceekiSlJmZqZKSkhbj27dv1+7du2UYhqZPn+52jW+//VZZ\nWVktXi8vL1dGRoYk6eGHH25X3piYGI0aNUoOh0PLli1TfX19u47rqAceeED+/v6y2+1as2ZNi/Et\nW7boyJEjMplMSklJcb0+fvx4NTY2qqGhwe1j7dq1ki4V+DhfW758eY+cQ2dR5AMAAAAAAIBWWa1W\nb0cAAAAAAMDnjBgxQpL03nvv6dy5cy3GFy9erMGDB+vChQuaPHmy9u7dK0lqaGjQ5s2bNXPmTEnS\n3XffrcTERLfvERYWpgULFmjDhg1qaGiQJH3xxRe69957VVZWpqioKC1atKjdmVevXi2z2axdu3Y1\nyyRJlZWVysrK0uzZs9u9njtRUVF66qmnJEnLli3T+vXr1djYKEnKzs7WvHnzJEkpKSmuz7A93HVM\n6m0Mx5WQsp2cbZKuolMCAAAAAPSwH1vuci0pcV0N9wzD4HsBAAAAAOiw9t7Dd87Ll+dtp3qzCbq0\nfVR3XzsfPnxYcXFxqq2tldlsVmRkpPr27avrr79eu3btkiTZbDZNnjzZ1e0nJCREdXV1rm2s4uLi\nlJubq2uuuabZ2qmpqXrrrbf03HPPKT8/X4WFhfLz85O/v78qKyslScHBwcrJydGdd97Z7NiCggIl\nJSVp6NCh+uabb1rk3rhxo1JTU10ZAgICFBgY6Mro6biOqK+v17Rp05SdnS3p0vZlZrNZFy5ckCSN\nGjVKO3bsUHBwcLvXzMzM1GOPPebq5NMRHa1X6Wx9S9ubpgEAAAAAAMCnWSwWb0cAAAAAAPgAZ7EM\nLomJiVFubq5WrFihTz/9VN9//70aGxtlMv24aVNCQoKKioq0cuVKZWdn69ixY/Lz89PIkSM1Y8YM\nLV68WH5+fh7fIyAgQAUFBVqxYoU2btyoY8eOKTIyUhMnTpTVatWNN97Y4pgf/2jOvRkzZmj06NFa\nvXq1cnNzVVxcrMbGRsXGxuqOO+7QnDlzOv+h/KBPnz7asmWL3njjDWVmZurgwYNqaGjQrbfei057\ntAAAIABJREFUqpSUFD399NPq06djJTFtnVdvQCcfAAAAAIBPo5NPU1xXAwAAAACA7tPee/jJycmu\njixXqilTpmjr1q3ejtFuzk4+VqtVy5cv93acKx6dfAAAAAAAAAAAAAAAwFXvSiqOAbzJ1PYUAAAA\nAAAAAAAAAAAAAN5EkQ8AAAAAAAAAAAAAAADQy7FdFwAAAAAAAAAAAAAAgA8xDEOGYXg1Q0JCgoqL\ni9s9f+bMmXr55Zd7MFHvR5EPAAAAAAAAWmW1WmW1Wr0dAwAAAAAAdJO1a9dq7dq1Xs1QVlam06dP\nt3v+uXPnejDNlcFwOBwOb4foLs4qs6volAAAAAAAPezHv1jiWlLiuhruGYbB9wIAAAAA0GHcw4ev\n6Oh3vbM/G6aOxQIAAAAAAICvsVgs3o4AAAAAAADg8+jkAwAAAADwaXTyaYrragAAAAAA0H24hw9f\nQScfAAAAAAAAAAAAAAAAAJIo8gEAAAAAAAAAAAAAAAB6PYp8AAAAAAAAAAAAAAAAgF6OIh8AAAAA\nAAAAAAAAAACgl6PIBwAAAAAAAK2yWq3ejgAAAAAAAODzDIfD4fB2iO5iGIYk6So6JQAAAABAD3Ne\nS0pcS0pcV8M9wzD4XgAAAAAAOox7+PAVHf2ud/Zng04+AAAAAAAAaJXFYvF2BAAAAAAAAJ9HJx8A\nAAAAgE+jk09TXFcDAAAAAIDuwz18+Ao6+QAAAAAAAAAAAAAAAACQRJEPAAAAAAAAAAAAAAAA2qmg\noEAmk0nR0dHejuJzKPIBAAAAAAAAAAAAAABek5ycLMMwruhHcnJyt38umZmZSktL0/79+7t97e7g\n3HLKWxobG5WRkaGxY8eqf//+Cg0NVXx8vFatWqW6ujqPxyUmJspkMrX6+M1vfnMZz6T9+ng7AAAA\nAAAAAAAAAAAA8F3Z2dnejtBlPXEOmZmZ2rlzp6KjoxUXF9ft63dWcHCwYmJidN1113ktQ11dnaZN\nm6acnBxJkr+/v8xmsz7//HN9/vnn2rRpk/Ly8hQcHOxxjbCwMAUGBnoc640o8gEAAAAAAECrrFar\nrFart2MAAAAAAK5y+fneTtA5EyZ4O8HllZCQoIMHD3o1w/PPP6+cnBwFBgbq9ddf1+zZs2UYhrZu\n3apHH31UNptNCxcu1Pr16z2ukZ6errlz517G1F3Hdl0AAAAAAABoVVpamrcjAAAAAADgsxwOh7cj\n9ColJSVKT0+XJL300kuaM2eOa+uw5ORkvfnmm5Kkt99+W19++aXXcvYEinwAAAAAAADQKovF4u0I\nAAAAAAD4jMzMTJlMJu3cuVOSNG/ePJlMJtcjOjq62fzS0lItXbpUw4YNU1BQkMLCwjR69GitXr1a\ntbW1bt8jNTVVJpNJaWlpqqmpkcVi0bBhwxQYGKjIyEg98sgj+vrrr90eW1BQ4DZHU8XFxVq6dKlG\njBih0NBQhYaGKjY2VvPnz1dBQUHnPpgfbN68WbW1terfv78ef/zxFuNTp07VTTfdJIfDoQ0bNnTp\nvXobtusCAAAAAABAq9iqCwAAAACAyycoKEhRUVEqLy9XXV2dwsLCFBgY6BqPjIx0Pd+zZ4/uu+8+\n2e12GYah0NBQ1dXVyWazyWazad26ddq+fbsiIiLcvldNTY0SExNVWFgof39/BQQE6MyZM8rKytIH\nH3ygnJwcjRs3zu2xzu45P7V582bNmTNHFy9elCQFBgYqMDBQR44c0aFDh7Rjxw4dPXq0sx+P8n/Y\n1+2uu+6Sn5+f2zmTJk3SkSNHlJeX53GdK7FDEp18AAAAAAAAAAAAAAAAeonp06fr1KlTGjt2rCQp\nPT1dJ0+edD0KCwslSXa7XdOmTZPdbtfIkSO1Z88eVVRUqLKyUps2bVJ4eLj279+vWbNmeXyv1157\nTQcOHNC6detUVVUlu92uffv2KT4+XufPn9f06dNVUVHR7uyffPKJZs6cqYsXLyopKUk2m03V1dUq\nKytTRUWF3n//fU2cOLFLn09RUZEkafjw4R7nxMbGSpIOHTrkcc6qVas0ZMgQ+fn5KSIiQnfffbde\nf/111dTUdClfT+pykc/x48f12GOPaciQIQoICFB0dLSWLFnSoX/kn1q/fr2rzdSf//znrkYEAAAA\nAAAAAAAAAAC4qrzyyisqKSlReHi4tm/frttuu02SZDKZ9OCDDyorK0uS9OGHH7q63/zU2bNnlZGR\noVmzZslsNkuS4uLitG3bNg0cOFClpaV69dVX251pyZIlamho0Pjx47Vt2zZXJkkKCQnR/fffrzVr\n1nT2lCVJp06dkiQNGTLE45zBgwdLkqqqqlRdXe12TlFRkSoqKhQaGqry8nLl5eVp0aJFGjVqlIqL\ni7uUsad0qcjn3//+t2677TZlZmZqzJgxeuaZZ/Tzn/9c6enpGjt2rMrLyzu8ZnFxsRYvXqyQkBBJ\nnts7AQAAAAAAAAAAAAAA+Kp3331XkjR//vxmW3g53XPPPa5uQO+8847bNYYOHaqUlJQWrw8cOFAL\nFy5s9j5tOXTokGw2mwzD0MqVK11FQ93NWbTTdAuznwoKCnI9r6qqajY2YcIErVu3TqdOndL58+d1\n5swZlZSU6MUXX5S/v7++/PJLTZkyRXV1dT2Svyu6VOSzaNEinT59Wn/84x/13nvv6cUXX9SOHTu0\nZMkSHT58WP/7v//bofUcDofmzZuniIgI/frXv+5KNAAAAAAAAAAAAAAAgKtSbW2tDhw4IMMwNGHC\nBI/zkpKSJEmfffaZ2/Hx48d7PNY59tVXX6m+vr7NTLt375YkDRgwQAkJCW3O9xaLxaJZs2Y1K4yK\niIjQc889p82bN0u6dM6ZmZleSuhZp4t8/v3vfys3N1fR0dH67//+72ZjaWlpCgoK0vr163X+/Pl2\nr/mHP/xB+fn5Wrt2bbOqKgAAAAAAAHiP1Wr1dgQAAAAAANBEeXm5HA6HJOnaa6/1OM85dvr06VbH\n3XFuh9XQ0CC73d5mptLSUknSDTfc0ObcrggODpYkXbhwweOcprUqzp2k2mPKlCm66667JElbtmzp\nZMKe0+kiH+d+bZMmTWoxFhISojvuuEPV1dWuSq22HDx4UM8995yefvpp3XnnnZ2NBQAAAAAAgG6W\nlpbm7QgAAAAAAMCDixcvejvCZeUsPjp58qTHOc6xkJAQV1FQe40ePVqSdPTo0U4m7DmdLvI5fPiw\nJOmmm25yO37jjTdKkr7++us216qvr9ecOXM0dOhQvfjii52NBAAAAAAAgB5gsVi8HQEAAAAAADQx\nYMAAGYYhh8Oh7777zuO848ePS7q0HZU7J06c8Hiss1DGbDYrPDy8zUyDBg2SJB07dqzNuV0xfPhw\nSdKBAwc8zikqKpIk3XzzzR1e39khqTfqdJHP2bNnJUlhYWFux52vV1RUtLnWb3/7W33++efKzMyU\nv79/ZyMBAAAAAACgB7BdFwAAAAAAl5/JdKmkw13RiZ+fn2655RZJP+7E5E5eXp4kKT4+3u34Rx99\n5PFY59iIESPUp0+fNvOOGTNG0qWtxAoLC9uc31kTJkyQJH388ceqqalxOyc3N1eSNHHixA6v78we\nHR3dyYQ9p9NFPt2lsLBQK1as0LPPPutqeQQAAAAAAAAAAAAAAODL+vXrJ0my2+1uxx966CFJUmZm\npkpKSlqMb9++Xbt375ZhGJo+fbrbNb799ltlZWW1eL28vFwZGRmSpIcffrhdeWNiYjRq1Cg5HA4t\nW7ZM9fX17Tquox544AH5+/vLbrdrzZo1Lca3bNmiI0eOyGQyKSUlpUNr//3vf9euXbskScnJyd2S\ntzt1usjH2anH2dHnp5yv9+/f3+Ma9fX1mjt3rmJiYjzu7d6ZNkiGYXh8JCYmyjAMj3+BZrVaGWec\nccYZZ5xxxhlnnHHGGfehcc+skowf/ut7473l34dxxhlnnHHGGWecccYZZ5xxxhm/csfRNSNGjJAk\nvffeezp37lyL8cWLF2vw4MG6cOGCJk+erL1790qSGhoatHnzZs2cOVOSdPfddysxMdHte4SFhWnB\nggXasGGDGhoaJElffPGF7r33XpWVlSkqKkqLFi1qd+bVq1fLbDZr165dzTJJUmVlpbKysjR79ux2\nr+dOVFSUnnrqKUnSsmXLtH79ejU2NkqSsrOzNW/ePElSSkqK6zN0+r//+z8tWLBABQUFqq6udr1+\n+vRprVy5Ug888IAkadiwYXrssce6lNNZn+Lu0VmGo5Obif35z3/WggUL9Pjjj+v1119vMX7vvfcq\nNzdXO3bscLVK+qmKigoNGDCgXe/31FNP6fe//32rc5wfRG/eHw0AAAAA0Lv8eFHNtaTEdTUAAAAA\nAOg+7b2H75zXyq5TvZqzJKK7f6dy+PBhxcXFqba2VmazWZGRkerbt6+uv/56V7cZm82myZMnu7r9\nhISEqK6uzrWNVVxcnHJzc3XNNdc0Wzs1NVVvvfWWnnvuOeXn56uwsFB+fn7y9/dXZWWlJCk4OFg5\nOTm68847mx1bUFCgpKQkDR06VN98802L3Bs3blRqaqorQ0BAgAIDA10ZPR3XEfX19Zo2bZqys7Ml\nXdq+zGw268KFC5KkUaNGaceOHQoODm52XFpaWrMmNP369ZNhGM0a3IwcOVIffPCBbrjhhnbn6Wi9\nSmfrW/p0aHYTzsKd3NxcORyOZpVGlZWV+sc//qHg4GDXnmvuBAQE6Fe/+pXbKqW9e/fqs88+07hx\n4xQTE6Pbb7+9s1EBAAAAAAAAAAAAAEAv56F/iM+KiYlRbm6uVqxYoU8//VTff/+9GhsbZTL9uGlT\nQkKCioqKtHLlSmVnZ+vYsWPy8/PTyJEjNWPGDC1evFh+fn4e3yMgIEAFBQVasWKFNm7cqGPHjiky\nMlITJ06U1WrVjTfe2OKYtjrRzJgxQ6NHj9bq1auVm5ur4uJiNTY2KjY2VnfccYfmzJnT+Q/lB336\n9NGWLVv0xhtvKDMzUwcPHlRDQ4NuvfVWpaSk6Omnn1afPi1LYh5++GHV19frn//8p/7973/rzJkz\nqqur05AhQ/SLX/xCDz30kGbNmqW+fft2OWNP6HQnH0maPHmytm/frj/84Q9avHix6/VnnnlGL7/8\nsn7961/rT3/6k6RLVVT/+te/5Ofnp5///Odtrm21WvXb3/5Wa9asaXcLJDr5AAAAAAA6ik4+TXFd\nDfesViut1wEAAAAAHdbee/jJycmujixXqilTpmjr1q3ejtFuzk4+VqtVy5cv93acK16v7+QjSX/6\n0590++2368knn9SOHTs0bNgwFRYWqqCgQDExMfrd737nmnv8+HHFxsbqZz/7mY4ePdqVtwUAAAAA\nAMBllJaWRpEPAAAAAKDHXEnFMYA3mdqe4tnPf/5zffrpp0pNTVVhYaFWr16to0eP6umnn9bu3bsV\nHh7e4pi22jY1ndfeuQAAAAAAAOg5FovF2xEAAAAAAAB8Xpe26+pt2K4LAAAAANBRbNfVFNfVAAAA\nAACg+3APv/diu67udUVs1wUAAAAAAAAAAAAAAIArS2/YXSkhIUHFxcXtnj9z5ky9/PLLPZio96PI\nBwAAAAAAAAAAAAAAwIesXbtWa9eu9WqGsrIynT59ut3zz50714Nprgxs1wUAAAAA8Gls19UU19UA\nAAAAAKD7cA8fvuJybddl6lgsAAAAAAAAAAAAAAAAAJcbRT4AAAAAAABoldVq9XYEAAAAAAAAn8d2\nXQAAAAAAn8Z2XU1xXQ33DMPgewEAAAAA6DDu4cNXsF0XAAAAAAAAegWLxeLtCAAAAAAAAD6PTj4A\nAAAAAJ9GJ5+muK4GAAAAAADdh3v48BV08gEAAAAAAAAAAAAAAAAgiSIfAAAAAAAAAAAAAAAAoNej\nyAcAAAAAAAAAAAAAAADo5SjyAQAAAAAAAAAAAAAAAHo5inwAAAAAAADQKqvV6u0IAAAAAAAAPs9w\nOBwOb4foLoZhSJKuolMCAAAAAPQw57WkxLWkxHU13DMMg+8FAAAAAKDDuIcPX9HR73pnfzbo5AMA\nAAAAAIBWWSwWb0cAAAAAAAC9REFBgUwmk6Kjo70dxedQ5AMAAAAAAIBWsV0XAAAAAKAnJScnyzCM\nK/qRnJzc7Z9LZmam0tLStH///m5fuzv82CHbOxobG5WRkaGxY8eqf//+Cg0NVXx8vFatWqW6urp2\nrfHuu+9q6tSpuvbaa+Xv769Bgwbpjjvu0AsvvKCysrIePoOOY7suAAAAAIBPY7uupriuBgAAAAAA\n3ae99/C9XSzSXbr7dyqJiYnauXOnMjMzNXfu3G5duytsNpvmzp2r66677v+zd+9BUZ15/sc/pxuB\n5iKiEaK5ycxuIIiywcXoThIVc8GwieSG4CXBGo21KXeN646b+U1GmpqanY3junE22WSMG4lmDLkQ\nZ2QjKygStTJijyZmEImpiolEhYi0yk2u/fvD6Q6E5mpjg7xfVV2h+nmecz7npPnj0F+/jwoKCryS\nobm5WcnJycrLy5Mk+fn5yWw2q76+XpIUHx+vwsJCBQYGul1fU1Ojxx9/XLt375Ykmc1mhYSE6OLF\ni2ptbZUkHThwQH/3d3/Xqzxs1wUAAAAAAAAAAAAAAIBBJT4+XsePH/dagY8kvfDCC8rLy5PFYtGb\nb76p+vp61dbWKjc3V6NHj5bNZtOyZcvcrm1tbVVSUpJ2796t2267TdnZ2aqpqVFVVZUaGhpUUlKi\nX/ziFxozZsw1vqqe0ckHAAAAADCs0cmnPZ6rAQAAAACA59DJ5+o4O/ls3rxZTz/9tEePPZRVVFRo\nwoQJampq0m9+8xstX768w/iOHTuUnJwswzD06aefatKkSR3Gf/3rX+tf//VfFR4ersOHD2v8+PFX\nnYlOPgAAAAAAAAAAAAAAAMNMVlaWTCaT9u3bJ0lavHixTCaT6xUREdFhfmVlpVatWqWoqCgFBAQo\nJCREd911l9avX6+mpia350hPT5fJZFJmZqYaGxuVkZGhqKgoWSwWhYWFaf78+friiy/cri0qKnKb\no73y8nKtWrVKMTExCg4OVnBwsKKjo7VkyRIVFRX178b8RU5OjpqamjRq1Cg988wzncYfeeQR3X77\n7XI4HNq2bVuHsebmZq1bt06SZLVaPVLgcy35eDsAAAAAAAAABjer1Sqr1ertGAAAAAAADAsBAQEK\nDw9XdXW1mpubFRISIovF4hoPCwtz/Xzo0CHNmTNHdrtdhmEoODhYzc3Nstlsstls2rp1q/Lz8zV2\n7Fi352psbNTMmTNVXFwsPz8/+fv76/z588rOztaOHTuUl5ene+65x+3arjow5eTkaNGiRbp8+bIk\nyWKxyGKx6MSJEyorK9OePXt08uTJ/t4e7d27V5J07733ytfX1+2cBx54QCdOnFBhYWGH9wsKCnTu\n3DmZTCalpqb2O4O30MkHAAAAAAAA3crMzPR2BAAAAAAAho2UlBSdPXtW06dPlyRt2LBBZ86ccb2K\ni4slSXa7XcnJybLb7Zo8ebIOHTqkCxcuqKamRu+9955CQ0N19OhRLViwoMtzvfrqqyopKdHWrVtV\nW1sru92uI0eOKC4uTvX19UpJSdGFCxd6nf3jjz9WamqqLl++rISEBNlsNtXV1amqqkoXLlzQ9u3b\nNXv27Ku6P6WlpZKkiRMndjknOjpaklRWVtbh/T/+8Y+SpAkTJmjkyJH6r//6L8XGxspisSg0NFSz\nZs3Sli1bBu129hT5AAAAAAAAoFsZGRnejgAAAAAAAL7n5ZdfVkVFhUJDQ5Wfn68pU6ZIkkwmkx5/\n/HFlZ2dLknbv3u3qfvN9Fy9e1MaNG7VgwQKZzWZJUmxsrHbt2qUxY8aosrJSr7zySq8zrVy5Uq2t\nrZoxY4Z27drlyiRJQUFBmjt3rjZt2tTfS5YknT17VpK63Wpr3LhxkqTa2lrV1dW53nduQTZmzBg9\n+uijWrFihY4dO6bAwEDV1dXpo48+Unp6up544gm1tbVdVc6BQJEPAAAAAAAAusVWXQAAAAAADD7v\nv/++JGnJkiUdtvByuv/++13dgN599123x5gwYYLS0tI6vT9mzBgtW7asw3l6UlZWJpvNJsMwtHbt\nWlfRkKc5i3bab2H2fQEBAa6fa2trXT87uxIdPnxYO3bs0LJly/Ttt9+qqqpKVVVV+ulPfypJ2r59\nu/7t3/5tIOJfFYp8AAAAAAAAAAAAAAAAhpCmpiaVlJTIMAzNmjWry3kJCQmSpE8++cTt+IwZM7pc\n6xw7duyYWlpaesx08OBBSdLo0aMVHx/f43xvcHbnaWtr0z333KNXX31Vo0ePliSNHDlSv/zlL/XE\nE09IktavX6/m5mavZXWHIh8AAAAAAAAAAAAAAIAhpLq6Wg6HQ5J00003dTnPOXbu3Llux91xbofV\n2toqu93eY6bKykpJ0q233trj3KsRGBgoSWpoaOhyTn19vevnoKAgtz+vWLHC7dp//ud/lnRlK7PD\nhw9fVVZPo8gHAAAAAAAAAAAAAABgiLp8+bK3I1xTzuKjM2fOdDnHORYUFOQqCpK+K2oyDEORkZFu\n195+++2SJIfDoW+++cYjmT2FIh8AAAAAAAAAAAAAAIAhZPTo0TIMQw6HQ19//XWX85xFKmPHjnU7\nfvr06S7XOgtlzGazQkNDe8x04403SpJOnTrV49yrMXHiRElSSUlJl3NKS0slSXfccUeH92NiYvp0\nLsMw+phuYFHkAwAAAAAAgG5ZrVZvRwAAAAAAYNgxma6UdDi35WrP19dXkyZNkiTt3bu3y2MUFhZK\nkuLi4tyOf/TRR12udY7FxMTIx8enx7zTpk2TdGUrseLi4h7n99esWbMkSQcOHFBjY6PbOQUFBZKk\n2bNnd3j/vvvuk3TlnpaVlbld63zfMAxNmDDBE5E9hiIfAAAAAAAAdCszM9PbEQAAAAAAGHZGjhwp\nSbLb7W7Hn3jiCUlSVlaWKioqOo3n5+fr4MGDMgxDKSkpbo/x1VdfKTs7u9P71dXV2rhxoyTpySef\n7FXeyMhITZ06VQ6HQ6tXr1ZLS0uv1vXVY489Jj8/P9ntdm3atKnTeG5urk6cOCGTyaS0tLQOYz/8\n4Q81ffp0SdKGDRvcHv8///M/JV3pTNRVcZS3UOQDAAAAAACAbmVkZHg7AgAAAAAAw45za6kPPvhA\nly5d6jS+fPlyjRs3Tg0NDUpMTNThw4clSa2trcrJyVFqaqqkK91rZs6c6fYcISEhWrp0qbZt26bW\n1lZJ0meffaYHH3xQVVVVCg8P17PPPtvrzOvXr5fZbNb+/fs7ZJKkmpoaZWdna+HChb0+njvh4eFa\nsWKFJGn16tV666231NbWJknauXOnFi9eLElKS0tzuz3Xiy++KJPJpAMHDugf/uEfdP78eUnSpUuX\n9LOf/Uw5OTkyDEMZGRmDbrsuw+Gur9MQ5by519ElAQAAAAAG2HcP6jxLSjxXAwAAAAAAz+ntd/iD\nrZCivzz9N5XPP/9csbGxampqktlsVlhYmEaMGKFbbrlF+/fvlyTZbDYlJia6uv0EBQWpubnZtY1V\nbGysCgoKdMMNN3Q4dnp6urZs2aLnn39ee/fuVXFxsXx9feXn56eamhpJUmBgoPLy8nT33Xd3WFtU\nVKSEhARNmDBBX375Zafc77zzjtLT010Z/P39ZbFYXBm7WtcXLS0tSk5O1s6dOyVd2b7MbDaroaFB\nkjR16lTt2bNHgYGBbtf/9re/1fLly9Xa2irDMDRq1ChdvHhRbW1tMgxD//RP/+Tq6NMbfa1X6W99\nC518AAAAAAAAAAAAAAAABpnIyEgVFBQoMTFRoaGh+vbbb1VeXq7Tp0+75sTHx6u0tFQrV65UZGSk\nWltb5evrq/j4eK1bt07FxcWdCnza8/f3V1FRkdasWaOIiAi1tLQoLCxMaWlpOnLkSKcCH6nnoqx5\n8+bp+PHjWr58uSIjI2UymdTW1qbo6GgtXbpUW7Zs6f9N+QsfHx/l5ubqtdde07Rp02SxWGQ2m3Xn\nnXdq7dq1OnDgQJcFPpK0bNky/fGPf9S8efM0fvx41dXV6YYbbtDDDz+svLy8PhX4XEt08gEAAAAA\nDGt08mmP52oAAAAAAOA5vf0OPykpydWRZah66KGH9OGHH3o7Rq85O/lYrVatWbPG23GGvGvVycen\nb7EAAAAAAAAAAAAAAAA8ZygVxwDexHZdAAAAAAAAAAAAAAAAwCBHkQ8AAAAAAAC6ZbVavR0BAAAA\nAABg2GO7LgAAAAAAAHQrMzOTQh8AAAAAAK4jhmHIMAyvZoiPj1d5eXmv56empuqll14awESDH0U+\nAAAAAAAA6FZGRoa3IwAAAAAAAA/avHmzNm/e7NUMVVVVOnfuXK/nX7p0aQDTDA2Gw+FweDuEpzir\nzK6jSwIAAAAADLDv/sUSz5ISz9UAAAAAAMBz+A4fw0VfP+v9/d0w9S0WAAAAAAAAAAAAAAAAgGuN\nIh8AAAAAAAAAAAAAAABgkKPIBwAAAAAAAAAAAAAAABjkKPIBAAAAAAAAAAAAAAAABjmKfAAAAAAA\nANAtq9Xq7QgAAAAAAADDnuFwOBzeDuEphmFIkq6jSwIAAAAADDDns6TEs6TEczXcMwyDzwUAAAAA\noM/4Dh/DRV8/6/393aCTDwAAAAAAALqVkZHh7QgAAAAAAADDHp18AAAAAADDGp182uO5GgAAAAAA\neA7f4WO4oJMPAAAAAAAAAAAAAAAAAEkU+QAAAAAAAAAAAAAAAACDHkU+AAAAAAAAAAAAAAAAwCBH\nkQ8AAAAAAAAAAAAAAAB6paioSCaTSREREd6OMuxQ5AMAAAAAAIBuWa1Wb0cAAAAAAFzHkpKSZBjG\nkH4lJSV5/L5kZWUpMzNTR48e9fixPcEwDK+ev62tTRs3btT06dM1atQoBQcHKy4uTuvWrVNzc7Pb\nNVlZWTKZTL16/eAHP7jGV9QzH28HAAAAAAAAwOCWmZlJoQ8AAAAAYMDs3LnT2xGu2kAW/l/KAAAg\nAElEQVRcQ1ZWlvbt26eIiAjFxsZ6/Pj9FRgYqMjISN18881ey9Dc3Kzk5GTl5eVJkvz8/GQ2m/Xp\np5/q008/1XvvvafCwkIFBgZ2WBcQEKDw8PBuC5QqKiokSVOmTBm4C+gnOvkAAAAAAACgWxkZGd6O\nAAAAAAAYFhxD9DW8xMfH6/jx4yooKPBahhdeeEF5eXmyWCx68803VV9fr9raWuXm5mr06NGy2Wxa\ntmxZp3UpKSk6e/aszpw54/bVvlgrPT39Gl5R71DkAwAAAAAAgG7RxQcAAAAAAO9xOIZfIVF3Kioq\ntGHDBknSiy++qEWLFrk68yQlJemNN96QJL399tv685//3KdjZ2VlSZLCw8M1Z84cz4X2EIp8AAAA\nAAAAAAAAAAAABomsrCyZTCbt27dPkrR48WKZTCbXKyIiosP8yspKrVq1SlFRUQoICFBISIjuuusu\nrV+/Xk1NTW7PkZ6eLpPJpMzMTDU2NiojI0NRUVGyWCwKCwvT/Pnz9cUXX7hdW1RU5DZHe+Xl5Vq1\napViYmIUHBys4OBgRUdHa8mSJSoqKurfjfmLnJwcNTU1adSoUXrmmWc6jT/yyCO6/fbb5XA4tG3b\ntl4ft7m52TV/wYIFMpkGX0mNj7cDAAAAAAAAAAAAAAAA4IqAgACFh4erurpazc3NCgkJkcVicY2H\nhYW5fj506JDmzJkju90uwzAUHBys5uZm2Ww22Ww2bd26Vfn5+Ro7dqzbczU2NmrmzJkqLi6Wn5+f\n/P39df78eWVnZ2vHjh3Ky8vTPffc43ats3vO9+Xk5GjRokW6fPmyJMlischisejEiRMqKyvTnj17\ndPLkyf7eHu3du1eSdO+998rX19ftnAceeEAnTpxQYWFhr4+bl5enqqoqGYahp59+ut/5BtLgKzsC\nAAAAAAAAAAAAAAAYplJSUnT27FlNnz5dkrRhwwadOXPG9SouLpYk2e12JScny263a/LkyTp06JAu\nXLigmpoavffeewoNDdXRo0e1YMGCLs/16quvqqSkRFu3blVtba3sdruOHDmiuLg41dfXKyUlRRcu\nXOh19o8//lipqam6fPmyEhISZLPZVFdXp6qqKl24cEHbt2/X7Nmzr+r+lJaWSpImTpzY5Zzo6GhJ\nUllZWa+P++abb0qSYmNjNWnSpKtIOHAo8gEAAAAAAAAAAAAAABhiXn75ZVVUVCg0NFT5+fmaMmWK\nJMlkMunxxx9Xdna2JGn37t2u7jffd/HiRW3cuFELFiyQ2WyWdKXIZdeuXRozZowqKyv1yiuv9DrT\nypUr1draqhkzZmjXrl2uTJIUFBSkuXPnatOmTf29ZEnS2bNnJUnjx4/vcs64ceMkSbW1taqrq+vx\nmOfPn9f//u//SrqyldlgRZEPAAAAAAAAumW1Wr0dAQAAAAAAfM/7778vSVqyZEmHLbyc7r//flc3\noHfffdftMSZMmKC0tLRO748ZM0bLli3rcJ6elJWVyWazyTAMrV271lU05GnOop32W5h9X0BAgOvn\n2traHo/59ttvq7m5WSNGjND8+fOvPuQAocgHAAAAAAAA3crMzPR2BAAAAAAA0E5TU5NKSkpkGIZm\nzZrV5byEhARJ0ieffOJ2fMaMGV2udY4dO3ZMLS0tPWY6ePCgJGn06NGKj4/vcf5g4tyqa86cObrh\nhhu8nKZrFPkAAAAAAACgWxkZGd6OAAAAAAAA2qmurpbD4ZAk3XTTTV3Oc46dO3eu23F3nNthtba2\nym6395ipsrJSknTrrbf2OPdqBAYGSpIaGhq6nFNfX+/6OSgoqNvjlZaW6vDhw5IG91ZdEkU+AAAA\nAAAA6AHbdQEAAAAAMHhdvnzZ2xGuKWfx0ZkzZ7qc4xwLCgpyFQV1xdnFZ8yYMfr7v/97D6UcGBT5\nAAAAAAAAAAAAAAAADCGjR4+WYRhyOBz6+uuvu5z3zTffSJLGjh3rdvz06dNdrnUWypjNZoWGhvaY\n6cYbb5QknTp1qse5V2PixImSpJKSki7nlJaWSpLuuOOObo/V2tqqt956S5KUlpYmHx8fD6UcGBT5\nAAAAAAAAAAAAAAAADDIm05WSDue2XO35+vpq0qRJkqS9e/d2eYzCwkJJUlxcnNvxjz76qMu1zrGY\nmJheFb9MmzZN0pWtxIqLi3uc31+zZs2SJB04cECNjY1u5xQUFEiSZs+e3e2xCgoKdPbsWRmGMei3\n6pIo8gEAAAAAAAAAAAAAABh0Ro4cKUmy2+1ux5944glJUlZWlioqKjqN5+fn6+DBgzIMQykpKW6P\n8dVXXyk7O7vT+9XV1dq4caMk6cknn+xV3sjISE2dOlUOh0OrV69WS0tLr9b11WOPPSY/Pz/Z7XZt\n2rSp03hubq5OnDghk8mktLS0bo/l3KorOjq6y0KowYQiHwAAAAAAAAAAAAAAgEEmJiZGkvTBBx/o\n0qVLncaXL1+ucePGqaGhQYmJiTp8+LCkK1tQ5eTkKDU1VZJ03333aebMmW7PERISoqVLl2rbtm1q\nbW2VJH322Wd68MEHVVVVpfDwcD377LO9zrx+/XqZzWbt37+/QyZJqqmpUXZ2thYuXNjr47kTHh6u\nFStWSJJWr16tt956S21tbZKknTt3avHixZKubL/lvIfuXLx4Ub///e8lSU8//fRVZbpWDIe7vk5D\nlGEYkty3qgIAAAAAwB3ns6TEs6TEczXcs1qtslqt3o4BAAAAABhievsd/tD/+8zA/E3l888/V2xs\nrJqammQ2mxUWFqYRI0bolltu0f79+yVJNptNiYmJrm4/QUFBam5udm1jFRsbq4KCAt1www0djp2e\nnq4tW7bo+eef1969e1VcXCxfX1/5+fmppqZGkhQYGKi8vDzdfffdHdYWFRUpISFBEyZM0Jdfftkp\n9zvvvKP09HRXBn9/f1ksFlfGrtb1RUtLi5KTk7Vz505JV7YvM5vNamhokCRNnTpVe/bsUWBgYJfH\neP3117Vs2TL5+PiovLxc4eHh/c7T13qV/ta30MkHAAAAAAAA3crMzPR2BAAAAADAsGAM0dfAiIyM\nVEFBgRITExUaGqpvv/1W5eXlOn36tGtOfHy8SktLtXLlSkVGRqq1tVW+vr6Kj4/XunXrVFxc3KnA\npz1/f38VFRVpzZo1ioiIUEtLi8LCwpSWlqYjR450KvCR2hdluTdv3jwdP35cy5cvV2RkpEwmk9ra\n2hQdHa2lS5dqy5Yt/b8pf+Hj46Pc3Fy99tprmjZtmiwWi8xms+68806tXbtWBw4c6LbAR5K2bNki\nwzB0//33X1WBz7VEJx8AAAAAwLA29P+lmCfxXA336OQDAAAAAOiP3n6Hn5SU5OrIMlQ99NBD+vDD\nD70do9ecnXysVqvWrFnj7ThD3rXq5OPTt1gAAAAAAAAYbijwAQAAAAAMpKFUHAN4E9t1AQAAAAAA\nAAAAAAAAAIMcRT4AAAAAAAAAAAAAAADAIMd2XQAAAAAAAAAAAAAAAMOIYRgyDMOrGeLj41VeXt7r\n+ampqXrppZcGMNHgR5EPAAAAAAAAAAAAAADAMLJ582Zt3rzZqxmqqqp07ty5Xs+/dOnSAKYZGgyH\nw+HwdghPcVaZXUeXBAAAAAAYYN/9iyWeJSWeq+Ge1WqV1Wr1dgwAAAAAwBDDd/gYLvr6We/v7wZF\nPgAAAACAYY0in/Z4roZ7hmHwuQAAAAAA9Bnf4WO4uFZFPqa+xQIAAAAAAMBwk5GR4e0IAAAAAAAA\nwx6dfAAAAAAAwxqdfNrjuRoAAAAAAHgO3+FjuKCTDwAAAAAAAAAAAAAAAABJFPkAAAAAAAAAAAAA\nAAAAgx5FPgAAAAAAAAAAAAAAAMAgR5EPAAAAAAAAAAAAAAAAMMhR5AMAAAAAAIBuWa1Wb0cAAAAA\nAAAY9gyHw+HwdghPMQxDknQdXRIAAAAAYIA5nyUlniUlnqvhnmEYfC4AAAAAAH3Gd/gYLvr6We/v\n7wadfAAAAAAAANCtjIwMb0cAAAAAAAAY9ujkAwAAAAAY1ujk0x7P1QAAAAAAwHP4Dh/DBZ18AAAA\nAAAAAAAAAAAAMKgUFRXJZDIpIiLC21GGHYp8AAAAAAAAAAAAAACA1yQlJckwjCH9SkpK8vh9ycrK\nUmZmpo4ePerxY3vCdx2yvaOtrU0bN27U9OnTNWrUKAUHBysuLk7r1q1Tc3Nzt2u/+uorPffcc4qJ\niVFQUJB8fX01fvx4zZ07V7m5udfoCvqO7boAAAAAAMMa23W1x3M1AAAAAADwnN5+h+/tYhFP8fTf\nVGbOnKl9+/YpKytLTz31lEePfTVsNpueeuop3XzzzSooKPBKhubmZiUnJysvL0+S5OfnJ7PZrPr6\neklSfHy8CgsLFRgY2Gltfn6+Hn30UTU0NEiSfHx8FBAQoJqaGtf/w6eeekpZWVm9znOttuvy6dNs\nAAAAAAAAAAAAAACAgWD1doB+sno7wLUVHx+v48ePezXDCy+8oLy8PFksFr322mtauHChDMPQhx9+\nqKefflo2m03Lli3TW2+91WFdXV2dFixYoIaGBv3whz/Ub3/7W82cOVMmk0mVlZX6xS9+of/+7//W\nli1bNHv2bC1atMhLV+ge23UBAAAAAACgW1ar1dsRAAAAAAAYtui63FFFRYU2bNggSXrxxRe1aNEi\nV2ecpKQkvfHGG5Kkt99+W3/+8587rN23b5/Onz8vwzCUlZWlhIQEmUxXSmfCw8P18ssva8aMGZKk\nDz744FpdUq9R5AMAAAAAAIBuZWZmejsCAAAAAADDRlZWlkwmk/bt2ydJWrx4sUwmk+sVERHRYX5l\nZaVWrVqlqKgoBQQEKCQkRHfddZfWr1+vpqYmt+dIT0+XyWRSZmamGhsblZGRoaioKFksFoWFhWn+\n/Pn64osv3K4tKipym6O98vJyrVq1SjExMQoODlZwcLCio6O1ZMkSFRUV9e/G/EVOTo6ampo0atQo\nPfPMM53GH3nkEd1+++1yOBzatm1bhzHnFl2SdOedd7o9flxcnCS5tv4aTNiuCwAAAAAAAN3KyMjw\ndgQAAAAAAIaNgIAAhYeHq7q6Ws3NzQoJCZHFYnGNh4WFuX4+dOiQ5syZI7vdLsMwFBwcrObmZtls\nNtlsNm3dulX5+fkaO3as23M1NjZq5syZKi4ulp+fn/z9/XX+/HllZ2drx44dysvL0z333ON2rbN7\nzvfl5ORo0aJFunz5siTJYrHIYrHoxIkTKisr0549e3Ty5Mn+3h7t3btXknTvvffK19fX7ZwHHnhA\nJ06cUGFhYYf3/+Zv/kYmk0ltbW06cuSI7r777k5rDx8+LOm7Yp/BhE4+AAAAAAAA6BbbdQEAAAAA\ncO2kpKTo7Nmzmj59uiRpw4YNOnPmjOtVXFwsSbLb7UpOTpbdbtfkyZN16NAhXbhwQTU1NXrvvfcU\nGhqqo0ePasGCBV2e69VXX1VJSYm2bt2q2tpa2e12HTlyRHFxcaqvr1dKSoouXLjQ6+wff/yxUlNT\ndfnyZSUkJMhms6murk5VVVW6cOGCtm/frtmzZ1/V/SktLZUkTZw4scs50dHRkqSysrIO7//gBz/Q\nihUrJF3pZrRnzx61tLRIurIN2PLly7Vv3z7ddNNN+pd/+ZeryjkQKPIBAAAAAAAAAAAAAAAYYl5+\n+WVVVFQoNDRU+fn5mjJliiTJZDLp8ccfV3Z2tiRp9+7dru4333fx4kVt3LhRCxYskNlsliTFxsZq\n165dGjNmjCorK/XKK6/0OtPKlSvV2tqqGTNmaNeuXa5MkhQUFKS5c+dq06ZN/b1kSdLZs2clSePH\nj+9yzrhx4yRJtbW1qqur6zD2H//xH3rttdfk7++v+++/X/7+/ho5cqTGjx+vzZs366mnntKhQ4c0\nZsyYq8o5ECjyAQAAAAAAAAAAAAAAGGLef/99SdKSJUs6bOHldP/997u6Ab377rtujzFhwgSlpaV1\nen/MmDFatmxZh/P0pKysTDabTYZhaO3ata6iIU9zFu2038Ls+wICAlw/19bWdhhra2tTTU2N6uvr\nJUkOh0N1dXUyDEPNzc2qqalRdXX1ACS/ehT5AAAAAAAAAAAAAAAADCFNTU0qKSmRYRiaNWtWl/MS\nEhIkSZ988onb8RkzZnS51jl27Ngx15ZW3Tl48KAkafTo0YqPj+9xvrcsWLBAP/nJT1RTU6Pf/va3\n+uqrr3Tp0iUdPHhQiYmJ2r59u370ox/pT3/6k7ejdkKRDwAAAAAAAAAAAAAAwBBSXV0th8MhSbrp\nppu6nOccO3fuXLfj7ji3w2ptbZXdbu8xU2VlpSTp1ltv7XHu1QgMDJQkNTQ0dDnH2aVHurJNmFNe\nXp7eeecdmUwmbd++XUuXLtUtt9yiwMBAxcfHa8eOHZo9e7YuXbqkf/zHfxy4i+gninwAAAAAAADQ\nLavV6u0IAAAAAACgC5cvX/Z2hGvKWXx05syZLuc4x4KCglxFQZL0+9//XpI0ZcoU3X333W7XPvfc\nc5KkQ4cOuQqXBguKfAAAAAAAANCtzMxMb0cAAAAAAADtjB49WoZhyOFw6Ouvv+5y3jfffCNJGjt2\nrNvx06dPd7nWWShjNpsVGhraY6Ybb7xRknTq1Kke516NiRMnSpJKSkq6nFNaWipJuuOOOzq877xX\nERERXa5tP9bdvfUGinwAAAAAAADQrYyMDG9HAAAAAABg2DGZrpR0OLflas/X11eTJk2SJO3du7fL\nYxQWFkqS4uLi3I5/9NFHXa51jsXExMjHx6fHvNOmTZN0ZSux4uLiHuf316xZsyRJBw4cUGNjo9s5\nBQUFkqTZs2d3eN+5dVd3xTvtx4KDg68qq6dR5AMAAAAAAIBusV0XAAAAAADX3siRIyVJdrvd7fgT\nTzwhScrKylJFRUWn8fz8fB08eFCGYSglJcXtMb766itlZ2d3er+6ulobN26UJD355JO9yhsZGamp\nU6fK4XBo9erVamlp6dW6vnrsscfk5+cnu92uTZs2dRrPzc3ViRMnZDKZlJaW1mHMWYh0+PBhffrp\np26P//rrr0uSQkJCFBUV5eH0V4ciHwAAAAAAAAAAAAAAgEEmJiZGkvTBBx/o0qVLncaXL1+ucePG\nqaGhQYmJiTp8+LAkqbW1VTk5OUpNTZUk3XfffZo5c6bbc4SEhGjp0qXatm2bWltbJUmfffaZHnzw\nQVVVVSk8PFzPPvtsrzOvX79eZrNZ+/fv75BJkmpqapSdna2FCxf2+njuhIeHa8WKFZKk1atX6623\n3lJbW5skaefOnVq8eLEkKS0tzXUPnZ5++mkFBwerpaVFc+fO1Y4dO1zdgMrLy7VkyRL9/ve/lyQ9\n++yzMgzjqrJ6muFw19dpiHLe3OvokgAAAAAAA+y7B3WeJSWeqwEAAAAAgOf09jt8199nrAMcaKBY\nr/zH039T+fzzzxUbG6umpiaZzWaFhYVpxIgRuuWWW7R//35Jks1mU2JioqvbT1BQkJqbm12FK7Gx\nsSooKNANN9zQ4djp6enasmWLnn/+ee3du1fFxcXy9fWVn5+fampqJEmBgYHKy8vT3Xff3WFtUVGR\nEhISNGHCBH355Zedcr/zzjtKT093ZfD395fFYnFl7GpdX7S0tCg5OVk7d+6UdGX7MrPZrIaGBknS\n1KlTtWfPHgUGBnZa+3//93968sknVVdXJ+nK589isai+vt415+GHH1ZOTk6vtilzHkPq/Wegv/Ut\nvUsDAAAAAAAAAAAAAAAwkKzeDjC4REZGqqCgQL/61a/0pz/9Sd9++63a2tpkMn23aVN8fLxKS0u1\ndu1a7dy5U6dOnZKvr68mT56sefPmafny5fL19e3yHP7+/ioqKtKvfvUrvfPOOzp16pTCwsI0e/Zs\nWa1W/fVf/3WnNT11t5k3b57uuusurV+/XgUFBSovL1dbW5uio6P1ox/9SIsWLer/TfkLHx8f5ebm\n6vXXX1dWVpaOHz+u1tZW3XnnnUpLS9Nzzz3XZYFOYmKiSkpK9Jvf/Ea7d+/WyZMn1djYqBtvvFFx\ncXFatGiR5s2bd9UZBwKdfAAAAAAAwxqdfNrjuRoAAAAAAHhOb7/DT0pKcnVkGaoeeughffjhh96O\n0WvOTj5Wq1Vr1qzxdpwh71p18jH1PAUAAAAAAADDmdVq9XYEAAAAAMB17MMPP5TD4RjSr6FU4IOh\niyIfAAAAAAAAdCszM9PbEQAAAAAAAIY9inwAAAAAAADQrYyMDG9HAAAAAAAAGPZ8vB0AAAAAAAAA\ngxvbdQEAAAAAcH0xDEOGYXg1Q3x8vMrLy3s9PzU1VS+99NIAJhr8KPIBAAAAAAAAAAAAAAAYRjZv\n3qzNmzd7NUNVVZXOnTvX6/mXLl0awDRDg+FwOBzeDuEpziqz6+iSAAAAAAAD7Lt/scSzpMRzNQAA\nAAAA8By+w8dw0dfPen9/N0x9iwUAAAAAAAAAAAAAAADgWqPIBwAAAAAAAAAAAAAAABjkKPIBAAAA\nAABAt6xWq7cjAAAAAAAADHuG4zra/I79/AAAAAAAfeV8lpR4lpR4roZ7hmHwuQAAAAAA9Bnf4WO4\n6Otnvb+/G3TyAQAAAAAAQLcyMjK8HQEAAAAAAGDYo5MPAAAAAGBYo5NPezxXAwAAAAAAz+E7fAwX\ndPIBAAAAAAAAAAAAAAAAIIkiHwAAAAAAAAAAAAAAAGDQo8gHAAAAAAAAAAAAAAAAGOQo8gEAAAAA\nAAAAAAAAAAAGOYp8AAAAAAAA0C2r1ertCAAAAAAAAMOe4XA4HN4O4SmGYUiSrqNLAgAAAAAMMOez\npMSzpMRzNdwzDIPPBQAAAACgz/gO//pUVFSkhIQE3XbbbTp58qS34wwKff2s9/d3g04+AAAAAAAA\n6FZGRoa3IwAAAAAArmNJSUkyDGNIv5KSkjx+X7KyspSZmamjR496/Nie8N0/nvOOtrY2bdy4UdOn\nT9eoUaMUHBysuLg4rVu3Ts3Nzd2uPX/+vH72s59p0qRJCgwM1MiRIzVlyhT9+te/VlNT0zW6gr6j\nkw8AAAAAYFijk097PFcDAAAAAADP6e13+N4uFvEUT/9NZebMmdq3b5+ysrL01FNPefTYV8Nms+mp\np57SzTffrIKCAq9kaG5uVnJysvLy8iRJfn5+MpvNqq+vlyTFx8ersLBQgYGBndYePXpUc+bMUUVF\nhSQpODhYbW1tqqurkyRNnjxZhYWFGj16dK/z0MkHAAAAAAAAAAAAAAAMG44h+hpu4uPjdfz4ca8V\n+EjSCy+8oLy8PFksFr355puqr69XbW2tcnNzNXr0aNlsNi1btqzTutraWj388MOqqKhQVFSUPv74\nY128eFE1NTXavXu3br75Zn322WeaP3++F66qZxT5AAAAAAAAAAAAAAAADFJ0Xe6ooqJCGzZskCS9\n+OKLWrRokaszTlJSkt544w1J0ttvv60///nPHdb+z//8j7755hv5+Pho+/btmjZtmmssISFBv/vd\n7yRJ+fn52r1797W4nD6hyAcAAAAAAAAAAAAAAGCQyMrKkslk0r59+yRJixcvlslkcr0iIiI6zK+s\nrNSqVasUFRWlgIAAhYSE6K677tL69evV1NTk9hzp6ekymUzKzMxUY2OjMjIyFBUVJYvForCwMM2f\nP19ffPGF27VFRUVuc7RXXl6uVatWKSYmRsHBwQoODlZ0dLSWLFmioqKi/t2Yv8jJyVFTU5NGjRql\nZ555ptP4I488ottvv10Oh0Pbtm3rMObc3uuBBx5QZGRkp7X33HOPpkyZIknasmXLVeUcCD7eDgAA\nAAAAAAAAAAAAAIArAgICFB4erurqajU3NyskJEQWi8U1HhYW5vr50KFDmjNnjux2uwzDUHBwsJqb\nm2Wz2WSz2bR161bl5+dr7Nixbs/V2NiomTNnqri4WH5+fvL399f58+eVnZ2tHTt2KC8vT/fcc4/b\ntc7uOd+Xk5OjRYsW6fLly5Iki8Uii8WiEydOqKysTHv27NHJkyf7e3u0d+9eSdK9994rX19ft3Me\neOABnThxQoWFhR3e//rrryXJbYGPU2RkpA4fPkwnHwAAAAAAAAw9VqvV2xEAAAAAABg2UlJSdPbs\nWU2fPl2StGHDBp05c8b1Ki4uliTZ7XYlJyfLbrdr8uTJOnTokC5cuKCamhq99957Cg0N1dGjR7Vg\nwYIuz/Xqq6+qpKREW7duVW1trex2u44cOaK4uDjV19crJSVFFy5c6HX2jz/+WKmpqbp8+bISEhJk\ns9lUV1enqqoqXbhwQdu3b9fs2bOv6v6UlpZKkiZOnNjlnOjoaElSWVlZh/edhUmtra1drm1paZF0\npUOS3W6/qqyeRpEPAAAAAAAAupWZmentCAAAAAAA4HtefvllVVRUKDQ0VPn5+a5tpkwmkx5//HFl\nZ2dLknbv3u3qfvN9Fy9e1MaNG7VgwQKZzWZJUmxsrHbt2qUxY8aosrJSr7zySq8zrVy5Uq2trZox\nY4Z27drlyiRJQUFBmjt3rjZt2tTfS5YknT17VpI0fvz4LueMGzdOklRbW6u6ujrX+xMmTJAkHTt2\nrMu1ziKi9ucaLCjyAQAAAAAAQLcyMjK8HQEAAAAAAHzP+++/L0lasmRJhy28nO6//35XN6B3333X\n7TEmTJigtLS0Tu+PGTNGy5Yt63CenpSVlclms8kwDK1du9ZVNORpzqKd9luYfV9AQIDr59raWtfP\nDzzwgCSpsLBQR44c6bQuLy9PJSUlkiSHw6GamhqPZPYUinwAAAAAAADQLbbrAgAAAABgcGlqalJJ\nSYkMw9CsWbO6nJeQkCBJ+uSTT9yOz5gxo8u1zrFjx465trDqzsGDByVJo0ePVnx8fI/zveHHP/6x\nxo8fL4fDoeTkZP3hD39QXV2dampq9Pbbb2vRokUaMWKEa77JNLjKagZXGgAAAAAAAAAAAAAAAHSr\nurpaDodDknTTTTd1Oc85du7cuW7H3XFuh9Xa2iq73d5jpsrKSknSrbfe2uPcq4kjIq8AACAASURB\nVBEYGChJamho6HJOfX296+egoCDXz8HBwfrDH/6gsWPH6ptvvtGjjz6q4OBghYSEaMGCBTKZTK5t\nyw3D0KhRowboKvqHIh8AAAAAAAAAAAAAAIAh6vLly96OcE05i4/OnDnT5RznWFBQkKsoyGnKlCkq\nLS3VmjVrNG3aNN12222aPHmyVqxYoaNHj+rGG2+UJI0YMUITJkwYmIvoJx9vBwAAAAAAAAAAAAAA\nAEDvjR49WoZhyOFw6Ouvv+5ye6xvvvlGkjR27Fi346dPn+7yHM5CGbPZrNDQ0B4zOYtjTp061ePc\nqzFx4kQdP35cJSUlXc4pLS2VJN1xxx1ux8eMGSOr1ep2i/IjR45Iku68884OW3cNBnTyAQAAAAAA\nAAAAAAAAGGRMpislHc5tudrz9fXVpEmTJEl79+7t8hiFhYWSpLi4OLfjH330UZdrnWMxMTHy8em5\nh8y0adMkXdlKrLi4uMf5/TVr1ixJ0oEDB9TY2Oh2TkFBgSRp9uzZfTp2U1OTcnJyJEnz58+/ipQD\ngyIfAAAAAAAAdMvdv2oDAAAAAAADa+TIkZIku93udvyJJ56QJGVlZamioqLTeH5+vg4ePCjDMJSS\nkuL2GF999ZWys7M7vV9dXa2NGzdKkp588sle5Y2MjNTUqVPlcDi0evVqtbS09GpdXz322GPy8/OT\n3W7Xpk2bOo3n5ubqxIkTMplMSktL69OxrVarzp49q3Hjxik9Pd1DiT2HIh8AAAAAAAB0KzMz09sR\nAAAAAAAYdmJiYiRJH3zwgS5dutRpfPny5Ro3bpwaGhqUmJiow4cPS5JaW1uVk5Oj1NRUSdJ9992n\nmTNnuj1HSEiIli5dqm3btqm1tVWS9Nlnn+nBBx9UVVWVwsPD9eyzz/Y68/r162U2m7V///4OmSSp\npqZG2dnZWrhwYa+P5054eLhWrFghSVq9erXeeusttbW1SZJ27typxYsXS5LS0tJc97C9F198Udu3\nb+9QPPX555/rxz/+sf793/9dPj4+ev311xUcHHxVOQeC4XDX12mIMgxDkvtWVQAAAAAAuON8lpR4\nlpR4roZ7Xe1RDwAAAABAd3r7Hb5r3oAnGhiuvy55+G8qn3/+uWJjY9XU1CSz2aywsDCNGDFCt9xy\ni/bv3y9JstlsSkxMdBWsBAUFqbm52bWNVWxsrAoKCnTDDTd0OHZ6erq2bNmi559/Xnv37lVxcbF8\nfX3l5+enmpoaSVJgYKDy8vJ09913d1hbVFSkhIQETZgwQV9++WWn3O+8847S09NdGfz9/WWxWFwZ\nu1rXFy0tLUpOTtbOnTslXdm+zGw2q6GhQZI0depU7dmzR4GBgZ3Wzpw5U/v27ZMkBQQEyOFwuNYF\nBwfr9ddf77LzUVf6Wq/S3/oWOvkAAAAAAACgWxT4AAAAAACuBWOIvgZKZGSkCgoKlJiYqNDQUH37\n7bcqLy/X6dOnXXPi4+NVWlqqlStXKjIyUq2trfL19VV8fLzWrVun4uLiTgU+7fn7+6uoqEhr1qxR\nRESEWlpaFBYWprS0NB05cqRTgY/U/h/NuTdv3jwdP35cy5cvV2RkpEwmk9ra2hQdHa2lS5dqy5Yt\n/b8pf+Hj46Pc3Fy99tprmjZtmiwWi8xms+68806tXbtWBw4ccFvgI0krVqzQvHnz9Fd/9VcymUzy\n8fFRTEyMfvKTn6i0tLTPBT7XEp18AAAAAADDGp182uO5GgAAAAAAeE5vv8NPSkpydWQZqh566CF9\n+OGH3o7Ra85OPlarVWvWrPF2nCHvWnXy8elbLAAAAAAAAAAAAAAAAM8ZSsUxgDexXRcAAAAAAAAA\nAAAAAAAwyFHkAwAAAAAAAAAAAAAAAAxybNcFAAAAAACAblmtVlmtVm/HAAAAAAAAHmIYhgzD8GqG\n+Ph4lZeX93p+amqqXnrppQFMNPgZDofD4e0QnuL8AF5HlwQAAAAAGGDf/TGDZ0mJ52q4ZxgGnwsA\nAAAAQJ/xHT66ExERoVOnTvV6/tNPP6033nhjABP1X18/6/393aCTDwAAAAAAALqVkZHh7QgAAAAA\nAOA6c/LkSW9HGHLo5AMAAAAAGNbo5NMez9UAAAAAAMBz+A4fw8W16uRj6lssAAAAAAAAAAAAAAAA\nANcaRT4AAAAAAAAAAAAAAADAIEeRDwAAAAAAAAAAAAAAADDIUeQDAAAAAAAAAAAAAAAADHIU+QAA\nAAAAAKBbVqvV2xEAAAAAAACGPcPhcDi8HcJTDMOQJF1HlwQAAAAAGGDOZ0mJZ0mJ52q4ZxgGnwsA\nAAAAQJ/xHT6Gi75+1vv7u0EnHwAAAAAAAHQrIyPD2xEAAAAAAACGPTr5AAAAAACGNTr5tMdzNQAA\nAAAA8By+w8dwQScfAAAAAAAAAAAAAAAAAJIo8gEAAAAAAAAAAAAAAAAGPYp8AAAAAAAAAAAAAAAA\n0CtFRUUymUyKiIjwdpRhhyIfAAAAAAAAAAAAAADgNUlJSTIMY0i/kpKSPH5fsrKylJmZqaNHj3r8\n2J5gGIbXzn3w4EFt2LBBCxcuVFRUlEwmk0wmk37605/2+hi7d+/Www8/rLCwMPn7++uHP/yhnnvu\nOX377bcDmPzq+Hg7AAAAAAAAAAY3q9Uqq9Xq7RgAAAAAgOvUzp07vR3hqg3ENWRlZWnfvn2KiIhQ\nbGysx4/fX4GBgYqMjNTNN9/stQyJiYm6dOlSp/d7W3j0y1/+Uj//+c8lSWazWUFBQTp58qR+85vf\n6O2331ZhYaEmTpzo0cyeQJEPAAAAAAAAupWZmUmRDwAAAABg4O3d6+0E/TNrlrcTXFPx8fE6fvy4\nVzMEBATojjvuUHx8vP72b/9WL730kj799NNerd25c6d+/vOfyzAMrVq1ShkZGQoMDFRpaakWLlyo\nTz/9VHPnzlVpaal8fX0H+Er6hiIfAAAAAAAAdCsjI8PbEQAAAAAAGLYcDoe3Iww6p0+f7tC15403\n3uj12v/3//6fJOnRRx/V2rVrXe9HR0crNzdXd9xxh7788ktt3LhRy5cv91xoDzB5OwAAAAAAAAAG\nN7r4AAAAAABw7WRlZclkMmnfvn2SpMWLF8tkMrleERERHeZXVlZq1apVioqKUkBAgEJCQnTXXXdp\n/fr1ampqcnuO9PR0mUwmZWZmqrGxURkZGYqKipLFYlFYWJjmz5+vL774wu3aoqIitznaKy8v16pV\nqxQTE6Pg4GAFBwcrOjpaS5YsUVFRUf9uTDu93Zbr+44dO6bPPvtMhmHoJz/5Safxm266SWlpaZKk\n3/3ud1eVcSDQyQcAAAAAAAAAAAAAAGCQCAgIUHh4uKqrq9Xc3KyQkBBZLBbXeFhYmOvnQ4cOac6c\nObLb7TIMQ8HBwWpubpbNZpPNZtPWrVuVn5+vsWPHuj1XY2OjZs6cqeLiYvn5+f1/9u4/KOr7zuP4\n67so8lMKBFBjUugv0BDpaIjaxEExURKuNTeJhES9kIzWi7W5GqZpcm3cpdPEG5taaZN6Yz3lYi7B\nGE0mrXqCCmqbA4kmpiZBbUMiohAWFuX3z70/LCuUBZafC/J8zOyI38+P72s3S8YP++bzkZeXlyoq\nKpSZmal3331XBw4c0Lx585yO7a7QZs+ePVqxYoUaGhokSd7e3vL29ta5c+dUWFiow4cPq6ioqL8v\nz4Dk/P1IuPZCKGcWL16s3//+9yooKFBtba18fX2HM2KP2MkHAAAAAAAAAAAAAABghEhKStLly5c1\nd+5cSVJ6erouXbrkeOTn50uSbDabHnjgAdlsNs2YMUMnTpxQVVWVqqurtXv3bgUGBur06dNatmxZ\nt/fasmWLzpw5o507d6qmpkY2m02nTp3SzJkzVVdXp6SkJFVVVbmc/b333lNycrIaGhoUHx/vKJSx\nWq2qqqrS22+/rYULFw7sBRqATz75RJI0bdq0bvtMnz5d0rVj0goLC4cll6so8gEAAAAAAAAAAAAA\nABhlXn75ZZWWliowMFBZWVmaNWuWJMlkMunBBx9UZmamJOnQoUOOHWz+0ZUrV7R161YtW7ZMHh4e\nkqSYmBgdPHhQwcHBKisr0yuvvOJypnXr1qm1tVVxcXE6ePCgI5Mk+fn5acmSJdq2bVt/n/KAXb58\nWZI0ZcqUbvtMnjzZ8XVpaemQZ+oLinwAAAAAAAAAAAAAAABGmbfeekuStHLlyk5HeLW79957HbsB\nvfnmm07nCA8P1yOPPNLlenBwsFavXt3pPr0pLCxUQUGBDMPQxo0bHUVDI0ltba0kdTr+7B/5+PhI\nuraTT01NzbDkchVFPgAAAAAAAOiRxWJxdwQAAAAAANBBU1OTzpw5I8MwtGDBgm77xcfHS5I++OAD\np+1xcXHdjm1v+/jjj9XS0tJrpry8PElSUFCQYmNje+2PvqPIBwAAAAAAAD1KS0tzdwQAAAAAANBB\nZWWl7Ha7JOnmm2/utl97W3l5eY/tzrQfadXa2iqbzdZrprKyMknSrbfe2mtfd/H19ZUk1dfXd9un\nrq5OkmQYhvz8/IYll6so8gEAAAAAAECPzGazuyMAAAAAAIBuNDQ0uDvCqNFeuHTp0qVu+3Rsmzx5\n8pBn6guKfAAAAAAAANAjjusCAAAAAGBkCQoKkmEYstvt+uKLL7rtd/HiRUlSSEiI0/aSkpJux7YX\nu3h4eCgwMLDXTJMmTZIkXbhwode+7nLbbbdJkj799FPHTkj/6JNPPpF0bSefadOmDVs2V1DkAwAA\nAAAAAAAAAAAAMMKYTNdKOpwVo3h6eur222+XJOXk5HQ7x5EjRyRJM2fOdNp+9OjRbse2t0VHR2vc\nuHG95p0zZ46ka0eJ5efn99rfHRYsWCBJunLligoKCpz2ycrKkiTNnj1b3t7ew5bNFRT5AAAAAAAA\nAAAAAAAAjDATJ06UJNlsNqftDz30kCQpIyNDpaWlXdqzsrKUl5cnwzCUlJTkdI7PP/9cmZmZXa5X\nVlZq69atkqSlS5e6lDcyMlJ33nmn7Ha7nnnmGbW0tLg0bjhNmzZNMTExstvt+uUvf9ml/dKlS3rj\njTckScuWLRvueL2iyAcAAAAAAAAAAAAAAGCEiY6OliTt3btXV69e7dK+du1aTZ48WfX19UpISNDJ\nkyclSa2trdqzZ4+Sk5MlSffcc4/mz5/v9B4BAQFatWqVXn/9dbW2tkqSPvroIy1evFhWq1VhYWFa\ns2aNy5k3bdokDw8PHT9+vFMmSaqurlZmZqaWL1/u8nzdqa2tldVqVUVFhaxWq5qbmyVJdXV1jmtW\nq1X19fVdxr744ouSpD179ugnP/mJampqJF07puu73/2uampq9PWvf12rVq0acM7BZti7O2RsFDIM\nQ5LzraoAAAAAAHCmfS0psZaUWFcDAAAAAIDB4+pn+I6fz/Rw7NSI9vcjoAb7Zypnz55VTEyMmpqa\n5OHhodDQUI0fP1633HKLjh8/LkkqKChQQkKCY7cfPz8/NTc3q7GxUZIUExOj7Oxs3XTTTZ3mTklJ\n0auvvqpnn31WOTk5ys/Pl6enpyZMmKDq6mpJkq+vrw4cOKC7776709jc3FzFx8crPDxcn332WZfc\nu3btUkpKiiODl5eXvL29HRm7G9cX7fl7YzabZTabu1x/4YUX9Pzzz0u6diyar6+v43mHhIQoJydH\n06dPdzlPX+tV+lvf0vuhaQAAAAAAABjTLBaLLBaLu2MAAAAAAG50fy+WwTWRkZHKzs7Whg0b9P77\n7+vLL79UW1ubTKbrhzbFxsbqk08+0caNG7V//35duHBBnp6emjFjhh5++GGtXbtWnp6e3d7Dy8tL\nubm52rBhg3bt2qULFy4oNDRUCxculMVi0Te/+c0uY67/0pxzDz/8sGbPnq1NmzYpOztbxcXFamtr\n0/Tp03XXXXdpxYoV/X9ROmToLUdPWX/6059qzpw52rx5s06cOKHq6mp9/etf1z/90z/p3//93xUS\nEjLgjEOBnXwAAAAAAGMaO/l0xLoazhmGwfsCAAAAANBnrn6Gn5iYqP379w9HpCFz//33a9++fe6O\n4bL2nXAsFovWr1/v7jijHjv5AAAAAAAAYERwtq01AAAAAACDZTQVxwDuZOq9CwAAAAAAAMYyjuoC\nAAAAAABwP4p8AAAAAAAAAAAAAAAAgBGO47oAAAAAAAAAAAAAAADGEMMwZBiGWzPExsaquLjY5f7J\nycnavHnzECYa+SjyAQAAAAAAAAAAAAAAGEN27NihHTt2uDWD1WpVeXm5y/2vXr06hGlGB8Nut9vd\nHWKwtFeZ3UBPCQAAAAAwxK7/xhJrSYl1NQAAAAAAGDx8ho+xoq/v9f5+b5j6FgsAAAAAAABjjcVi\ncXcEAAAAAACAMY+dfAAAAAAAYxo7+XTEuhrOGYbB+wIAAAAA0Gd8ho+xgp18AAAAAAAAMCKYzWZ3\nRwAAAAAAABjz2MkHAAAAADCmsZNPR6yrAQAAAADA4OEzfIwV7OQDAAAAAAAAAAAAAAAAQBJFPgAA\nAAAAAAAAAAAAAMCIR5EPAAAAAAAAAAAAAAAAMMJR5AMAAAAAAAAAAAAAAACMcBT5AAAAAAAAoEcW\ni8XdEQAAAAAAAMY8w263290dYrAYhiFJuoGeEgAAAABgiLWvJSXWkhLrajhnGAbvCwAAAABAn/EZ\nPsaKvr7X+/u9wU4+AAAAAAAA6JHZbHZ3BAAAAAAAgDGPnXwAAAAAAGMaO/l0xLoaAAAAAAAMHj7D\nvzHl5uYqPj5eX/3qV1VUVOTuOCMCO/kAAAAAAAAAAAAAAIAbXmJiogzDGNWPxMTEQX9dMjIylJaW\nptOnTw/63IPh+i/PDb+8vDylp6dr+fLlioqKkslkkslk0nPPPdfr2PPnz2v79u1as2aNYmNjNWHC\nBJlMJs2dO3cYkg/MOHcHAAAAAAAAAAAAAAAAY9f+/fvdHWHAhuI5ZGRk6NixY4qIiFBMTMygz99f\nvr6+ioyM1NSpU92WISEhQVevXu1y3ZXCox//+Md69913+zXW3SjyAQAAAAAAAAAAAAAAbpejHHdH\n6JcFWuDuCMMqNjZWn376qVsz+Pj4aNq0aYqNjdUdd9yhzZs368MPP3Rp7Lhx4zR9+nTH2BMnTmjn\nzp1DnHhwUOQDAAAAAAAAAAAAAAAwQtntdndHGHFKSko67byzfft2l8e++eabMplMjr+Xl5cParah\nZOq9CwAAAAAAAMYyi8Xi7ggAAAAAAIwZGRkZMplMOnbsmCTp8ccfl8lkcjwiIiI69S8rK1Nqaqqi\noqLk4+OjgIAAzZ49W5s2bVJTU5PTe6SkpMhkMiktLU2NjY0ym82KioqSt7e3QkND9eijj+r8+fNO\nx+bm5jrN0VFxcbFSU1MVHR0tf39/+fv7a/r06Vq5cqVyc3P798J0MJCjtToW+Iw27OQDAAAAAACA\nHqWlpVHoAwAAAADAMPHx8VFYWJgqKyvV3NysgIAAeXt7O9pDQ0MdX584cUL33XefbDabDMOQv7+/\nmpubVVBQoIKCAu3cuVNZWVkKCQlxeq/GxkbNnz9f+fn5mjBhgry8vFRRUaHMzEy9++67OnDggObN\nm+d0bHeFNnv27NGKFSvU0NAgSfL29pa3t7fOnTunwsJCHT58WEVFRf19eca00VueBAAAAAAAgGFh\nNpvdHQEAAAAAgDEjKSlJly9f1ty5cyVJ6enpunTpkuORn58vSbLZbHrggQdks9k0Y8YMnThxQlVV\nVaqurtbu3bsVGBio06dPa9myZd3ea8uWLTpz5ox27typmpoa2Ww2nTp1SjNnzlRdXZ2SkpJUVVXl\ncvb33ntPycnJamhoUHx8vAoKClRbWyur1aqqqiq9/fbbWrhw4cBeoDGMIh8AAAAAAAD0iF18AAAA\nAAAYeV5++WWVlpYqMDBQWVlZmjVrlqRrx1E9+OCDyszMlCQdOnRIOTk5Tue4cuWKtm7dqmXLlsnD\nw0OSFBMTo4MHDyo4OFhlZWV65ZVXXM60bt06tba2Ki4uTgcPHnRkkiQ/Pz8tWbJE27Zt6+9THvMG\npcjn4sWLeuKJJzRlyhR5eXkpIiJC69at61M1109+8hMtXLhQt9xyi3x8fBQUFKSYmBj97Gc/U1lZ\n2WDEBAAAAAAAAAAAAAAAuCG89dZbkqSVK1d2OsKr3b333uvYDejNN990Okd4eLgeeeSRLteDg4O1\nevXqTvfpTWFhoQoKCmQYhjZu3OgoGsLgGXCRz9/+9jfNmjVLGRkZmjNnjp5++ml97WtfU3p6uubO\nnavKykqX5tm8ebPq6+u1ePFi/ehHP9KKFSs0YcIEvfjii7r99tt1/vz5gUYFAAAAAAAAAAAAAAAY\n9ZqamnTmzBkZhqEFCxZ02y8+Pl6S9MEHHzhtj4uL63Zse9vHH3+slpaWXjPl5eVJkoKCghQbG9tr\nf/TduIFOsGbNGpWXl+u3v/2tfvCDHziup6am6te//rV++tOfasuWLb3OU11dLU9Pzy7Xf/azn+nF\nF1/Uf/zHf+i//uu/BhoXAAAAAAAAAAAAAABgVKusrJTdbpdhGLr55pu77dfeVl5e3mO7M1OmTJEk\ntba2ymazKSQkpMdM7ac03XrrrT32Q/8NaCefv/3tb8rOzlZERESnAh9JSktLk4+Pj1577TXV1dX1\nOpezAh9JWrp0qSTp0qVLA4kKAAAAAAAAAAAAAABww2loaHB3BAyTARX55OTkSJIWLVrUpc3Pz093\n3XWXamtrHVsy9ccf/vAHSdL8+fP7PQcAAAAAAAD6z2KxuDsCAAAAAADoICgoSIZhyG6364svvui2\n38WLFyWp2114SkpKuh3bvhmLh4eHAgMDe800adIkSdKFCxd67Yv+GVCRz9mzZyVJ3/rWt5y2f/Ob\n35QknT9/3uU5X3rpJVksFq1bt07z5s3Tz3/+c61cuVJPP/30QKICAAAAAACgn9LS0twdAQAAAACA\nMcdkulbSYbfbu7R5enrq9ttvl3R9gxZnjhw5IkmaOXOm0/ajR492O7a9LTo6WuPGjes175w5cyRd\nO0osPz+/1/7ouwEV+Vy5ckWSFBAQ4LS9/XpVVZXLc/7qV7/Sz3/+c6Wnp+vPf/6zZs+ereTkZI0f\nP34gUQEAAAAAANBPZrPZ3REAAAAAABhzJk6cKEmy2WxO2x966CFJUkZGhkpLS7u0Z2VlKS8vT4Zh\nKCkpyekcn3/+uTIzM7tcr6ys1NatWyVJS5cudSlvZGSk7rzzTtntdj3zzDNqaWlxaRxcN6Ain6Fw\n+fJltbW1qaysTHv37lV5ebkWLVqk1157zd3RAAAAAAAAxiSO6wIAAAAAYPhFR0dLkvbu3aurV692\naV+7dq0mT56s+vp6JSQk6OTJk5Kk1tZW7dmzR8nJyZKke+65R/Pnz3d6j4CAAK1atUqvv/66Wltb\nJUkfffSRFi9eLKvVqrCwMK1Zs8blzJs2bZKHh4eOHz/eKZMkVVdXKzMzU8uXL3d5vu7U1tbKarWq\noqJCVqtVzc3NkqS6ujrHNavVqvr6+i5jm5qaHO1Wq1V1dXWSpJaWlk5jnb3m7jagIp/2nXrad/T5\nR+3Xv/KVr/R57pCQED3wwAPKysrSuHHjlJqa2v+gAAAAAAAAAAAAAAAAo8iKFSvk6empP/3pTwoO\nDtbNN9+s8PBwzZs3T9K1Wox33nlHgYGB+uijjxQbG6uJEyfKz89PS5cuVVVVlWJiYvQ///M/3d7j\nySefVHR0tJYvXy5fX18FBATo29/+tk6ePClfX1/t3r2729OdnPnOd76j1157TRMmTNCRI0cUGxsr\nHx8fBQcHKyAgQI8++qjee++9Ab82P/jBDxQaGqqQkBCFhobq//7v/yRJv/nNbxzXQkNDtXHjxi5j\nX3/9dUd7aGioXnrpJUnS+++/32nskiVLBpxz0NkHYNu2bXbDMOyrV6922r5o0SK7YRj2I0eODOQ2\n9m9/+9t2k8lkLy0t7bGfpF4fcXFxdkl2s9nsdA6z2Uw77bTTTjvttNNOO+200077GGq//rD/w6O9\n3eyk7UZtv/ZajKT/PrTTTjvttNNOO+2000477bTTTvvobZeu/6yhJ+39RvtjKBw7dsx+33332UNC\nQuzjxo2zm0wme0RERKc+paWl9qefftoeFRVl9/HxsU+cONF+55132n/1q1/ZGxsbnc772GOP2Q3D\nsKelpdkbGhrsZrPZMT4sLMz+6KOP2s+dO+d0bG5urt0wjC45OioqKrL/8Ic/tEdFRdl9fX3tX/nK\nV+y33Xab/fvf/779+PHj/X9B/i4lJcVuMpl6faSlpXUZm5GRYTcMo9exCxYscDmPs/dAe33KYL5n\njL/frF8+++wzfeMb31BERIT++te/yjAMR1t1dbUmT54swzD05Zdfytvbu7+3UVhYmCoqKnTlyhX5\n+vp226/9/gN4SgAAAACAMeb6Wpa1pMS6GgAAAAAADB5XP8NPTEzU/v37hyPSkLn//vu1b98+d8dw\nWUpKil599VVZLBatX7/e3XFGvb7Wq/S3vmVAx3V97Wtf06JFi1RUVKRXXnmlU5vZbFZdXZ1WrFjh\nKPBpaWlRYWGhPvvss059z58/7/TIr7a2Nv30pz9VeXm57rnnnh4LfAAAAAAAAAAAAAAAwOizb98+\n2e32Uf0YTQU+GL3GDXSC3/3ud/rOd76jp556SocPH1ZUVJTy8/OVm5uryMhIvfDCC46+Fy9e1PTp\n0/XVr35VRUVFjuv79u3Tc889p3nz5ik8PFzBwcEqKyvT0aNHVVRUpK9+9av6z//8z4FGBQAAAAAA\nQD9YLBZZLBZ3xwAAAAAAABjTBrSTj3RtN5/3339fKSkpys/P16ZNm1RUVKQf/ehHysvLU2BgYJcx\nHY/1kqR7771XK1euVHl5ud5++2299NJLeueddxQWFqYXXnhBf/nLXxQeHj7QqAAAAAAAAOiHtLQ0\nd0cAAAAAAAAY8wa8k48kTZ06Vdu3b++1X3h4uNra2rpcv+222/Tb3/524OptSAAAIABJREFUMKIA\nAAAAAABgkJnNZndHAAAAAAAAg8gwjC4btAy32NhYFRcXu9w/OTlZmzdvHsJEI59ht9vt7g4xWNrf\ngDfQUwIAAAAADLHrP8xgLSmxrgYAAAAAAIOHz/DRk4iICF24cMHl/o899phLG9C4Q1/f6/393qDI\nBwAAAAAwplHk0xHragAAAAAAMHj4DB9jxXAV+Zj6FgsAAAAAAAAAAAAAAADAcKPIBwAAAAAAAAAA\nAAAAABjhKPIBAAAAAAAAAAAAAAAARjiKfAAAAAAAANAji8Xi7ggAAAAAAABjnmG32+3uDjFYDMOQ\nJN1ATwkAAAAAMMTa15ISa0mJdTWcMwyD9wUAAAAAoM/4DB9jRV/f6/393mAnHwAAAAAAAPTIbDa7\nOwIAAAAAAMCYx04+AAAAAIAxjZ18OmJdDQAAAAAABg+f4WOsYCcfAAAAAAAAAAAAAAAAAJIo8gEA\nAAAAAAAAAAAAAABGPIp8AAAAAAAAAAAAAAAAgBGOIh8AAAAAAAAAAAAAAABghKPIBwAAAAAAAD2y\nWCzujgAAAAAAAEaI3NxcmUwmRUREuDvKmEORDwAAAAAAAHqUlpbm7ggAAAAAgBtYYmKiDMMY1Y/E\nxMRBf10yMjKUlpam06dPD/rcg8EwDLfdOy8vT+np6Vq+fLmioqJkMplkMpn03HPP9Tr22LFj+vGP\nf6y5c+cqKChI48ePV2hoqBYtWqT//u//lt1uH4Zn0D/j3B0AAAAAAAAAI5vZbHZ3BAAAAADADWz/\n/v3ujjBgQ/EcMjIydOzYMUVERCgmJmbQ5+8vX19fRUZGaurUqW7LkJCQoKtXr3a53lvh0QsvvKDn\nn3/e8fdx48bJ399fFRUVOnTokA4dOqTt27frj3/8o/z9/Qc990BR5AMAAAAAAIAecVwXAAAAAGA4\n5OS4O0H/LFjg7gTDKzY2Vp9++qlbM/j4+GjatGmKjY3VHXfcoc2bN+vDDz/sdVxLS4uCg4P12GOP\nKSkpSXfccYdMJpNsNpt+85vf6Be/+IWOHz+ulStXateuXcPwTPqGIh8AAAAAAAAAAAAAAIARaiQf\nH+UuJSUlnXbt2b59u0vj/vmf/1mpqany8/PrdD0wMFBms1mGYchisWj37t365S9/qVtvvXVQcw+U\nyd0BAAAAAAAAAAAAAAAAcE1GRoZMJpOOHTsmSXr88cdlMpkcj4iIiE79y8rKlJqaqqioKPn4+Cgg\nIECzZ8/Wpk2b1NTU5PQeKSkpMplMSktLU2Njo8xms6KiouTt7a3Q0FA9+uijOn/+vNOxubm5TnN0\nVFxcrNTUVEVHR8vf31/+/v6aPn26Vq5cqdzc3P69MB30dixXd2bMmNGlwKejlJQUx/wnT57s1z2G\nEjv5AAAAAAAAAAAAAAAAjBA+Pj4KCwtTZWWlmpubFRAQIG9vb0d7aGio4+sTJ07ovvvuk81mk2EY\n8vf3V3NzswoKClRQUKCdO3cqKytLISEhTu/V2Nio+fPnKz8/XxMmTJCXl5cqKiqUmZmpd999VwcO\nHNC8efOcju2u0GbPnj1asWKFGhoaJEne3t7y9vbWuXPnVFhYqMOHD6uoqKi/L8+QCgoKknRt96S2\ntjY3p+mKnXwAAAAAAAAAAAAAAABGiKSkJF2+fFlz586VJKWnp+vSpUuOR35+viTJZrPpgQcekM1m\n04wZM3TixAlVVVWpurpau3fvVmBgoE6fPq1ly5Z1e68tW7bozJkz2rlzp2pqamSz2XTq1CnNnDlT\ndXV1SkpKUlVVlcvZ33vvPSUnJ6uhoUHx8fEqKChQbW2trFarqqqq9Pbbb2vhwoUDe4GG0NGjRyVd\nK2CKjo52c5quKPIBAAAAAABAjywWi7sjAAAAAACAf/Dyyy+rtLRUgYGBysrK0qxZsyRJJpNJDz74\noDIzMyVJhw4dUk5OjtM5rly5oq1bt2rZsmXy8PCQJMXExOjgwYMKDg5WWVmZXnnlFZczrVu3Tq2t\nrYqLi9PBgwcdmSTJz89PS5Ys0bZt2/r7lIdUW1ubzGazJGnOnDmKjIx0c6KuKPIBAAAAAABAj9LS\n0twdAQAAAAAA/IO33npLkrRy5cpOR3i1u/feex27Ab355ptO5wgPD9cjjzzS5XpwcLBWr17d6T69\nKSwsVEFBgQzD0MaNGx1FQ6PF888/r1OnTmn8+PFKT093dxynKPIBAAAAAABAj9p/iw0AAAAAAIwM\nTU1NOnPmjAzD0IIFC7rtFx8fL0n64IMPnLbHxcV1O7a97eOPP1ZLS0uvmfLy8iRJQUFBio2N7bX/\nSPLGG29ow4YNMgxDGzZs0B133OHuSE5R5AMAAAAAAIAecVwXAAAAAAAjS2Vlpex2uyTp5ptv7rZf\ne1t5eXmP7c5MmTJFktTa2iqbzdZrprKyMknSrbfe2mvfkWTfvn167LHHJElPPfWUnn76aTcn6h5F\nPgAAAAAAAAAAAAAAAKNUQ0ODuyOMWocPH9ZDDz2klpYWPfHEE/r1r3/t7kg9osgHAAAAAAAAAAAA\nAABgFAkKCpJhGLLb7friiy+67Xfx4kVJUkhIiNP2kpKSbsdeunRJkuTh4aHAwMBeM02aNEmSdOHC\nhV77jgR/+tOf9L3vfU+NjY16+OGH9fvf/97dkXpFkQ8AAAAAAAAAAAAAAMAIYzJdK+loP5arI09P\nT91+++2SpJycnG7nOHLkiCRp5syZTtuPHj3a7dj2tujoaI0bN67XvHPmzJF07Six/Pz8Xvu704kT\nJ5SYmKj6+np973vf02uvvSbDMNwdq1cU+QAAAAAAAAAAAAAAAIwwEydOlCTZbDan7Q899JAkKSMj\nQ6WlpV3as7KylJeXJ8MwlJSU5HSOzz//XJmZmV2uV1ZWauvWrZKkpUuXupQ3MjJSd955p+x2u555\n5hm1tLS4NG64nT59WgkJCaqurtaiRYu0e/dueXh4uDuWSyjyAQAAAAAAQI8sFou7IwAAAAAAMOZE\nR0dLkvbu3aurV692aV+7dq0mT56s+vp6JSQk6OTJk5Kk1tZW7dmzR8nJyZKke+65R/Pnz3d6j4CA\nAK1atUqvv/66WltbJUkfffSRFi9eLKvVqrCwMK1Zs8blzJs2bZKHh4eOHz/eKZMkVVdXKzMzU8uX\nL3d5vu7U1tbKarWqoqJCVqtVzc3NkqS6ujrHNavVqvr6+k7jzp49q0WLFqmqqkrz58/XO++8o/Hj\nxw84z3Ax7M72dRql2rdOuoGeEgAAAABgiF3fhpe1pMS6Gs4ZhsH7AgAAAADQZ65+ht/er4dTp0a0\nBQuu/TnYa+ezZ88qJiZGTU1N8vDwUGhoqMaPH69bbrlFx48flyQVFBQoISHBsduPn5+fmpub1djY\nKEmKiYlRdna2brrppk5zp6Sk6NVXX9Wzzz6rnJwc5efny9PTUxMmTFB1dbUkydfXVwcOHNDdd9/d\naWxubq7i4+MVHh6uzz77rEvuXbt2KSUlxZHBy8tL3t7ejozdjeuL9vy9MZvNMpvNjr8/8cQTysjI\nkCQFBgb2WODz4x//WKmpqS7l6Wu9Sn/rW3o/NA0AAAAAAABjWscfhgEAAAAAMFTai2VwTWRkpLKz\ns7Vhwwa9//77+vLLL9XW1iaT6fqhTbGxsfrkk0+0ceNG7d+/XxcuXJCnp6dmzJihhx9+WGvXrpWn\np2e39/Dy8lJubq42bNigXbt26cKFCwoNDdXChQtlsVj0zW9+s8uY678059zDDz+s2bNna9OmTcrO\nzlZxcbHa2to0ffp03XXXXVqxYkX/X5QOGXrL4Syr3W53XKuqqupxbG1tbf8DDhF28gEAAAAAjGns\n5NMR62oAAAAAADB4XP0MPzExUfv37x+OSEPm/vvv1759+9wdw2XtO+FYLBatX7/e3XFGPXbyAQAA\nAAAAAAAAAAAAN7zRVBwDuJOp9y4AAAAAAAAAAAAAAAAA3IkiHwAAAAAAAAAAAAAAAGCE47guAAAA\nAAAAAAAAAACAMcQwDBmG4dYMsbGxKi4udrl/cnKyNm/ePISJRj6KfAAAAAAAANAji8Uii8Xi7hgA\nAAAAAGCQ7NixQzt27HBrBqvVqvLycpf7X716dQjTjA6G3W63uzvEYGmvMruBnhIAAAAAYIhd/40l\n1pIS62o4ZxgG7wsAAAAAQJ/xGT7Gir6+1/v7vWHqWywAAAAAAACMNWaz2d0RAAAAAAAAxjx28gEA\nAAAAjGns5NMR62oAAAAAADB4+AwfYwU7+QAAAAAAAAAAAAAAAACQRJEPAAAAAAAAAAAAMOwSExNl\nGAaPvz8SExPd/Z8EAIARj+O6AAAAAABjGsd1dcS6GgAAABgu19ciaMdaBLjx8Bk+xorhOq5rXN9i\nAQAAAAAAAAAAABgsOTnuTuB+Cxa4OwEAAKMDx3UBAAAAAACgRxaLxd0RAAAAAAAAxjyO6wIAAAAA\njGkc19UR62o4ZxgG7wsAAIBB1r4WYSef6zv58G9O4MbDZ/gYK4bruC528gEAAAAAAECPzGazuyMA\nAAAAAACMeezkAwAAAAAY09jJpyPW1QAAAMBwYSef69jJB7hx8Rk+xgp28gEAAAAAAAAAAAAAAAAg\niSIfAAAAAAAAAAAAAAAAuCg3N1cmk0kRERHujjLmUOQDAAAAAAAAAAAAAADcJjExUYZhjOpHYmLi\noL8uGRkZSktL0+nTpwd97sHQfuSUO+Tl5Sk9PV3Lly9XVFSUTCaTTCaTnnvuuV7Hvvrqq3ryySc1\ne/ZsTZ06VV5eXvLz89O0adP05JNP6uOPPx6GZ9A/49wdAAAAAAAAAAAAAAAAjF379+93d4QBG4rn\nkJGRoWPHjikiIkIxMTGDPn9/+fr6KjIyUlOnTnVbhoSEBF29erXLdVcKj77//e+rqalJhmHIZDIp\nICBAV65c0dmzZ3X27Flt27ZN6enpWrNmzVBEHxB28gEAAAAAAECPLBaLuyMAAAAAAIARIjY2Vp9+\n+qmys7PdlsHHx0ezZ8/W2rVrlZGRoW9/+9suj/3Xf/1XvfHGG/r888/V2Ngoq9WqxsZGHT9+XHPm\nzFFra6ueeuopffjhh0P4DPqHnXwAAAAAAADQo7S0NAp9AAAAAABwE7vd7u4II05JSUmnXXu2b9/u\n8tjNmzd3uWYymXTXXXfpf//3fzV16lTV1NRo9+7dfSoeGg7s5AMAAAAAAIAemc1md0cAAAAAAGDM\nyMjIkMlk0rFjxyRJjz/+uEwmk+MRERHRqX9ZWZlSU1MVFRUlHx8fBQQEaPbs2dq0aZOampqc3iMl\nJUUmk0lpaWlqbGyU2WxWVFSUvL29FRoaqkcffVTnz593OjY3N9dpjo6Ki4uVmpqq6Oho+fv7y9/f\nX9OnT9fKlSuVm5vbvxemA1eO5eqPiRMn6hvf+IYkqaamZkjuMRDs5AMAAAAAAIAesYsPAAAAAADD\nx8fHR2FhYaqsrFRzc7MCAgLk7e3taA8NDXV8feLECd13332y2WwyDEP+/v5qbm5WQUGBCgoKtHPn\nTmVlZSkkJMTpvRobGzV//nzl5+drwoQJ8vLyUkVFhTIzM/Xuu+/qwIEDmjdvntOx3RXa7NmzRytW\nrFBDQ4MkydvbW97e3jp37pwKCwt1+PBhFRUV9fflGVIVFRU6d+6cpGvHko007OQDAAAAAAAAAAAA\nAAAwQiQlJeny5cuaO3euJCk9PV2XLl1yPPLz8yVJNptNDzzwgGw2m2bMmKETJ06oqqpK1dXV2r17\ntwIDA3X69GktW7as23tt2bJFZ86c0c6dO1VTUyObzaZTp05p5syZqqurU1JSkqqqqlzO/t577yk5\nOVkNDQ2Kj49XQUGBamtrZbVaVVVVpbffflsLFy4c2As0yOx2u7788kvt27dPixYtUl1dneLi4np8\n3dyFIh8AAAAAAAAAAAAAAIBR5uWXX1ZpaakCAwOVlZWlWbNmSZJMJpMefPBBZWZmSpIOHTqknJwc\np3NcuXJFW7du1bJly+Th4SFJiomJ0cGDBxUcHKyysjK98sorLmdat26dWltbFRcXp4MHDzoySZKf\nn5+WLFmibdu29fcpD6pf/OIXMplM8vDw0KRJk/Td735XFRUV2rhxo7Kzs4fsSLCBoMgHAAAAAAAA\nAAAAAABglHnrrbckSStXrux0hFe7e++917Eb0Jtvvul0jvDwcD3yyCNdrgcHB2v16tWd7tObwsJC\nFRQUyDAMbdy40VE0NFL5+/tr0qRJCgkJcRT0lJSU6NixYyopKXFzOuco8gEAAAAAAAAAAAAAABhF\nmpqadObMGRmGoQULFnTbLz4+XpL0wQcfOG2Pi4vrdmx728cff6yWlpZeM+Xl5UmSgoKCFBsb22t/\nd/u3f/s3Xbp0SWVlZaqtrdX+/fs1ffp0/fGPf9ScOXNGZKEPRT4AAAAAAADokcVicXcEAAAAAADQ\nQWVlpex2uyTp5ptv7rZfe1t5eXmP7c5MmTJFktTa2iqbzdZrprKyMknSrbfe2mvfkcbLy0sJCQn6\n85//rPDwcJWVlSktLc3dsbqgyAcAAAAAAAA9Gok/1AIAAAAAANc0NDS4O8INw8/PT4899pgk6ciR\nI25O0xVFPgAAAAAAAOiR2Wx2dwQAAAAAANBBUFCQDMOQ3W7XF1980W2/ixcvSpJCQkKctvd0JNWl\nS5ckSR4eHgoMDOw106RJkyRJFy5c6LXvSNa+g1H78x9JKPIBAAAAAABAjziuCwAAAACA4WcyXSvp\naD+WqyNPT0/dfvvtkqScnJxu52jfjWbmzJlO248ePdrt2Pa26OhojRs3rte8c+bMkXTtKLH8/Pxe\n+49URUVFkqTQ0FA3J+mKIh8AAAAAAAAAAAAAAIARZuLEiZIkm83mtP2hhx6SJGVkZKi0tLRLe1ZW\nlvLy8mQYhpKSkpzO8fnnnyszM7PL9crKSm3dulWStHTpUpfyRkZG6s4775TdbtczzzyjlpYWl8YN\np9bW1h7brVarduzYIUlauHDhcETqE4p8AAAAAAAAAAAAAAAARpjo6GhJ0t69e3X16tUu7WvXrtXk\nyZNVX1+vhIQEnTx5UtK1QpY9e/YoOTlZknTPPfdo/vz5Tu8REBCgVatW6fXXX3cUwHz00UdavHix\nrFarwsLCtGbNGpczb9q0SR4eHjp+/HinTJJUXV2tzMxMLV++3OX5ulNbWyur1aqKigpZrVY1NzdL\nkurq6hzXrFar6uvrO43bsGGDUlJSdOTIEdXU1HSab+/evfrOd76jsrIy+fj46LnnnhtwzsFm2J3t\n6zRKGYYhyflWVQAAAAAAONO+lpRYS0qsqwEAAIDh0r4W6eGElTFjwYJrf7IWAW48rn6Gf/3nM6Pb\nYP9/7OzZs4qJiVFTU5M8PDwUGhqq8ePH65ZbbtHx48clSQUFBUpISHDs9uPn56fm5mY1NjZKkmJi\nYpSdna2bbrqp09wpKSl69dVX9eyzzyonJ0f5+fny9PTUhAkTVF1dLUny9fXVgQMHdPfdd3cam5ub\nq/j4eIWHh+uzzz7rknvXrl1KSUlxZPDy8pK3t7cjY3fj+qI9f2/MZrPMZrPj72lpaUpLS3P8feLE\nifLw8FBVVZXjv19ISIjeeOMNxcfHu5ynr/Uq/a1vYScfAAAAAAAAAAAAAACAESYyMlLZ2dlKSEhQ\nYGCgvvzySxUXF6ukpMTRJzY2Vp988onWrVunyMhItba2ytPTU7GxsXrppZeUn5/fpcCnIy8vL+Xm\n5mr9+vWKiIhQS0uLQkND9cgjj+jUqVNdCnyk3ouyHn74YX366adau3atIiMjZTKZ1NbWpunTp2vV\nqlUuFef0xjAMlx8dPfHEE9q8ebOWLFmib33rWzIMQ7W1tQoJCdH8+fO1ceNGFRYW9qnAZzixkw8A\nAAAAYExjJ5+OWFfDOYvFIovF4u4YAAAANxR28rmOnXyAG5ern+EnJiZq//79wxFpyNx///3at2+f\nu2O4rH0nHIvFovXr17s7zqjHTj4AAAAAAAAYETpuYw0AAAAAwGDbt2+f7Hb7qH6MpgIfjF4U+QAA\nAAAAAKBHHc+uBwAAAAAAgHtQ5AMAAAAAAIAecVQXAAAAAACA+41zdwAAAAAAAAAAAAAAAAAMH8Mw\nZBiGWzPExsaquLjY5f7JycnavHnzECYa+SjyAQAAAAAAAAAAAAAAGEN27NihHTt2uDWD1WpVeXm5\ny/2vXr06hGlGB4p8AAAAAAAAAAAAAAAAMKyKiorcHWHUMbk7AAAAAAAAAAAAAAAAAICeUeQDAAAA\nAACAHlksFndHAAAAAAAAGPMMu91ud3eIwWIYhiTpBnpKAAAAAIAh1r6WlFhLSqyr4ZxhGLwvAAAA\nBln7WiQnx81BRoAFC679yb85gRsPn+FjrOjre72/3xvs5AMAAAAAAIAemc1md0cAAAAAAAAY89jJ\nBwAAAAAwprGTT0esqwEAAIDhwk4+17GTD3Dj4jN8jBXs5AMAAAAAAAAAAAAAAABAEkU+AAAAAAAA\nAAAAAAAAwIhHkQ8AAAAAAAAAAAAAAAAwwlHkAwAAAAAAAAAAAAAAAIxwFPkAAAAAAACgRxaLxd0R\nAAAAAAAAxjzDbrfb3R1isBiGIUm6gZ4SAAAAAGCIta8lJdaSEutqOGcYBu8LAACAQda+FsnJcXOQ\nEWDBgmt/8m9O4MbDZ/gYK/r6Xu/v9wY7+QAAAAAAAKBHZrPZ3REAAAAAAMAIkZubK5PJpIiICHdH\nGXMo8gEAAAAAAECPOK4LAAAAADCUEhMTZRjGqH4kJiYO+uuSkZGhtLQ0nT59etDnHgzXd8gefnl5\neUpPT9fy5csVFRUlk8kkk8mk5557rl/zvfPOO445TKaRW0ozzt0BAAAAAAAAAAAAAADA2LV//353\nRxiwoXgOGRkZOnbsmCIiIhQTEzPo8/eXr6+vIiMjNXXqVLdlSEhI0NWrV7tc70/hUU1NjX74wx8O\naI7hQpEPAAAAAAAAAAAAAAAYAezuDtBPI7coZCjExsbq008/dWsGHx8fTZs2TbGxsbrjjju0efNm\nffjhh/2a6/nnn1dJSYlmz56t/Pz8QU46uCjyAQAAAAAAAAAAAAAAGKHs9tFa/DR0SkpKOu24s337\n9n7Nc+rUKf32t7/VHXfcoe9///sjvshn5B4kBgAAAAAAAAAAAAAAMMZkZGTIZDLp2LFjkqTHH39c\nJpPJ8YiIiOjUv6ysTKmpqYqKipKPj48CAgI0e/Zsbdq0SU1NTU7vkZKSIpPJpLS0NDU2NspsNisq\nKkre3t4KDQ3Vo48+qvPnzzsdm5ub6zRHR8XFxUpNTVV0dLT8/f3l7++v6dOna+XKlcrNze3fC9PB\nYByp1dbWptWrV8swDG3ZsmVEH9PVjp18AAAAAAAA0COLxSKLxeLuGAAAAAAAjAk+Pj4KCwtTZWWl\nmpubFRAQIG9vb0d7aGio4+sTJ07ovvvuk81mk2EY8vf3V3NzswoKClRQUKCdO3cqKytLISEhTu/V\n2Nio+fPnKz8/XxMmTJCXl5cqKiqUmZmpd999VwcOHNC8efOcju2uKGbPnj1asWKFGhoaJEne3t7y\n9vbWuXPnVFhYqMOHD6uoqKi/L8+gefnll3Xy5Ek9+eSTmjVrlv7yl7+4O1Kv2MkHAAAAAAAAPUpL\nS3N3BAAAAAAAxoykpCRdvnxZc+fOlSSlp6fr0qVLjkf7kVI2m00PPPCAbDabZsyYoRMnTqiqqkrV\n1dXavXu3AgMDdfr0aS1btqzbe23ZskVnzpzRzp07VVNTI5vNplOnTmnmzJmqq6tTUlKSqqqqXM7+\n3nvvKTk5WQ0NDYqPj1dBQYFqa2tltVpVVVWlt99+WwsXLhzYCzQISkpK9LOf/UyhoaF68cUX3R3H\nZRT5AAAAAAAAoEdms9ndEQAAAAAAwD94+eWXVVpaqsDAQGVlZWnWrFmSJJPJpAcffFCZmZmSpEOH\nDiknJ8fpHFeuXNHWrVu1bNkyeXh4SJJiYmJ08OBBBQcHq6ysTK+88orLmdatW6fW1lbFxcXp4MGD\njkyS5OfnpyVLlmjbtm39fcqD5oc//KFqamq0ceNGBQQEuDuOyyjyAQAAAAAAQI84qgsAAAAAgJHn\nrbfekiStXLmy0xFe7e69917HbkBvvvmm0znCw8P1yCOPdLkeHBys1atXd7pPbwoLC1VQUCDDMLRx\n40ZH0dBI84c//EHvvPOO5s2bp3/5l39xd5w+ocgHAAAAAAAAAAAAAABgFGlqatKZM2dkGIYWLFjQ\nbb/4+HhJ0gcffOC0PS4urtux7W0ff/yxWlpaes2Ul5cnSQoKClJsbGyv/d2htrZWa9eu1fjx4/W7\n3/3O3XH6jCIfAAAAAAAAAAAAAACAUaSyslJ2u12SdPPNN3fbr72tvLy8x3ZnpkyZIklqbW2VzWbr\nNVNZWZkk6dZbb+21r7usX79excXFeuqpp3Tbbbe5O06fjXN3AAAAAAAAAAAAAAAAAPRPQ0ODuyOM\nCn/961+Vnp6usLAwpaamqqamplN7Y2Oj4+va2lrZ7XZNmDBB48ePH+6o3WInHwAAAAAAAAAAAAAA\ngFEkKChIhmHIbrfriy++6LbfxYsXJUkhISFO20tKSrode+nSJUmSh4eHAgMDe800adIkSdKFCxd6\n7esOFy9eVFtbm8rKyjRlyhRNnDix0+PJJ5+UJNntdvn7+2vixIl68cUX3Zy6M4p8AAAAAAAA0COL\nxeLuCAAAAAAAjDkm07WSjvZjuTry9PTU7bffLknKycnpdo4jR45IkmbOnOm0/ejRo92ObW+Ljo7W\nuHG9HxQ1Z84cSdeOEsvPz++1/3AzDMPxp7PHP/Z1dt3dKPIBAAAAAABAj9LS0twdAQAAAACAMWfi\nxImSJJvN5rT9oYcekiRlZGSotLS0S3tWVpby8vJkGIaSkpKczvH5558rMzOzy/XKykpt3bpVkrR0\n6VKX8kZGRurOO++U3W7XM888o5aWFpfGDZe4uDi1tbWptbXV6WOtWl0cAAAgAElEQVTHjh2SrhX4\ntF9bv369m1N3RpEPAAAAAAAAemQ2m90dAQAAAACAMSc6OlqStHfvXl29erVL+9q1azV58mTV19cr\nISFBJ0+elCS1trZqz549Sk5OliTdc889mj9/vtN7BAQEaNWqVXr99dfV2toqSfroo4+0ePFiWa1W\nhYWFac2aNS5n3rRpkzw8PHT8+PFOmSSpurpamZmZWr58ucvzdae2tlZWq1UVFRWyWq1qbm6WJNXV\n1TmuWa1W1dfXuzynsx2TRhrDPhpSuqh9m6Qb6CkBAAAAAIbY9S13WUtKrKsBAACA4dK+FunhhJUx\nY8GCa3+yFgFuPK5+hj/6fz4zND9TOXv2rGJiYtTU1CQPDw+FhoZq/PjxuuWWW3T8+HFJUkFBgRIS\nEhy7/fj5+am5uVmNjY2SpJiYGGVnZ+umm27qNHdKSopeffVVPfvss8rJyVF+fr48PT01YcIEVVdX\nS5J8fX114MAB3X333Z3G5ubmKj4+XuHh4frss8+65N61a5dSUlIcGby8vOTt7e3I2N24vmjP3xuz\n2ezyLy9lZGToiSeecOzk0xd9rVfpb30LO/kAAAAAAAAAAAAAAIARwBilj6ERGRmp7OxsJSQkKDAw\nUF9++aWKi4tVUlLi6BMbG6tPPvlE69atU2RkpFpbW+Xp6anY2Fi99NJLys/P71Lg05GXl5dyc3O1\nfv16/T979x8WZZ3vf/x1D4b8EAlJKKxW2i2Ig9Jqk5V5FM0N5exWmyKKbrSXXp113X6s53Tl1XWc\n4dprt7OeXVbb2jZPR1mtDmVql50wIYW0LZA09WhanU2TNNCBQQgE+THfP/gO6jLAyK97YJ6P65pr\nvObzue/7NbeDF5/m3fsTGxur5uZmRUVFaf78+dq/f3+HAh/p0qIsz+bNm6ejR49q2bJliouLk8Vi\nUWtrqxISErRkyRKvinO6YxiG148rOaevo5MPAAAAAMCvDf7/U6wvsa4GAAAABgqdfC6ikw8wdHn7\nHX5qaqry8vIGIlK/mT17tt555x2zY3jN3QnHbrdr5cqVZscZ9Aaqk8+wK4sFAAAAAAAAAAAAAADQ\ndwZTcQxgJrbrAgAAAAAAAAAAAAAAAHwcRT4AAAAAAADokt1uNzsCAAAAAACA32O7LgAAAAAAAHQp\nKyuLQh8AAAAAAIYQwzBkGIapGaxWq8rKyryen56ertWrV/djIt9HkQ8AAAAAAAC6ZLPZzI4AAAAA\nAAD60Pr167V+/XpTMzgcDp09e9br+TU1Nf2YZnAwXC6Xy+wQfcVdZTaE3hIAAAAAoJ9d/D+WWEtK\nrKsBAACAgeJeixQWmhzEByQntz2zFgGGHr7Dh7+40s96T382LFcWCwAAAAAAAAAAAAAAAMBAo8gH\nAAAAAAAAAAAAAAAA8HEU+QAAAAAAAAAAAAAAAAA+jiIfAAAAAAAAAAAAAAAAwMdR5AMAAAAAAIAu\n2e12syMAAAAAAAD4PcPlcrnMDtFXDMOQJA2htwQAAAAA6GfutaTEWlJiXQ3PDMPgcwEAANDH3GuR\nwkKTg/iA5OS2Z37nBIYevsOHv7jSz3pPfzbo5AMAAAAAAIAu2Ww2syMAAAAAAAD4PTr5AAAAAAD8\nGp18LsW6GgAAABgodPK5iE4+wNDFd/jwF3TyAQAAAAAAAAAAAAAAACCJIh8AAAAAAAAAAAAAAADA\n51HkAwAAAAAAAAAAAAAAAPg4inwAAAAAAAAAAAAAAADglaKiIlksFsXGxpodxe9Q5AMAAAAAAIAu\n2e12syMAAAAAAIaw1NRUGYYxqB+pqal9fl9ycnKUlZWlgwcP9vm5+4JhGKZdu7i4WGvWrNHChQsV\nHx8vi8Uii8WiFStWdHvstGnT2ud39vjFL34xAO/iyg0zOwAAAAAAAAB8W1ZWFoU+AAAAAIB+k5eX\nZ3aEXuuP95CTk6Pdu3crNjZWSUlJfX7+ngoNDVVcXJyuv/560zKkpKSopqamw+tXUngUHh6u4ODg\nTsd8EUU+AAAAAAAA6JLNZjM7AgAAAADAH9jNDtBDdrMDDCyr1aqjR4+amiEkJES33nqrrFarbr/9\ndq1evVoHDhy4onOsWbNGP/nJT/opYf+gyAcAAAAAAABdoosPAAAAAADmcblcZkfwOadOnbqsa8+6\ndetMTDNwLGYHAAAAAAAAAAAAAAAAQJucnBxZLBbt3r1bkvTII4/IYrG0P2JjYy+bX1FRoeXLlys+\nPl4hISEKDw/XpEmTlJ2drQsXLni8RmZmpiwWi7KystTY2Cibzab4+HgFBwcrKipKCxYs0BdffOHx\n2KKiIo85LlVWVqbly5crMTFRYWFhCgsLU0JCghYvXqyioqKe3ZhLXMm2XEMJnXwAAAAAAAAAAAAA\nAAB8REhIiKKjo1VVVaWmpiaFh4crODi4fTwqKqr9z3v37tWsWbPkdDplGIbCwsLU1NSk0tJSlZaW\nauPGjcrPz9fo0aM9XquxsVHTpk1TSUmJhg8frqCgIFVWVio3N1fbtm3T9u3bNWXKFI/HdlZos3nz\nZi1atEgNDQ2SpODgYAUHB+vzzz/XsWPHtHPnTh0/frynt6fPDMYOSXTyAQAAAAAAAAAAAAAA8BFp\naWn65ptvdNddd0mS1qxZo9OnT7c/SkpKJElOp1MPPPCAnE6nxo8fr71796q6ulq1tbXatGmTIiIi\ndPDgQWVkZHR6rRdffFGHDx/Wxo0b9e2338rpdGr//v2aMGGC6uvrlZaWpurqaq+zf/jhh0pPT1dD\nQ4OmT5+u0tJS1dXVyeFwqLq6Wlu3btWMGTN6d4P6yO9+9zvFxMQoMDBQo0eP1r333qs///nPamxs\nNDtapyjyAQAAAAAAAAAAAAAAGGSef/55lZeXKyIiQvn5+Zo4caIkyWKx6KGHHlJubq4k6b333lNh\nYaHHc5w7d05r165VRkaGAgICJElJSUnasWOHIiMjVVFRoRdeeMHrTE8++aRaWlo0depU7dixoz2T\nJI0YMUL333+/Xn755Z6+5T716aefqrq6WmFhYaqqqtKuXbu0dOlS3XHHHSorKzM7nkcU+QAAAAAA\nAKBLdrvd7AgAAAAAAODvvPnmm5KkxYsXX7aFl9vMmTPbuwG98cYbHs8xduxYzZ8/v8PrkZGRevTR\nRy+7TneOHTum0tJSGYahVatWtRcN+Zrk5GRt3LhR33zzjerr61VZWany8nL95je/0fDhw/W///u/\nmj17tpqamsyO2gFFPgAAAAAAAOhSVlaW2REAAAAAAMAlLly4oMOHD8swDCUnJ3c6b/r06ZKkTz75\nxOP41KlTOz3WPXbkyBE1Nzd3m6m4uFiSNGrUKFmt1m7nm8VmsykjI+OywqjRo0fr6aef1ubNmyW1\nveecnByTEnaOIh8AAAAAAAB0yWazmR0BAAAAAABcoqqqSi6XS5I0ZsyYTue5x86ePdvluCcxMTGS\npJaWFjmdzm4zVVRUSJJuvPHGbuf6qtmzZ+sf//EfJUlvv/22yWk6osgHAAAAAAAAXWK7LgAAAAAA\nfFdDQ4PZEYaUSZMmSZKOHz9ucpKOKPIBAAAAAAAAAAAAAAAYREaNGiXDMORyufTVV191Ou/rr7+W\n1LYdlSenTp3q9NjTp09LkgICAhQREdFtpmuvvVaSdPLkyW7n+jJ3hyRfRJEPAAAAAAAAAAAAAACA\nj7FY2ko6PBWdBAYGaty4cZKkwsLCTs+xa9cuSdKECRM8jr///vudHuseS0xM1LBhw7rNe+edd0pq\n20qspKSk2/m+yp09NjbW5CQdUeQDAAAAAAAAAAAAAADgY0aOHClJcjqdHsfnzJkjScrJyVF5eXmH\n8fz8fBUXF8swDKWlpXk8x4kTJ5Sbm9vh9aqqKq1du1aSNHfuXK/yxsXF6Y477pDL5dJTTz2l5uZm\nr47zJe+++6727NkjSUpNTTU5TUcU+QAAAAAAAAAAAAAAAPiYxMRESdKWLVtUU1PTYXzZsmW67rrr\ndP78eaWkpGjfvn2SpJaWFm3evFnp6emSpHvvvVfTpk3zeI3w8HAtWbJEr732mlpaWiRJhw4d0n33\n3SeHw6Ho6GgtXbrU68zZ2dkKCAjQnj17LsskSbW1tcrNzdXChQu9Pl9n6urq5HA4VFlZKYfDoaam\nJklSfX19+2sOh0Pnz5+/7Lh///d/15IlS1RUVKS6urr218+ePatVq1bpxz/+sSQpPj5eP/3pT3ud\ns69R5AMAAAAAAIAu2e12syMAAAAAAOB3Fi1apMDAQH3wwQeKjIzUmDFjNHbsWE2ZMkWSdPXVV+ut\nt95SRESEDh06JKvVqpEjR2rEiBGaO3euqqurlZSUpFdffbXTa/zsZz9TYmKiFi5cqNDQUIWHh+u2\n227Tvn37FBoaqk2bNik8PNzrzHfffbdeeeUVDR8+XLt27ZLValVISIgiIyMVHh6uBQsW6MMPP+z1\nvfn5z3+uqKgojR49WlFRUfroo48kSc8991z7a1FRUVq1atVlxzU2Nuq//uu/NH36dIWFhenqq69W\nRESEoqOj9fTTT6uhoUHjx4/Xu+++q6uuuqrXOfta95umAQAAAAAAwK9lZWVR6AMAAAAA6H92swP4\nlri4OBUUFOjZZ5/Vxx9/rDNnzqi1tVUWy8V+LlarVZ9++qlWrVqlvLw8nTx5UoGBgRo/frzmzZun\nZcuWKTAwsNNrBAUFqaioSM8++6xef/11nTx5UlFRUZoxY4bsdrtuvvnmDscYhtFl7nnz5mnSpEnK\nzs5WQUGBysrK1NraqoSEBE2ePFmLFi3q+U25JEN3OTxlnTt3rpqbm/XRRx/pb3/7myorK9XU1KSY\nmBjddtttmjNnjjIyMnyywEeSDJfL5TI7RF9x/+UMobcEAAAAAOhnFxf6rCUl1tXwzG63U+QDAADQ\nx9xrkcJCk4P4gOTktmfWIsDQ4+13+KmpqcrLyxuISP1m9uzZeuedd8yO4bXMzExt2LBBdrtdK1eu\nNDvOoHel9So9rW+hkw8AAAAAAAC6RIEPAAAAAKA/DabiGMBMlu6nAAAAAAAAAAAAAAAAADATRT4A\nAAAAAAAAAAAAAACAj2O7LgAAAAAAAAAAAAAAAD9iGIYMwzA1g9VqVVlZmdfz09PTtXr16n5M5Pso\n8gEAAAAAAAAAAAAAAPAj69ev1/r1603N4HA4dPbsWa/n19TU9GOawYEiHwAAAAAAAHTJbrfLbreb\nHQMAAAAAAAwhx48fNzvCoGO4XC6X2SH6iruV1BB6SwAAAACAfnaxLTFrSYl1NTwzDIPPBQAAQB9z\nr0UKC00O4gOSk9ue+Z0TGHr4Dh/+4ko/6z392bBcWSwAAAAAAAD4G5vNZnYEAAAAAAAAv0cnHwAA\nAACAX6OTz6VYVwMAAAADhU4+F9HJBxi6+A4f/oJOPgAAAAAAAAAAAAAAAAAkUeQDAAAAAAAAAAAA\nAAAA+DyKfAAAAAAAAAAAAAAAAAAfR5EPAAAAAAAAAAAAAAAA4OMo8gEAAAAAAECX7Ha72REAAAAA\nAAD8nuFyuVxmh+grhmFIkobQWwIAAAAA9DP3WlJiLSmxroZnhmHwuQAAAOhj7rVIYaHJQXxAcnLb\nM79zAkMP3+HDX1zpZ72nPxt08gEAAAAAAECXbDab2REAAAAAAAD8Hp18AAAAAAB+jU4+l2JdDQAA\nAAwUOvlcRCcfYOjiO3z4Czr5AAAAAAAAAAAAAAAAwKcUFRXJYrEoNjbW7Ch+hyIfAAAAAAAAAAAA\nAABgmtTUVBmGMagfqampfX5fcnJylJWVpYMHD/b5ufvCxQ7ZA6+4uFhr1qzRwoULFR8fL4vFIovF\nohUrVlzRed5880396Ec/0pgxYzR8+HBde+21mjx5sv7t3/5NDoejn9L33DCzAwAAAAAAAAAAAAAA\nAP+Vl5dndoRe64/3kJOTo927dys2NlZJSUl9fv6eCg0NVVxcnK6//nrTMqSkpKimpqbD694WHtXW\n1uqhhx7Se++9J0kKCAhQeHi4KisrdebMGX300UeaNWuWrrnmmj7N3VsU+QAAAAAAAAAAAAAAANO5\nzA7QQ+b1szGH1WrV0aNHTc0QEhKiW2+9VVarVbfffrtWr16tAwcOeHVsS0uLUlNT9cEHH+g73/mO\nfvvb3+pHP/qRgoKC1NzcrM8//1xbt25VZGRkP7+LK0eRDwAAAAAAALpkt9tlt9vNjgEAAAAAgF9y\nuQZr+VP/OXXq1GVde9atW+f1sdnZ2frggw8UHR2tv/71r4qJiWkfGzZsmBISEpSQkNCnefuKxewA\nAAAAAAAA8G1ZWVlmRwAAAAAAwG/k5OTIYrFo9+7dkqRHHnlEFoul/REbG3vZ/IqKCi1fvlzx8fEK\nCQlReHi4Jk2apOzsbF24cMHjNTIzM2WxWJSVlaXGxkbZbDbFx8crODhYUVFRWrBggb744guPxxYV\nFXnMcamysjItX75ciYmJCgsLU1hYmBISErR48WIVFRX17MZcwtttuf5eU1OTfve730lq+5+aLi3w\nGQzo5AMAAAAAAIAu2Ww2syMAAAAAAOA3QkJCFB0draqqKjU1NSk8PFzBwcHt41FRUe1/3rt3r2bN\nmiWn0ynDMBQWFqampiaVlpaqtLRUGzduVH5+vkaPHu3xWo2NjZo2bZpKSko0fPhwBQUFqbKyUrm5\nudq2bZu2b9+uKVOmeDy2s0KbzZs3a9GiRWpoaJAkBQcHKzg4WJ9//rmOHTumnTt36vjx4z29Pb1S\nUFCgs2fPymKxKD093ZQMvUEnHwAAAAAAAHSJrboAAAAAABg4aWlp+uabb3TXXXdJktasWaPTp0+3\nP0pKSiRJTqdTDzzwgJxOp8aPH6+9e/equrpatbW12rRpkyIiInTw4EFlZGR0eq0XX3xRhw8f1saN\nG/Xtt9/K6XRq//79mjBhgurr65WWlqbq6mqvs3/44YdKT09XQ0ODpk+frtLSUtXV1cnhcKi6ulpb\nt27VjBkzeneDeuGjjz6SJI0dO1YjR47UH//4RyUlJSk4OFgRERFKTk7Whg0bfHaLNIp8AAAAAAAA\nAAAAAAAABpnnn39e5eXlioiIUH5+viZOnChJslgseuihh5SbmytJeu+991RYWOjxHOfOndPatWuV\nkZGhgIAASVJSUpJ27NihyMhIVVRU6IUXXvA605NPPqmWlhZNnTpVO3bsaM8kSSNGjND999+vl19+\nuadvudfcW5BFRkbqwQcf1OOPP64jR44oNDRUdXV1ev/995WZmak5c+aotbXVtJydocgHAAAAAAAA\nAAAAAABgkHnzzTclSYsXL75sCy+3mTNntncDeuONNzyeY+zYsZo/f36H1yMjI/Xoo49edp3uHDt2\nTKWlpTIMQ6tWrWovGvIl7q5E+/bt07Zt2/Too4/qzJkzcjgccjgcWrFihSRp69at+s1vfmNmVI8o\n8gEAAAAAAAAAAAAAABhELly4oMOHD8swDCUnJ3c6b/r06ZKkTz75xOP41KlTOz3WPXbkyBE1Nzd3\nm6m4uFiSNGrUKFmt1m7nm8Hdnae1tVVTpkzRiy++qFGjRkmSRo4cqV//+teaM2eOJCk7O1tNTU2m\nZfWEIh8AAAAAAAAAAAAAAIBBpKqqSi6XS5I0ZsyYTue5x86ePdvluCcxMTGSpJaWFjmdzm4zVVRU\nSJJuvPHGbueaZcSIEe1/fvzxxz3O+eUvfympbSuzffv2DUgub1HkAwAAAAAAgC7Z7XazIwAAAAAA\ngE40NDSYHWHQcBc1GYahuLg4j3NuueUWSZLL5dLXX389YNm8QZEPAAAAAAAAupSVlWV2BAAAAAAA\ncIlRo0bJMAy5XC599dVXnc5zF6mMHj3a4/ipU6c6Pfb06dOSpICAAEVERHSb6dprr5UknTx5stu5\nZklMTLyi+YZh9FOSnqHIBwAAAAAAAF2y2WxmRwAAAAAAwO9YLG0lHe5tuS4VGBiocePGSZIKCws7\nPceuXbskSRMmTPA4/v7773d6rHssMTFRw4YN6zbvnXfeKaltK7GSkpJu55vh3nvvldR2T48dO+Zx\njvt1wzA0duzYgYrmFYp8AAAAAAAA0CW26wIAAAAAYOCNHDlSkuR0Oj2Oz5kzR5KUk5Oj8vLyDuP5\n+fkqLi6WYRhKS0vzeI4TJ04oNze3w+tVVVVau3atJGnu3Lle5Y2Li9Mdd9whl8ulp556Ss3NzV4d\nN5C++93v6q677pIkrVmzxuOcP/zhD5LaOhN1VhxlFop8AAAAAAAAAAAAAAAAfIx7a6ktW7aopqam\nw/iyZct03XXX6fz580pJSdG+ffskSS0tLdq8ebPS09MltXWvmTZtmsdrhIeHa8mSJXrttdfU0tIi\nSTp06JDuu+8+ORwORUdHa+nSpV5nzs7OVkBAgPbs2XNZJkmqra1Vbm6uFi5c6PX5OlNXVyeHw6HK\nyko5HA41NTVJkurr69tfczgcOn/+fIdjf/vb38piseiDDz7Qz372M1VWVkqSampq9Mwzz2jz5s0y\nDEM2m83ntusyXJ76Og1S7ps7hN4SAAAAAKCfXVyos5aUWFcDAAAAA8W9FulihxW/kZzc9sxaBBh6\nvP0Ov31evyfqH+3/damP/x377LPPlJSUpAsXLiggIEBRUVG66qqrdMMNN2jPnj2SpNLSUqWkpLR3\n+xkxYoSamprU2NgoSUpKSlJBQYGuueaay86dmZmpDRs26Omnn1ZhYaFKSkoUGBio4cOHq7a2VpIU\nGhqq7du365577rns2KKiIk2fPl1jx47Vl19+2SH366+/rszMzPYMQUFBCg4Obs/Y2XFXwp2/Ozab\nzeM25C+99JKWLVumlpYWGYahq6++WufOnVNra6sMw9Bjjz3W3tHHG1dar9LT+hY6+QAAAAAAAAAA\nAAAAANMZg/TRX+Li4lRQUKCUlBRFRETozJkzKisr06lTp9rnWK1Wffrpp3ryyScVFxenlpYWBQYG\nymq16ne/+51KSko6FPhcKigoSEVFRVq5cqViY2PV3NysqKgozZ8/X/v37+9Q4COp2+428+bN09Gj\nR7Vs2TLFxcXJYrGotbVVCQkJWrJkiVfFOd0xDMPrhyePPvqoPvroI82bN08xMTGqq6vTNddcox/+\n8Ifavn37FRX4DCQ6+QAAAAAA/BqdfC7FuhoAAAAYKHTyuYhOPsDQ5e13+KmpqcrLyxuISP1m9uzZ\neuedd8yO4TV3Jxy73a6VK1eaHWfQo5MPAAAAAAAAfILdbjc7AgAAAABgCHvnnXfkcrkG9WMwFfhg\n8KLIBwAAAAAAAF3KysoyOwIAAAAAAIDfo8gHAAAAAAAAXbLZbGZHAAAAAAAA8HvDzA4AAAAAAAAA\n38Z2XQAAAAAADC2GYcgwDFMzWK1WlZWVeT0/PT1dq1ev7sdEvo8iHwAAAAAAAAAAAAAAAD+yfv16\nrV+/3tQMDodDZ8+e9Xp+TU1NP6YZHCjyAQAAAAAAAAAAAAAAwIA6fvy42REGHYvZAQAAAAAAAAAA\nAAAAAAB0jSIfAAAAAAAAAAAAAAAAwMdR5AMAAAAAAIAu2e12syMAAAAAAAD4PcPlcrnMDtFXDMOQ\nJA2htwQAAAAA6GfutaTEWlJiXQ3PDMPgcwEAANDH3GuRwkKTg/iA5OS2Z37nBIYevsOHv7jSz3pP\nfzbo5AMAAAAAAIAu2Ww2syMAAAAAAAD4PTr5AAAAAAD8Gp18LsW6GgAAABgodPK5iE4+wNDFd/jw\nF3TyAQAAAAAAAAAAAAAAACCJIh8AAAAAAAAAAAAAAADA51HkAwAAAAAAAAAAAAAAAPg4inwAAAAA\nAAAAAAAAAAAAH0eRDwAAAAAAALpkt9vNjgAAAAAAAOD3KPIBAAAAAABAl7KyssyOAAAAAAAAfERR\nUZEsFotiY2PNjuJ3KPIBAAAAAABAl2w2m9kRAAAAAABDWGpqqgzDGNSP1NTUPr8vOTk5ysrK0sGD\nB/v83H3BMAzTrl1cXKw1a9Zo4cKFio+Pl8VikcVi0YoVK7o8Licnp31ud4+bbrppgN6N94aZHQAA\nAAAAAAC+je26AAAAAAD9KS8vz+wIvdYf7yEnJ0e7d+9WbGyskpKS+vz8PRUaGqq4uDhdf/31pmVI\nSUlRTU1Nh9e7KzwKCQlRdHR0l/PKy8slSRMnTuxdyH5AkQ8AAAAAAAAAAAAAADBfYaHZCXomOdns\nBAPKarXq6NGjpmYICQnRrbfeKqvVqttvv12rV6/WgQMHuj0uLS1NaWlpnY4fOHBAEyZMkCRlZmb2\nVdw+Q5EPAAAAAAAAAAAAAACAj3K5XGZH8DmnTp26rBvPunXr+uS8OTk5kqTo6GjNmjWrT87Zlyxm\nBwAAAAAAAAAAAAAAAECbnJwcWSwW7d69W5L0yCOPyGKxtD9iY2Mvm19RUaHly5crPj5eISEhCg8P\n16RJk5Sdna0LFy54vEZmZqYsFouysrLU2Ngom82m+Ph4BQcHKyoqSgsWLNAXX3zh8diioiKPOS5V\nVlam5cuXKzExUWFhYQoLC1NCQoIWL16soqKint2YS3S3LVdPNDU16bXXXpMkZWRkyGLxvZIaOvkA\nAAAAAAAAAAAAAAD4iJCQEEVHR6uqqkpNTU0KDw9XcHBw+3hUVFT7n/fu3atZs2bJ6XTKMAyFhYWp\nqalJpaWlKi0t1caNG5Wfn6/Ro0d7vFZjY6OmTZumkpISDR8+XEFBQaqsrFRubq62bdum7du3a8qU\nKR6P7azQZvPmzVq0aJEaGhokScHBwQoODtbnn3+uY8eOaefOnTp+/HhPb0+/2b59uxwOhwzD0MMP\nP2x2HI98r+wIAAAAAAAAPsVut5sdAQAAAAAAv5GWlqZvvvlGd911lyRpzZo1On36dPujpKREkuR0\nOvXAAw/I6XRq/Pjx2rt3r6qrq1VbW6tNmzYpIiJCBw8eVEZGRqfXevHFF3X48GFt3LhR3377rZxO\np/bv368JEyaovr5eaWlpqq6u9jr7hx9+qPT0dDU0NGj69O5cTCcAACAASURBVOkqLS1VXV2dHA6H\nqqurtXXrVs2YMaN3N6if/OUvf5EkJSUlady4cSan8YwiHwAAAAAAAHQpKyvL7AgAAAAAAODvPP/8\n8yovL1dERITy8/M1ceJESZLFYtFDDz2k3NxcSdJ7772nwsJCj+c4d+6c1q5dq4yMDAUEBEhqK3LZ\nsWOHIiMjVVFRoRdeeMHrTE8++aRaWlo0depU7dixoz2TJI0YMUL333+/Xn755Z6+5X5TWVmp//mf\n/5HUtpWZr6LIBwAAAAAAAF2y2WxmRwAAAAAAAH/nzTfflCQtXrz4si283GbOnNneDeiNN97weI6x\nY8dq/vz5HV6PjIzUo48+etl1unPs2DGVlpbKMAytWrWqvWhoMPjv//5vNTU16aqrrtKCBQvMjtOp\nPiny+frrr/XTn/5UMTExCgoKUmxsrJ588kmvWzZVVVXp5Zdf1oMPPqjvfe97CgkJ0dVXX60pU6Zo\n3bp1crlcfRETAAAAAAAAPcB2XQAAAAAA+JYLFy7o8OHDMgxDycnJnc6bPn26JOmTTz7xOD516tRO\nj3WPHTlyRM3Nzd1mKi4uliSNGjVKVqu12/m+xL1V16xZs3TNNdeYnKZzw3p7gr/97W+6++67dfbs\nWT3wwAOKj49XSUmJ1qxZo3fffVd//etfNWrUqC7P8cYbb2jp0qWKiYlRcnKybrzxRpWXl2vLli1a\nvHixtm/frk2bNvU2KgAAAAAAAAAAAAAAwKBXVVUll8slwzA0ZsyYTue5x86ePdvluCcxMTGSpJaW\nFjmdTo0ePbrLTBUVFZKkG2+8sct5vubTTz/Vvn37JPn2Vl1SHxT5LF26VGfPntUf//hH/fznP29/\nffny5frDH/6gZ555Ri+++GKX54iLi9Pbb7+t1NTUy17/zW9+ozvuuEObN2/Wli1b9OMf/7i3cQEA\nAAAAAAAAAAAAAIaMhoYGsyMMau4uPpGRkfqnf/onk9N0rVfbdf3tb39TQUGBYmNjLyvwkaSsrCyF\nhITolVdeUX19fZfnSU5O7lDgI0nR0dH653/+Z0nS+++/35uoAAAAAAAAAAAAAAAAQ8KoUaNkGIZc\nLpe++uqrTud9/fXXktRpF55Tp051euzp06clSQEBAYqIiOg207XXXitJOnnyZLdzfUVLS4teeeUV\nSdL8+fM1bFive+X0q14V+RQWFkqSfvCDH3QYGzFihCZPnqy6urr2fdd6wn0Dff1GAgAAAAAAAAAA\nAAAA9BWLpa2kw+VydRgLDAzUuHHjJF2s3fBk165dkqQJEyZ4HO+q4Yp7LDEx0auajTvvvFNS21Zi\nJSUl3c73BQUFBfrmm29kGIbPb9Ul9bLI57PPPpMk3XLLLR7Hb775ZknSF1980aPzNzc3a8OGDZKk\nlJSUHp0DAAAAAAAAvWO3282OAAAAAACA3xk5cqQkyel0ehyfM2eOJCknJ0fl5eUdxvPz81VcXCzD\nMJSWlubxHCdOnFBubm6H16uqqrR27VpJ0ty5c73KGxcXpzvuuEMul0tPPfWUmpubvTrOTO6tuhIS\nEjothPIlvSryOXfunCQpPDzc47j79erq6h6d/+mnn9aRI0eUmpqqmTNn9iwkAAAAAAAAeiUrK8vs\nCAAAAAAA+J3ExERJ0pYtW1RTU9NhfNmyZbruuut0/vx5paSkaN++fZLatqDavHmz0tPTJUn33nuv\npk2b5vEa4eHhWrJkiV577TW1tLRIkg4dOqT77rtPDodD0dHRWrp0qdeZs7OzFRAQoD179lyWSZJq\na2uVm5urhQsXen2+ztTV1cnhcKiyslIOh0NNTU2SpPr6+vbXHA6Hzp8/3+k5zp07p7feekuS9PDD\nD/c600DoVZFPf3ruueeUnZ2tW2+9VRs3bjQ7DgAAAAAAgN+y2WxmRwAAAAAAwO8sWrRIgYGB+uCD\nDxQZGakxY8Zo7NixmjJliiTp6quv1ltvvaWIiAgdOnRIVqtVI0eO1IgRIzR37lxVV1crKSlJr776\naqfX+NnPfqbExEQtXLhQoaGhCg8P12233aZ9+/YpNDRUmzZt6rTxiyd33323XnnlFQ0fPly7du2S\n1WpVSEiIIiMjFR4ergULFujDDz/s9b35+c9/rqioKI0ePVpRUVH66KOPJLXVmrhfi4qK0qpVqzo9\nxxtvvKHGxkYNGzZMixYt6nWmgdD9pmldcP9Fujv6/D3361dfffUVnff555/XE088oX/4h3/Qzp07\nr/h4AAAAAAAA9B226wIAAAAADIjkZLMT+JS4uDgVFBTo2Wef1ccff6wzZ86otbVVFsvFfi5Wq1Wf\nfvqpVq1apby8PJ08eVKBgYEaP3685s2bp2XLlikwMLDTawQFBamoqEjPPvusXn/9dZ08eVJRUVGa\nMWOG7Ha7br755g7HGIbRZe558+Zp0qRJys7OVkFBgcrKytTa2qqEhARNnjy5TwpqDMPoNkd3WTds\n2CDDMDRz5kxFR0f3OtNA6FUnn/j4eEnSZ5995nH8iy++kCTdcsstXp9z9erVeuyxxzRu3DgVFhYq\nKirqinO5/zI9PaZNmybDMDr9j1N2u51xxhlnnHHGGWecccYZZ5xxPxrvnF2S8f+f/W/cV/5+GGec\nccYZZ5xxxhln3B/Gc3LavtfOyfE4POTH3Xz174dxxhnv+bi3Zs+e3avjfUF/vYcpU6YoLy9PZ86c\nUVNTk1paWvTll19eNic6Olq///3vdfToUdXV1encuXMqKSnRL3/5yy4LfNyGDx8uu93efnx5eble\nffVVjwU+kjR16lS1trZ2yHGpsWPH6rnnntPRo0f17bffyul06vDhw3rppZd0zz33XNlN8GD9+vVq\naWnp9rFy5cpOz7Fnzx61tLTonXfe6XUeT9z1KZ4ePWW4XC5XTw/+8ssv9b3vfU+xsbH6v//7v8uC\n1NbW6rrrrpNhGDpz5oyCg4O7Pd9vf/tbrVixQt///vdVUFCgUaNGXVEe9/V78ZYAAAAAAH7m4lqW\ntWRb0Q/ragAAAGAguNcihYUmB/EB7sYdrEWAoYfv8H1XZmamNmzYILvd3mUhDLxzpZ/1nv5s9KqT\nz0033aQf/OAHOn78uF544YXLxmw2m+rr67Vo0aL2Ap/m5mYdO3bMYzXXr371K61YsUK33367du7c\necUFPgAAAAAAAAAAAAAAAMBQNay3J/jTn/6ku+++W4899ph27typ+Ph4lZSUqKioSHFxcfr1r3/d\nPvfrr79WQkKCvvOd7+j48ePtr//lL3+RzWZTQECA7rnnHq1evbrDdWJjY/Xwww/3Ni4AAAAAAAAA\nAAAAAAAw6PS6yOemm27Sxx9/rJUrV+rdd99VXl6eYmJi9MQTT8hmsyk8PLzDMX+/v9iJEyckSa2t\nrR4LfKS2vcoo8gEAAAAAABh4drtddrvd7BgAAAAAAKCPGIbRoXZjoFmtVpWVlXk9Pz09vdOaEn9h\nuIbQ5nfs5wcAAAAAuFIX/2MGa0mJdTU8MwyDzwUAAEAfc69FCgtNDuIDkpPbnvmdExh6+A4fXYmN\njdXJkye9nv/www9r3bp1/Zio5670s97Tn41ed/IBAAAAAADA0Gaz2cyOAAAAAAAAhpjjx4+bHWHQ\noZMPAAAAAMCv0cnnUqyrAQAAgIFCJ5+L6OQDDF18hw9/MVCdfCxXFgsAAAAAAAAAAAAAAADAQKPI\nBwAAAAAAAAAAAAAAAPBxFPkAAAAAAAAAAAAAAAAAPo4iHwAAAAAAAAAAAAAAAMDHUeQDAAAAAACA\nLtntdrMjAAAAAAAA+D3D5XK5zA7RVwzDkCQNobcEAAAAAOhn7rWkxFpSYl0NzwzD4HMBAADQx9xr\nkcJCk4P4gOTktmd+5wSGHr7Dh7+40s96T3826OQDAAAAAACALtlsNrMjAAAAAAAA+D06+QAAAAAA\n/BqdfC7FuhoAAAAYKHTyuYhOPsDQxXf48Bd08gEAAAAAAAAAAAAAAAAgiSIfAAAAAAAAAAAAAAAA\nwOdR5AMAAAAAAAAAAAAAAACvFBUVyWKxKDY21uwofociHwAAAAAAAAAAAAAAYJrU1FQZhjGoH6mp\nqX1+X3JycpSVlaWDBw/2+bn7gmEYpl27uLhYa9as0cKFCxUfHy+LxSKLxaIVK1Z4dfyJEyf0xBNP\nKDExUSNGjFBgYKBiYmJ0//336+233+7n9D03zOwAAAAAAAAA8G12u112u93sGAAAAACAISovL8/s\nCL3WH+8hJydHu3fvVmxsrJKSkvr8/D0VGhqquLg4XX/99aZlSElJUU1NTYfXvSk8ys/P14MPPqjz\n589LkoYNG6aQkBBVVFTo7bff1ttvv62f/OQnysnJ6evYvUaRDwAAAAAAALqUlZVFkQ8AAAAAoN8V\nqtDsCD2SrGSzIwwoq9Wqo0ePmpohJCREt956q6xWq26//XatXr1aBw4c6Pa4uro6ZWRk6Pz58/ru\nd7+rl156SdOmTZPFYlFFRYV+9atf6U9/+pM2bNigGTNmaNGiRQPwbrxHkQ8AAAAAAAC6ZLPZzI4A\nAAAAAIDfcrlcZkfwOadOnbqsa8+6deu8Om737t2qrKyUYRjKycnR5MmT28eio6P1/PPP68iRI3r/\n/fe1ZcsWnyvysZgdAAAAAAAAAL6NLj4AAAAAAAycnJwcWSwW7d69W5L0yCOPyGKxtD9iY2Mvm19R\nUaHly5crPj5eISEhCg8P16RJk5Sdna0LFy54vEZmZqYsFouysrLU2Ngom82m+Ph4BQcHKyoqSgsW\nLNAXX3zh8diioiKPOS5VVlam5cuXKzExUWFhYQoLC1NCQoIWL16soqKint2YS3izLZcn7i26JOn7\n3/++xzkTJkyQJNXX1/foGv2JTj4AAAAAAAAAAAAAAAA+IiQkRNHR0aqqqlJTU5PCw8MVHBzcPh4V\nFdX+571792rWrFlyOp0yDENhYWFqampSaWmpSktLtXHjRuXn52v06NEer9XY2Khp06appKREw4cP\nV1BQkCorK5Wbm6tt27Zp+/btmjJlisdjOyu02bx5sxYtWqSGhgZJUnBwsIKDg/X555/r2LFj2rlz\np44fP97T29Mrt912mywWi1pbW7V//37dc889Hebs27dP0sViH19CJx8AAAAAAAAAAAAAAAAfkZaW\npm+++UZ33XWXJGnNmjU6ffp0+6OkpESS5HQ69cADD8jpdGr8+PHau3evqqurVVtbq02bNikiIkIH\nDx5URkZGp9d68cUXdfjwYW3cuFHffvutnE6n9u/frwkTJqi+vl5paWmqrq72OvuHH36o9PR0NTQ0\naPr06SotLVVdXZ0cDoeqq6u1detWzZgxo3c3qBduuukmPf7445Lauhnt3LlTzc3NkqTy8nItW7ZM\nu3fv1pgxY/Qv//IvpuXsDEU+AAAAAAAAAAAAAAAAg8zzzz+v8vJyRUREKD8/XxMnTpQkWSwWPfTQ\nQ8rNzZUkvffeeyosLPR4jnPnzmnt2rXKyMhQQECAJCkpKUk7duxQZGSkKioq9MILL3id6cknn1RL\nS4umTp2qHTt2tGeSpBEjRuj+++/Xyy+/3NO33Cd+//vf689//rOCgoI0c+ZMBQUFaeTIkYqJidH6\n9ev1k5/8RHv37lVkZKSpOT2hyAcAAAAAAAAAAAAAAGCQefPNNyVJixcvvmwLL7eZM2e2dwN64403\nPJ5j7Nixmj9/fofXIyMj9eijj152ne4cO3ZMpaWlMgxDq1atai8a8jWtra2qra1VfX29JMnlcqmu\nrk6GYaipqUm1tbWqqqoyOaVnFPkAAAAAAACgS3a73ewIAAAAAADgEhcuXNDhw4dlGIaSk5M7nTd9\n+nRJ0ieffOJxfOrUqZ0e6x47cuRI+5ZWXSkuLpYkjRo1Slartdv5ZsnIyNC//uu/qra2Vi+99JJO\nnDihmpoaFRcXKyUlRVu3btXkyZP18ccfmx21A4p8AAAAAAAA0KWsrCyzIwAAAAAAgEtUVVXJ5XJJ\nksaMGdPpPPfY2bNnuxz3JCYmRpLU0tIip9PZbaaKigpJ0o033tjtXLNs375dr7/+uiwWi7Zu3aol\nS5bohhtuUGhoqKxWq7Zt26YZM2aopqZGv/jFL8yO2wFFPgAAAAAAAOiSzWYzOwIAAAAAAOhEQ0OD\n2REGjbfeekuSNHHiRN1zzz0e5zzxxBOSpL1797YXLvkKinwAAAAAAADQJbbrAgAAAADAt4waNUqG\nYcjlcumrr77qdN7XX38tSRo9erTH8VOnTnV67OnTpyVJAQEBioiI6DbTtddeK0k6efJkt3PN4r5X\nsbGxnc65dKyre2sGinwAAAAAAAAAAAAAAAB8jMXSVtLh3pbrUoGBgRo3bpwkqbCwsNNz7Nq1S5I0\nYcIEj+Pvv/9+p8e6xxITEzVs2LBu8955552S2rYSKykp6Xa+GUaMGCGp6+KdS8fCwsL6PdOVoMgH\nAAAAAAAAAAAAAADAx4wcOVKS5HQ6PY7PmTNHkpSTk6Py8vIO4/n5+SouLpZhGEpLS/N4jhMnTig3\nN7fD61VVVVq7dq0kae7cuV7ljYuL0x133CGXy6WnnnpKzc3NXh03kNyFSPv27dOBAwc8zvnP//xP\nSVJ4eLji4+MHLJs3KPIBAAAAAAAAAAAAAADwMYmJiZKkLVu2qKampsP4smXLdN111+n8+fNKSUnR\nvn37JEktLS3avHmz0tPTJUn33nuvpk2b5vEa4eHhWrJkiV577TW1tLRIkg4dOqT77rtPDodD0dHR\nWrp0qdeZs7OzFRAQoD179lyWSZJqa2uVm5urhQsXen2+ztTV1cnhcKiyslIOh0NNTU2SpPr6+vbX\nHA6Hzp8/f9lxDz/8sMLCwtTc3Kz7779f27ZtU2NjoySprKxMixcv1ltvvSVJWrp0qQzD6HXWvmS4\nPPV1GqTcN3cIvSUAAAAAQD+7uFBnLSmxrgYAAAAGinst0sUOK34jObntmbUIMPR4+x1++7+JGpz/\nKCar7R+yvv537LPPPlNSUpIuXLiggIAARUVF6aqrrtINN9ygPXv2SJJKS0uVkpLS3u1nxIgRampq\nai9cSUpKUkFBga655prLzp2ZmakNGzbo6aefVmFhoUpKShQYGKjhw4ertrZWkhQaGqrt27frnnvu\nuezYoqIiTZ8+XWPHjtWXX37ZIffrr7+uzMzM9gxBQUEKDg5uz9jZcVfCnb87NptNNpvtstfeffdd\nzZ07V3V1dZLaPn/BwcGqr69vn/PDH/5Qmzdv9mqbMvc5JO8/Az2tb/EuDQAAAAAAAPyW3W6X3W43\nOwYAAAAAYIhzF8ugTVxcnAoKCvTss8/q448/1pkzZ9Ta2iqL5eKmTVarVZ9++qlWrVqlvLw8nTx5\nUoGBgRo/frzmzZunZcuWKTAwsNNrBAUFqaioSM8++6xef/11nTx5UlFRUZoxY4bsdrtuvvnmDsd0\n191m3rx5mjRpkrKzs1VQUKCysjK1trYqISFBkydP1qJFi3p+Uy7J4E2XHU9zUlJSdPjwYT333HN6\n7733dPz4cTU2Nuraa6/VhAkTtGjRIs2bN6/XGfsDnXwAAAAAAH6NTj6XYl0NzwzD4HMBAADQx+jk\ncxGdfIChy9vv8FNTU5WXlzcQkfrN7Nmz9c4775gdw2vuTjh2u10rV640O86gRycfAAAAAAAA+IS/\nb2sNAAAAAEBfGkzFMYCZLN1PAQAAAAAAgD9jqy4AAAAAAADzUeQDAAAAAAAAAAAAAAAA+Di26wIA\nAAAAAAAAAAAAAPAjhmHIMAxTM1itVpWVlXk9Pz09XatXr+7HRL6PIh8AAAAAAAAAAAAAAAA/sn79\neq1fv97UDA6HQ2fPnvV6fk1NTT+mGRwo8gEAAAAAAAAAAAAAAMCAOn78uNkRBh2L2QEAAAAAAADg\n2+x2u9kRAAAAAAAA/J7hcrlcZofoK+794obQWwIAAAAA9LOLe4+zlpRYV8MzwzD4XAAAAPQx91qk\nsNDkID4gObntmd85gaGH7/DhL670s97Tnw06+QAAAAAAAKBLNpvN7AgAAAAAAAB+j04+AAAAAAC/\nRiefS7GuBgAAAAYKnXwuopMPMHTxHT78BZ18AAAAAAAAAAAAAAAAAEiiyAcAAAAAAAAAAAAAAADw\neRT5AAAAAAAAAAAAAAAAAD6OIh8AAAAAAAAAAAAAAADAx1HkAwAAAAAAgC7Z7XazIwAAAAAAAPg9\nw+VyucwO0VcMw5AkDaG3BAAAAADoZ+61pMRaUmJdDc8Mw+BzAQAA0Mfca5HCQpOD+IDk5LZnfucE\nhh6+w4e/uNLPek9/NujkAwAAAAAAgC7ZbDazIwAAAAAAAPg9inwAAAAAAADQJbbrAgAAAAAAbkVF\nRbJYLIqNjTU7it+hyAcAAAAAAAAAAAAAAJgmNTVVhmEM6kdqamqf35ecnBxlZWXp4MGDfX7uvuDe\ncsoMxcXFWrNmjRYuXKj4+HhZLBZZLBatWLHCq+MrKyv1zDPPaNy4cQoNDdXIkSM1ceJE/cd//Icu\nXLjQz+l7bpjZAQAAAAAAAAAAAAAAgP/Ky8szO0Kv9cd7yMnJ0e7duxUbG6ukpKQ+P39PhYaGKi4u\nTtdff71pGVJSUlRTU9PhdW8Kjw4ePKhZs2apvLxckhQWFqbW1lZ98skn+uSTT/Tqq69q165dGjVq\nVJ/n7i2KfAAAAAAAAAAAAAAAgOkKC81O0DPJyWYnGFhWq1VHjx41NUNISIhuvfVWWa1W3X777Vq9\nerUOHDjQ7XHffvutfvjDH6q8vFzx8fFat26d7rzzTknSrl27lJmZqUOHDmnBggV69913+/ttXDGK\nfAAA+H/s3X+sXnV9B/D3txSkSK3AwIHbLCyuxDDINEymEvpUhz/6hyzbkInN2NQtcW6OmCxLlnDO\nTZa5uYRpNuOi0xDcD9xEdImgLfh0Ggm1woZBAiNSBRSQSss6kF/17I+7p/cit0/Lvc+95/Cc1yu5\nOaTnufe+T3tong/3zecAAAAAAABARzVN03aEzvne9773jK09n/zkJw/r8z7xiU/kvvvuy+rVq3PN\nNddkw4YNB85t2rQp//RP/5TzzjsvW7duzfXXX583vOENE8++FKvaDgAAAABAt9V13XYEAAAA6I0r\nrrgiq1atyle+8pUkye/8zu9k1apVBz5OPfXUZ7z+wQcfzPvf//6cfvrpOeaYY7Ju3bq8+tWvzuWX\nX54nn3xywe9xySWXZNWqVZmZmckTTzyRqqpy+umnZ82aNTnppJPy9re/PXfdddeCn7t9+/YFc8x3\n77335v3vf3/OOOOMrF27NmvXrs0rXvGKvOtd78r27dsX9xszz+E8lmsh1113XZLk/PPPf0bBZ+Tc\nc8/Nq171qiTJlVdeufiAy8QmHwAAAADGmpmZUfQBAACAFXLMMcfkJS95SR5++OE89dRTWbduXdas\nWXPg/EknnXTgn7/+9a/nzW9+c/bs2ZNSStauXZunnnoqO3fuzM6dO/OpT30qW7duzYknnrjg93ri\niSeycePG7NixIy94wQty9NFH54c//GGuuuqq/Pu//3uuu+66nHvuuQt+7sGKNldffXW2bNmSxx9/\nPEmyZs2arFmzJv/93/+dO+64IzfccEN27dq12N+eJfnud7+bJAsWfEY2bNiQm2++Oddff/1KxTps\nNvkAAAAAMFZVVW1HAAAAgN648MILc//99+dXfuVXkiQf/vCH8/3vf//Ax44dO5Ike/bsyQUXXJA9\ne/bkzDPPzNe//vXs3bs3+/bty7/927/luOOOy6233pqLL774oN/rox/9aG677bZ86lOfyv/+7/9m\nz549ueWWW/LKV74yjz32WC688MLs3bv3sLPfeOONueiii/L4449n06ZN2blzZx599NHs3r07e/fu\nzTXXXJPXv/71S/sNWoJRMWn//v0Hfc3TTz+dZHZD0p49e1Yk1+FS8gEAAABgLFt8AAAAoHv+7u/+\nLg888ECOO+64bN269cBjplatWpVf//Vfz1VXXZUkuf766zMcDhf8Go888kg+9rGP5eKLL84RRxyR\nJDnrrLPypS99KSeccEIefPDBfOQjHznsTJdeemn279+f8847L1/60pcOZEqSY489Nm9961vzD//w\nD4u95CVbv359kuRb3/rWQV9z++23H/jn+++/f7kjPSdKPgAAAAAAAAAAzzOf+cxnkiTvete7nvEI\nr5Ff/dVfPbAN6F//9V8X/Brr16/Pb/3Wbz3r10844YT8/u///jO+z6Hccccd2blzZ0op+eAHP3ig\nNNQl559/fpLky1/+cm655ZZnnb/uuuty2223JUmapsm+fftWNN+hKPkAAAAAAAAAADyPPPnkk7nt\ntttSSslgMDjo6zZt2pQk+c///M8Fz5933nkH/dzRuW9961sHHmE1zk033ZQkOf7443P22Wcf8vVt\neOc735lTTjklTdPkggsuyOc///k8+uij2bdvX/7lX/4lW7ZsyZFHHnng9atWdatW0600AAAAAAAA\nAACM9fDDD6dpmiTJS1/60oO+bnTuoYceGnt+IaecckqSZP/+/dmzZ88hMz344INJkp/7uZ875Gvb\nsnbt2nz+85/PiSeemPvuuy+/9mu/lrVr12bdunW5+OKLs2rVqszMzCRJSil58Ytf3HLiZ1LyAQAA\nAAAAAAB4nnr88cfbjvC88qpXvSq33357Lrvsspxzzjl52cteljPPPDPve9/7cuutt+anf/qnkyRH\nHnlk1q9f327Yn6DkAwAAAMBYdV23HQEAAACY5/jjj08pJU3T5Lvf/e5BX3ffffclSU488cQFz3/v\ne9876Od+//vfT5IcccQROe644w6ZaVSOueeeew752radcMIJqes6N954Y3bt2pX/+q//yt/8zd/k\n5JNPzi233JIk+aVf+qVnPLqrC5R8AAAAABhrtKYaAAAAWDmrVs1WOkaP5ZrvqKOOyi/+4i8mSYbD\n4UG/xpe//OUkyStf+coFz//Hf/zHQT93dO6MM87IhtWqhAAAIABJREFU6tWrD5n3nHPOSTL7KLEd\nO3Yc8vVd9OSTT+bqq69Okrz97W9vOc2zKfkAAAAAMFZVVW1HAAAAgN550YtelCTZs2fPgud/4zd+\nI0lyxRVX5IEHHnjW+a1bt+amm25KKSUXXnjhgl/jO9/5Tq666qpn/frDDz+cj33sY0mS3/zN3zys\nvBs2bMgv//Ivp2ma/Mmf/Emefvrpw/q8LqnrOvfff39OPvnkXHLJJW3HeRYlHwAAAADG8rguAAAA\nWHlnnHFGkuSzn/1s/ud//udZ59/73vfm5JNPzo9+9KO86U1vys0335wk2b9/f66++upcdNFFSZI3\nvOEN2bhx44LfY926dXn3u9+df/7nf87+/fuTJN/85jfzxje+Mbt3785LXvKSvOc97znszJdffnmO\nOOKIfPWrX31GpiTZt29frrrqqrzjHe847K93MI8++mh2796dH/7wh9m9e3eeeuqpJMljjz124Nd2\n796dH/3oR8/63L/6q7/KNddc84zy1J133pl3vvOd+cu//MusXr06H//4x7N27dol55y00iy01+l5\nqpSSZOFVVQAAALCQ0SyZmCUTczUAAKyU0Swy5gkrvTEYzB7NIjB9Dvdn+M/3vxOX6++xO++8M2ed\ndVaefPLJHHHEETnppJNy5JFH5md/9mfz1a9+NUmyc+fOvOlNbzpQWDn22GPz1FNP5YknnkiSnHXW\nWdm2bVt+6qd+6hlf+5JLLsmVV16ZP/3TP81wOMyOHTty1FFH5QUveEH27duXJHnhC1+Y6667Lq97\n3eue8bnbt2/Ppk2bsn79+tx9993Pyv3pT386l1xyyYEMRx99dNasWXMg48E+77kY5T+UqqqetaF4\n48aN+cpXvpIkOeaYY9I0zYEy0Nq1a/Pxj3/8oJuPDua59lUW22859EPTAAAAAAAAAACW2agsw6wN\nGzZk27Zt+cAHPpBvfOMb+cEPfpAf//jHWbVq7qFNZ599dm6//fZ88IMfzLXXXpt77rknRx11VM48\n88y87W1vy3vf+94cddRRB/0eRx99dLZv354PfOAD+fSnP5177rknJ510Ul7/+tenruu8/OUvf9bn\nzP1Pcwt729velle/+tW5/PLLs23bttx777358Y9/nFe84hV57Wtfmy1btiz+N2VehkPlOFjW973v\nfTn55JNz880354EHHkgpJWeccUbe/OY354/+6I/y0pe+dMn5lotNPgAAAPSaTT7zmasBAGClPN+3\nVkySTT4wvQ73Z/ibN2/OtddeuxKRls1b3vKWfOELX2g7xmEbbcKp6zqXXXZZ23Ge92zyAQAAAAAA\nAACm3vOpHANtWnXolwAAAADQZ3Vdtx0BAAAAoPeUfAAAAAAYa2Zmpu0IAAAAAL3ncV0AAAAAjFVV\nVdsRAAAAgAkqpaSU0mqGs88+O/fee+9hv/6iiy7Khz70oWVM1H2laZqm7RCTMroBp+iSAAAAWGZz\n/zHDLJmYqwEAYKWMZpHhsOUgHTAYzB7NIjB9/AyfcU499dTcc889h/363/7t384nP/nJZUy0eM/1\nXl/svxs2+QAAAAAAAAAAsKJ27drVdoTnnVVtBwAAAAAAAAAAAMZT8gEAAAAAAAAAgI5T8gEAAAAA\nAAAAgI5T8gEAAABgrLqu244AAAAA0HulaZqm7RCTUkpJkkzRJQEAALDMRrNkYpZMzNUsrJTivgAA\nmLDRLDIcthykAwaD2aP3nDB9/Ayfvniu9/pi/92wyQcAAACAsaqqajsCAAAAQO/Z5AMAAECv2eQz\nn7kaAABWik0+c2zygenlZ/j0xUpt8ln93GIBAAAAAAAAABy+uf/JClgKj+sCAAAAAAAAACbuLW95\nS9sRYMWsxP1ukw8AAAAAAAAAMHFf+MIX2o4AU8UmHwAAAAAAAAAA6DglHwAAAADGquu67QgAAAAA\nvVeapmnaDjEppZQkyRRdEgAAAMtsNEsmZsnEXM3CSinuCwCACRvNIsNhy0E6YDCYPXrPCUBfLLbf\nYpMPAAAAAGNVVdV2BAAAAIDes8kHAACAXrPJZz5zNQAArBSbfObY5ANA39jkAwAAAAAAAAAAU0rJ\nBwAAAAAAAAAAOk7JBwAAAAAAAAAAOk7JBwAAAAAAAAAAOk7JBwAAAICx6rpuOwIAAABA75WmaZq2\nQ0xKKSVJMkWXBAAAwDIbzZKJWTIxV7OwUor7AgBgwkazyHDYcpAOGAxmj95zAtAXi+232OQDAAAA\nwFhVVbUdAQAAAKD3bPIBAACg12zymc9cDQAAK8Umnzk2+QDQNzb5AAAAAAAAAADAlFLyAQAAAAAA\nAACAjlPyAQAAAAAAAACAjlPyAQAAAAAAAACAjlPyAQAAAGCsuq7bjgAAAADQe6VpmqbtEJNSSkmS\nTNElAQAAsMxGs2RilkzM1SyslOK+AACYsNEsMhy2HKQDBoPZo/ecAPTFYvstNvkAAAAAMFZVVW1H\nAAAAAOg9m3wAAADoNZt85jNXAwDASrHJZ45NPgD0jU0+AAAAAAAAAAAwpZR8AAAAAAAAAACg45R8\nAAAAAAAAAACg45R8AAAAAAAAAACg45R8AAAAABirruu2IwAAAAD0Xmmapmk7xKSUUpIkU3RJAAAA\nLLPRLJmYJRNzNQsrpbgvAAAmbDSLDIctB+mAwWD26D0nAH2x2H6LTT4AAAAAjFVVVdsRAAAAAHrP\nJh8AAAB6zSaf+czVAACwUmzymWOTDwB9Y5MPAAAAAAAAAABMKSUfAAAAAAAAAADoOCUfAAAAAAAA\nAADoOCUfAAAAAAAAAADoOCUfAAAAAMaq67rtCAAAAAC9V5qmadoOMSmllCTJFF0SAAAAy2w0SyZm\nycRczcJKKe4LAIAJG80iw2HLQTpgMJg9es8JQF8stt9ikw8AAAAAY1VV1XYEAAAAgN6zyQcAAIBe\ns8lnPnM1AACsFJt85tjkA0Df2OQDAAAAAAAAAABTSskHAAAAAAAAAAA6TskHAAAAAAAAAAA6TskH\nAAAAAAAAAAA6TskHAAAAgLHqum47AgAAAEDvlaZpmrZDTEopJUkyRZcEAADAMhvNkolZMjFXs7BS\nivsCAGDCRrPIcNhykA4YDGaP3nMC0BeL7bfY5AMAAADAWFVVtR0BAAAAoPds8gEAAKDXbPKZz1wN\nAAArxSafOTb5ANA3NvkAAAAAAAAAAMCUUvIBAAAAAAAAAICOU/IBAAAAAAAAAICOU/IBAAAAAAAA\nAICOU/IBAAAAYKy6rtuOAAAAANB7pWmapu0Qk1JKSZJM0SUBAACwzEazZGKWTMzVLKyU4r4AAJiw\n0SwyHLYcpAMGg9mj95wA9MVi+y02+QAAAAAwVlVVbUcAAAAA6D2bfAAAAOg1m3zmM1cDAMBKscln\njk0+APSNTT4AAAAAAAAAADCllHwAAAAAAAAAAKDjlHwAAAAAAAAAAKDjlHwAAAAAAAAAAKDjlHwA\nAAAAGKuu67YjAAAAAPReaZqmaTvEpJRSkiRTdEkAAAAss9EsmZglE3M1CyuluC8AACZsNIsMhy0H\n6YDBYPboPScAfbHYfotNPgAAAACMVVVV2xEAAAAAes8mHwAAAHrNJp/5zNUAALBSbPKZY5MPAH1j\nkw8AAAAAAAAAAEwpJR8AAAAAAAAAAOg4JR8AAAAAAAAAAOg4JR8AAAAAAAAAAOg4JR8AAAAAxqrr\nuu0IAAAAAL1XmqZp2g4xKaWUJMkUXRIAAADLbDRLJmbJxFzNwkop7gsAgAkbzSLDYctBOmAwmD16\nzwlAXyy232KTDwAAAABjVVXVdgQAAACA3rPJBwAAgF6zyWc+czUAAKwUm3zm2OQDQN/Y5AMAAAAA\nAAAAAFNKyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAACAseq6bjsCAAAA\nQO+VpmmatkNMSiklSTJFlwQAAMAyG82SiVkyMVezsFKK+wIAYMJGs8hw2HKQDhgMZo/ecwLQF4vt\nt9jkAwAAAMBYVVW1HQEAAACg92zyAQAAoNds8pnPXA0AACvFJp85NvkA0Dc2+QAAAAAAAAAAwJRS\n8gEAAAAAAAAAgI5T8gEAAAAAAAAAgI5T8gEAAAAAAAAAgI5T8gEAAABgrLqu244AAAAA0HulaZqm\n7RCTUkpJkkzRJQEAALDMRrNkYpZMzNUsrJTivgAAmLDRLDIcthykAwaD2aP3nAD0xWL7LTb5AAAA\nADBWVVVtRwAAAADoPZt8AAAA6DWbfOYzVwMAwEqxyWeOTT4A9I1NPgAAAAAAAAAAMKWUfAAAAAAA\nAAAAoOOUfAAAAAAAAAAAoOOUfAAAAAAAAAAAoOOUfAAAAAAYq67rtiMAAAAA9F5pmqZpO8SklFKS\nJFN0SQAAACyz0SyZmCUTczULK6W4LwAAJmw0iwyHLQfpgMFg9ug9JwB9sdh+i00+AAAAAIxVVVXb\nEQAAAAB6zyYfAAAAes0mn/nM1QAAsFJs8pljkw8AfWOTDwAAAAAAAAAATCklHwAAAAAAAAAA6Dgl\nHwAAAAAAAAAA6DglHwAAAAAAAAAA6DglHwAAAADGquu67QgAAAAAvVeapmnaDjEppZQkyRRdEgAA\nAMtsNEsmZsnEXM3CSinuCwCACRvNIsNhy0E6YDCYPXrPCUBfLLbfYpMPAAAAAGNVVdV2BAAAAIDe\ns8kHAACAXrPJZz5zNQAArBSbfObY5ANA39jkAwAAAAAAAAAAU0rJBwAAAAAAAAAAOk7JBwAAAAAA\nAAAAOk7JBwAAAAAAAAAAOk7JBwAAAICx6rpuOwIAAABA75WmaZq2Q0xKKSVJMkWXBAAAwDIbzZKJ\nWTIxV7OwUor7AgBgwkazyHDYcpAOGAxmj95zAtAXi+232OQDAAAAwFhVVbUdAQAAAKD3bPIBAACg\n12zymc9cDQAAK8Umnzk2+QDQNzb5AAAAAAAAAADAlFLyAQAAAAAAAACAjlPyAQAAAAAAAACAjlPy\nAQAAAAAAAACAjlPyAQAAAGCsuq7bjgAAAADQe6VpmqbtEJNSSkmSTNElAQAAsMxGs2RilkzM1Sys\nlOK+AACYsNEsMhy2HKQDBoPZo/ecAPTFYvstNvkAAAAAMFZVVW1HAAAAAOg9m3wAAADoNZt85jNX\nAwDASrHJZ45NPgD0jU0+AAAAAAAAAAAwpZR8AAAAAAAAAACg45R8AAAAAAAAAACg45R8AAAAAAAA\nAACg45R8AAAAABirruu2IwAAAAD0Xmmapmk7xKSUUpIkU3RJAAAALLPRLJmYJRNzNQsrpbgvAAAm\nbDSLDIctB+mAwWD26D0nAH2x2H6LTT4AAAAAjFVVVdsRAAAAAHpvIiWf++67L7/7u7+bU045JUcf\nfXROPfXUXHrppdm7d+9hf43PfOYz+cM//MOce+65edGLXpRVq1Zly5Ytk4gHAAAAwBJ4XBcAAABA\n+1Yv9Qt8+9vfzmte85o89NBDueCCC3L66adnx44d+fCHP5wvfvGL+drXvpbjjz/+kF/nz//8z/PN\nb34za9euzc/8zM/kjjvumLcyHQAAAAAAAAAA+mvJm3ze85735KGHHsrf/u3f5rOf/Wz+4i/+Ijfc\ncEMuvfTS3HnnnfmzP/uzw/o6H/rQh3LXXXflkUceyUc/+tGlxgIAAAAAAAAAgKmxpJLPt7/97Wzb\nti2nnnpq/uAP/uAZ52ZmZnLMMcfkH//xH/PYY48d8mtt3LgxP//zP58kaZpmKbEAAAAAAAAAAGCq\nLKnkMxwOkyTnn3/+s84de+yxee1rX5tHH300N91001K+DQAAAAAAAAAA9NqSSj533nlnkuQXfuEX\nFjz/8pe/PEly1113LeXbAAAAANCiuq7bjgAAAADQe0sq+TzyyCNJknXr1i14fvTre/fuXcq3AQAA\nAKBFMzMzbUcAAAAA6L0llXwAAAAAmH5VVbUdAQAAAKD3llTyGW3qGW30+UmjX3/xi1+8lG/znJVS\nDvqxcePGlFIOuma6rmvnnXfeeeedd95555133nnne3T+4Ook5f+P/TvflT8f57tx/idf17V8zjvv\nvPPOO++888/381dckQwGs8c+nh/p6p+P884777zzzi/m/KifstDHYpWmaZrFfvInPvGJvPvd787v\n/d7v5e///u+fdf6Nb3xjtm3blhtuuCGDweCwv+727duzadOmvOMd78iVV1552J83+o1YwiUBAADQ\nM3NDtVkyMVcDAMBKGc0iw2HLQTpg9GNEswgAfbHYfsuSNvmMijvbtm171jfet29fvva1r+WFL3xh\nzjnnnKV8GwAAAAAAAAAA6LUllXxOO+20nH/++dm1a1c+8pGPPONcVVV57LHHsmXLlqxZsyZJ8vTT\nT+eOO+7I3XffvZRvCwAAAAAAAAAAvbKkx3Ulyd13353XvOY1+cEPfpC3vvWtOf3007Njx45s3749\nGzZsyI033pjjjjsuSfKd73wnp512Wl72spdl165dz/g6n/vc5/K5z30uSfLAAw9k69atOe200/K6\n170uSXLiiSfmr//6r8dfjMd1AQAA8Bx5XNd85moAAFgpHtc1x+O6AOibxfZbVi/1G5922mn5xje+\nkcsuuyxf/OIXc+211+aUU07JH//xH6eqqqxbt+6gYee79dZbc+WVVx44V0rJrl27Dmz9Wb9+/SFL\nPgAAAABMXl3Xqeu67RgAAAAAvbbkTT5dYpMPAAAAz5VNPvOZq1lYKcV9AQAwYTb5zLHJB4C+WWy/\nZdVyhAEAAABgelRV1XYEAAAAgN6zyQcAAIBes8lnPnM1AACsFJt85tjkA0Df2OQDAAAAAAAAAABT\nSskHAAAAAAAAAAA6TskHAAAAAAAAAAA6TskHAAAAAAAAAAA6TskHAAAAgLHqum47AgAAAEDvlaZp\nmrZDTEopJUkyRZcEAADAMhvNkolZMjFXs7BSivsCAGDCRrPIcNhykA4YDGaP3nMC0BeL7bfY5AMA\nAADAWFVVtR0BAAAAoPds8gEAAKDXbPKZz1wNAAArxSafOTb5ANA3NvkAAAAAAAAAAMCUUvIBAAAA\nAAAAAICOU/IBAAAAAAAAAICOU/IBAAAAAAAAAICOU/IBAAAAYKy6rtuOAAAAANB7pWmapu0Qk1JK\nSZJM0SUBAACwzEazZGKWTMzVLKyU4r4AAJiw0SwyHLYcpAMGg9mj95wA9MVi+y02+QAAAAAwVlVV\nbUcAAAAA6D2bfAAAAOg1m3zmM1cDAMBKsclnjk0+APSNTT4AAAAAAAAAADCllHwAAAAAAAAAAKDj\nlHwAAAAAAAAAAKDjlHwAAAAAAAAAAKDjlHwAAAAAGKuu67YjAAAAAPReaZqmaTvEpJRSkiRTdEkA\nAAAss9EsmZglE3M1CyuluC8AACZsNIsMhy0H6YDBYPboPScAfbHYfotNPgAAAACMVVVV2xEAAAAA\nes8mHwAAAHrNJp/5zNUAALBSbPKZY5MPAH1jkw8AAAAAAAAAAEwpJR8AAAAAAAAAAOg4JR8AAAAA\nAAAAAOg4JR8AAAAAAAAAAOg4JR8AAAAAxqrruu0IAAAAAL1XmqZp2g4xKaWUJMkUXRIAAADLbDRL\nJmbJxFzNwkop7gsAgAkbzSLDYctBOmAwmD16zwlAXyy232KTDwAAAABjVVXVdgQAAACA3rPJBwAA\ngF6zyWc+czUAAKwUm3zm2OQDQN/Y5AMAAAAAAAAAAFNKyQcAAAAAAAAAADpOyQcAAAAAAAAAADpO\nyQcAAAAAAAAAADpOyQcAAACAseq6bjsCAAAAQO+VpmmatkNMSiklSTJFlwQAAMAyG82SiVkyMVez\nsFKK+wIAYMJGs8hw2HKQDhgMZo/ecwLQF4vtt9jkAwAAAMBYVVW1HQEAAACg92zyAQAAoNds8pnP\nXA0AACvFJp85NvkA0Dc2+QAAAAAAAAAAwJRS8gEAAAAAAAAAgI5T8gEAAAAAAAAAgI5T8gEAAAAA\nAAAAgI5T8gEAAABgrLqu244AAAAA0HulaZqm7RCTUkpJkkzRJQEAALDMRrNkYpZMzNUsrJTivgAA\nmLDRLDIcthykAwaD2aP3nAD0xWL7LTb5AAAAADBWVVVtRwAAAADoPZt8AAAA6DWbfOYzVwMAwEqx\nyWeOTT4A9I1NPgAAAAAAAAAAMKWUfAAAAAAAAAAAoOOUfAAAAAAAAAAAoOOUfAAAAAAAAAAAoOOU\nfAAAAAAYq67rtiMAAAAA9F5pmqZpO8SklFKSJFN0SQAAACyz0SyZmCUTczULK6W4LwAAJmw0iwyH\nLQfpgMFg9ug9JwB9sdh+i00+AAAAAIxVVVXbEQAAAAB6zyYfAAAAes0mn/nM1QAAsFJs8pljkw8A\nfWOTDwAAAAAAAAAATCklHwAAAAAAAAAA6DglHwAAAAAAAAAA6DglHwAAAAAAAAAA6DglHwAAAADG\nquu67QgAAAAAvVeapmnaDjEppZQkyRRdEgAAAMtsNEsmZsnEXM3CSinuCwCACRvNIsNhy0E6YDCY\nPXrPCUBfLLbfYpMPAAAAAGNVVdV2BAAAAIDes8kHAACAXrPJZz5zNQAArBSbfObY5ANA39jkAwAA\nAAAAAAAAU0rJBwAAAAAAAAAAOk7JBwAAAAAAAAAAOk7JBwAAAAAAAAAAOk7JBwAAAICx6rpuOwIA\nAABA75WmaZq2Q0xKKSVJMkWXBAAAwDIbzZKJWTIxV7OwUor7AgBgwkazyHDYcpAOGAxmj95zAtAX\ni+232OQDAAAAwFhVVbUdAQAAAKD3lHwAAAAAGMvjuvhJmzdvTinFRynZvHlz238cAAAA9ITHdQEA\nANBrHtc1n7kaODxzf3eS+HsTgMXxuK45HtcFQN8stt+yejnCAAAAAADTr+8/lBz9QBIAAABWgsd1\nAQAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADoPSUfAAAAAMaamZlpOwIAAABA\n7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAAAAAAAABAxyn5AAAAAAAAAABA\nxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADoPSUfAAAAAMaamZlpOwIA\nAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAAAAAAAABAxyn5AAAAAAAA\nAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADoPSUfAAAAAMaamZlp\nOwIAAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAAAAAAAABAxyn5AAAA\nAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADoPSUfAAAAAMaa\nmZlpOwIAAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAAAAAAAABAxyn5\nAAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADoPSUfAAAA\nAMaamZlpOwIAAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAAAAAAAABA\nxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADoPSUf\nAAAAAMaamZlpOwIAAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAAAAAA\nAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAAAADo\nPSUfAAAAAMaamZlpOwIAAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5AAAA\nAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAADBWXddtRwAA\nAADoPSUfAAAAAMaamZlpOwIAAABA7yn5AAAAADBWVVVtRwAAAADoPSUfAAAAAMbyuC4AAACA9in5\nAAAAAAAAAABAxyn5AAAAAAAAAABAxyn5AAAAAHBQmzdvTinFx/9/bN68ue0/EgAAAKCnlHwAAAAA\nOKhrr7227Qid4vcDAAAAaMvqtgMAAAAA8DwwHLadoH2DQdsJAAAAgB6zyQcAAAAAAAAAADpOyQcA\nAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpO\nyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAA\nADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAA\nAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcA\nAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpO\nyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpOyQcAAAAAAAAAADpuddsBAAAAAOD5\npJTSdgQAAACgh2zyAQCYIps3b04pxcf/f2zevLntPxIAAAAA/o+9ew+zsqzXB36vxQyCSJChwoQi\neDYTrDwAops0NASTTCUzU7ZuNXVXbs2yn4q5yco8FLW5tiie8pCalEe8MERN8ywGiiQHFQJBTEAB\nEWbW74+d5AgiHph3ZH0+/83zfNe77plrXTNci3s9LwDwkXCSDwDAeuSOO+4oOkKz4ucBAKwL9+Se\noiMUrm/6Fh0BAAAAqo6SDwDAeqhSdIBmwE3PLhn+AAAgAElEQVQ0AAAAAACA9YnbdQEAAAAAAAAA\nQDOn5AMAAAAAAAAAAM2ckg8AAAAAAAAAADRzSj4AAAAAAAAAANDMKfkAAAAAAAAAAEAzp+QDAAAA\nAAAAAADNnJIPAAAAAAAAAAA0c0o+AAAAAAAAAADQzCn5AAAAAAAAAABAM6fkAwAAAAAAAAAAzZyS\nDwAAAAAAAAAANHNKPgAAAAAAAAAA0Mwp+QAAAAAAAAAAQDOn5AMAAAAAAAAAAM2ckg8AAAAAAAAA\nADRzSj4AAAAAAAAAANDMKfkAAAAAAAAAAEAzp+QDAAAAAAAAAADNXE3RAQCAD+aAAw7IHXfcUXQM\naPZKpVLREQD4GPJvLeD98G9O3ql///65/fbbi45ROH9PG/O6AADgw1LyAYCPKW+SAQDriv+sBoAP\n54477vD3lFV4XQAA8GEp+QDAx16l6ADNwD/fIBtaaIjmYWjRAZqhe+4pOkHx+vZNktwTP4u++efP\nwo/irZcF8B78S2vlv7QA1pLfnH5zrsqrwqsCAICPhpIPAAAA0NjQogM0A0OLDgDAx97QogM0A0OL\nDtAM+cSBD6K8zVsfRAEAWFvlogMAAAAAAAAAAABrpuQDAAAAAAAAAADNnJIPAAAAAAAAAAA0c0o+\nAAAAAAAAAADQzCn5AAAAAAAAAABAM6fkAwAAAAAAAAAAzZySDwAAAAAAAAAANHNKPgAAAAAAAAAA\n0Mwp+QAAAAAAAAAAQDOn5AMAAAAAAAAAAM3chy75zJo1K0OGDEldXV1atWqVrl275nvf+14WLFhQ\nyHUAAAAAAAAAAGB9U/NhHjxt2rT06tUrL7/8cg466KBsv/32efjhh/PLX/4yY8aMyQMPPJCNN964\nya4DAAAAAAAAAADrow91ks+3v/3tvPzyyxk+fHhuvvnm/OQnP8mf/vSnfO9738uUKVPyox/9qEmv\nAwAAAAAAAAAA66MPXPKZNm1axo4dm65du+bEE09stHfOOedkww03zG9/+9ssWbKkSa4DAAAAAAAA\nAADrqw9c8rnnnnuSJP369Vtlb6ONNkrv3r2zePHiPPTQQ01yHQAAAAAAAAAAWF994JLPlClTkiTb\nbrvtave32WabJMlzzz3XJNcBAAAAAAAAAID11Qcu+SxcuDBJ0q5du9Xuv7W+YMGCJrkOAAAAAAAA\nAACsr2qKDrAulEqloiMAQBPyd2+loUUHaD68Kt6mb9+iEzQbfeNn8RYvC1bPb8+VhhYdoPnwqngb\nvzxX8jf1X7wsWJXfnCsNLTpA8+FV8TZ+ca7k7+m/eFn8i//jA4A1+8An+bx1ws5bJ/G801vr7du3\nb5LrJEmlUnnPGQAAAAAAAAAAKNLZZ5/9vh/zgU/y2X777ZMkU6ZMWe3+c889lyTZdtttm+Q6b1H0\nAQAAAAAAAABgfVOqfMBWzPTp07P11luna9eumTp1aqPj81577bV06tQppVIp8+bNS+vWrdf5dQAA\nAAAAAAAAYH31gW/X1a1bt/Tr1y8zZszIb37zm0Z7Z599dpYsWZJvfvObK4s5K1asyLPPPpvp06d/\nqOsAAAAAAAAAAEC1+cAn+ST/dwpPr169Mm/evHzlK1/J9ttvn4cffjjjx4/PdtttlwcffDCf/OQn\nkyTPP/98unXrli5dumTGjBkf+DoAAAAAAAAAAFBtPlTJJ0lmzZqVs846K2PGjMkrr7ySurq6DBo0\nKGeffXbatWu3cu6tks+WW265ymk+7+c6AAAAAAAAAABQbT50yQcAAAAAAAAAAFi3ykUHAAAAAAAA\nAAAA1kzJBwAAAAAAAAAAmjklHwAAAAAAAAAAaOaUfAAAAABYK5dddlmGDBlSdAwAAACAqqTkAwAA\nAMBauf/++3PllVcWHQMAAACgKin5AAAAALDWKpVK0REAAAAAqlJN0QEAAAAAKMZll12WUqm01vNT\np059X/MAAAAAfHRKFR+/AgAAAKhK5fL7P+S5VCqlvr5+HaQBAAAAYE2c5AMAAABQpWpqatKpU6cc\nffTRazX/hz/8IRMnTlzHqQAAAABYHSUfAAAAgCq14447Zt68eRk6dOhazT///PNKPgAAAAAFef9n\nMgMAAACwXthll10yd+7czJ07d60f487vAAAAAMVQ8gEAAACoUj169EilUsmECRPWan777bfP3nvv\nvY5TAQAAALA6pYqPXwEAAABUpRUrVuT1119PmzZtUltbW3QcAAAAANZAyQcAAAAAAAAAAJo5t+sC\nAAAAAAAAAIBmrqboAAAAAAA0DytWrMi0adOyYMGClMvlbLrppunSpUvRsQAAAACIk3wAAAAAqt7o\n0aOzzz77pE2bNtlxxx3Ts2fP7L777unWrVs222yzfPe7381LL71UdEwAAACAqlaqVCqVokMAAAAA\n0PQqlUqOOuqoXH311avsbbHFFtloo43y3HPPZfny5dl4440zevTo9OnTp4CkAAAAADjJBwAAAKBK\nXXLJJbn66qszYMCAPPnkk1mwYEGeeOKJDBw4MK+99lpuvvnmLFy4MKNGjUqpVMrAgQMze/bsomMD\nAAAAVCUn+QAAAABUqV133TVLlizJhAkTUltbu3J9+fLl6dGjR7bbbrvcfPPNSZIJEyZk1113zfHH\nH5/hw4cXFRkAAACgajnJBwAAAKBKTZ48Of369WtU8EmS2tra7Lvvvhk/fvzKtR49euSAAw7InXfe\n2cQpAQAAAEiUfAAAAACq2pIlS1a7/sYbb2Tp0qWN1nbYYYfMmjWrKWIBAAAA8A5KPgAAAABV6jOf\n+UxuueWW/OMf/2i0/uqrr+aWW27JNtts02j9tddeS+vWrZsyIgAAAAD/pOQDAAAAUKWOOeaYzJ07\nN7vttltGjBiRu+66KyNGjMhuu+2WuXPn5ogjjmg0//TTT2errbYqKC0AAABAdStVKpVK0SEAAAAA\naHqVSiVHHHFErrvuulX29ttvv9x6662pqalJkixatChf+tKXcsghh+TUU09t6qgAAAAAVU/JBwAA\nAKDKjR49OqNHj85LL72UDh06ZMCAARk8eHDKZYdAAwAAADQXSj4AAAAAAAAAANDM+TgWAAAAAAAA\nAAA0czVFBwAAAACgeXnllVcycuTIPProo1m6dGm6du2awYMHp0+fPkVHAwAAAKhabtcFAAAAUKUu\nvPDCjB49OuPHj0+LFi2SJI899lj69++f+fPnN5otlUo55ZRTcv755xcRFQAAAKDqKfkAAAAAVKme\nPXtmo402ytixY5Mky5cvzzbbbJMXX3wxX/3qVzNo0KC0b98+kyZNykUXXZSXX3451157bQ477LCC\nkwMAAABUHyUfAAAAgCq1ySabZPDgwRk+fHiS5Pbbb8/AgQNz2mmn5Wc/+1mj2VmzZmXnnXfOTjvt\nlPvuu6+IuAAAAABVrVx0AAAAAACK8frrr6ddu3Yrv37mmWeSJCeeeOIqs507d85BBx2Up556qsny\nAQAAAPAvSj4AAAAAVapjx46ZMWPGyq9btGiRJI2KP2/Xtm3bLF++vEmyAQAAANCYkg8AAABAldp3\n331z2223Zd68eUmSPffcM0kyZsyYVWbr6+szbty4bL311k2aEQAAAID/o+QDAAAAUKVOP/30LFu2\nLP3798+UKVOy22675Wtf+1pOOumk3HDDDVm2bFmSZPr06Rk8eHCefvrpHHnkkQWnBgAAAKhOpUql\nUik6BAAAAADFuPnmm3P44YdnxYoV6d69e7p06ZJbb7019fX1KZfLadWqVZYuXZpKpZJ+/frl1ltv\nTW1tbdGxAQAAAKqOkg8AAABAlZs0aVLOOOOM3H777VndW0XdunXLSSedlJNPPjktWrQoICEAAAAA\nSj4AAAAAJEkWLVqUxx9/PPPmzUtDQ0M++clPZrvttkvXrl2LjgYAAABQ9ZR8AAAAAAAAAACgmSsX\nHQAAAAAAAAAAAFizmqIDAAAAAFCsF198MXPmzMlOO+2UNm3aJEmWLVuWyy67LBMnTswnPvGJDBo0\nKHvssUfBSQEAAACql9t1AQAAAFSx//zP/8yvf/3rJEmHDh1y8803p0ePHundu3cmTpy4cq5UKuX/\n/b//l3POOaeoqAAAAABVTckHAAAAoErddtttOfDAA7PpppumZ8+eefjhh9O6descfvjhGTZsWI47\n7rjsv//++fvf/56f/OQnmTNnTsaPH58+ffoUHR0AAACg6ij5AAAAAFSpAw44IPfff3+effbZ1NXV\nZd68edlhhx2ybNmyHHPMMbn44otXzk6bNi3bb799Dj300FxzzTUFpgYAAACoTuWiAwAAAABQjGee\neSYHHnhg6urqkiSbbrppBg4cmCVLluT4449vNLvVVltl//33z1/+8pciogIAAABUPSUfAAAAgCo1\nZ86cdOnSpdFa586dkyTdunVbZX6rrbbK7NmzmyQbAAAAAI0p+QAAAABUqTZt2mTx4sWN1mpqapIk\nLVu2XGW+pqYmLVq0aJJsAAAAADRWU3QAAAAAAIrRqVOnzJo1q9HagAED0qlTp9XOz5w5M5tssklT\nRAMAAADgHZR8AAAAAKrULrvsknvuuafR2he+8IV84QtfWO38hAkT8tnPfrYpogEAAADwDko+AAAA\nAFXq2GOPzdZbb51ly5Zlgw02WOPsI488krlz5+akk05qonQAAAAAvF2pUqlUig4BAAAAAAAAAAC8\nu3LRAQAAAAAAAAAAgDVzuy4AAAAAkiTLly/P9OnTs2DBgiRJ+/bt061bt9TW1hacDAAAAAAlHwAA\nAIAq97vf/S4jRozIX/7yl6xYsSJvv7t7bW1tevXqlRNOOCGHHnpogSkBAAAAqlup8vZ3bQAAAACo\nGg0NDRk8eHBuuummJEnr1q3TtWvXtGvXLkmycOHCzJgxI0uXLk2SHHLIIbn++utTKpUKywwAAABQ\nrcpFBwAAAACgGMOHD89NN92Unj175k9/+lMWLVqUSZMm5YEHHsgDDzyQSZMmZeHChbn77ruzxx57\n5MYbb8yvfvWromMDAAAAVCUn+QAAAABUqe7du+fNN9/MhAkTssEGG6xx9o033kiPHj2ywQYb5Kmn\nnmqihAAAAAC8xUk+AAAAAFXqueeey4EHHvieBZ8kadWqVQ488MA899xzTZAMAAAAgHdS8gEAAACo\nUq1atco//vGPtZ5/9dVX06pVq3WYCAAAAIB3o+QDAAAAUKX22GOP/O53v8sTTzzxnrOPP/54rr/+\n+vTs2bMJkgEAAADwTqVKpVIpOgQAAAAATe/BBx/MXnvtldra2gwePDj7779/tt1227Rr1y5JsnDh\nwkyZMiVjxozJ9ddfn/r6+tx7773p1atXwckBAAAAqo+SDwAAAEAV++Mf/5hjjz028+fPX7lWKpWS\nJG9/26hDhw4ZOXJkvvKVrzR5RgAAAACUfAAAAACq3qJFi3LTTTdl3LhxmTJlShYuXJgkadeuXbbb\nbrvss88++drXvpa2bdsWnBQAAACgein5AAAAAAAAAABAM1cuOgAAAAAAAAAAALBmNUUHAAAAAKB4\nb7zxRsaNG5dHHnkk8+fPT6lUyiabbJLdd989ffv2TcuWLYuOCAAAAFDVlHwAAAAAqtz111+fU045\nJS+99NJq9+vq6nLRRRflkEMOaeJkAAAAALxFyQcAAACgil155ZU5+uijkyRbbLFF9tprr9TV1aVS\nqWT27Nm57777MnPmzHz961/Pm2++mW984xsFJwYAAACoTqVKpVIpOgQAAAAATe8f//hHunXrljff\nfDP/8z//k29961splUqNZhoaGnLFFVfkxBNPTOvWrTN9+vS0b9++oMQAAAAA1atcdAAAAAAAinHd\ndddl0aJF+eUvf5mjjjpqlYJPkpTL5QwZMiS/+tWvsmDBglx77bUFJAUAAADAST4AAAAAVWrQoEF5\n+OGHM3PmzLRo0WKNsytWrMgWW2yRPfbYIzfffHMTJQQAAADgLU7yAQAAAKhSEydOTJ8+fd6z4JMk\nNTU16dOnTyZOnNgEyQAAAAB4JyUfAAAAgCo1f/78bLHFFms9v8UWW2TevHnrMBEAAAAA70bJBwAA\nAKBKvf7662nbtu1az7dp0yaLFy9eh4kAAAAAeDdKPgAAAABVqqGhoUkeAwAAAMCHV1N0AAAAAACK\nM2HChFx11VVrNfvUU0+lVCqt40QAAAAArE6pUqlUig4BAAAAQNMrlz/YIc9O8wEAAABoek7yAQAA\nAKhSRx555Pt+jJN8AAAAAIrhJB8AAAAAAAAAAGjmPtiZzAAAAAAAAAAAQJNR8gEAAAAAAAAAgGau\npugAAAAAABTjsssuS6lUet+PGzJkyDpIAwAAAMCalCqVSqXoEAAAAAA0vXL5/R/yXCqVUl9fvw7S\nAAAAALAmTvIBAAAAqFJnnXXWWs1VKpVcd911mTp1anxeDAAAAKAYSj4AAAAAVWro0KHvOfOnP/0p\np556aqZOnZpWrVrlu9/97roPBgAAAMAqlHwAAAAAWMXTTz+d0047LWPGjEmpVMo3v/nNDBs2LJ07\ndy46GgAAAEBVUvIBAAAAYKWXXnopZ555Zq644orU19enb9++ueCCC9KjR4+iowEAAABUNSUfAAAA\nALJkyZL8/Oc/zwUXXJDFixdnxx13zM9//vP079+/6GgAAAAARMkHAAAAoKo1NDRk1KhROeuss/LS\nSy9ls802ywUXXJBjjjkm5XK56HgAAAAA/FOpUqlUig4BAAAAQNO788478/3vfz9PP/10Ntxww/zX\nf/1Xvv/976dNmzZFRwMAAADgHZR8AAAAAKrUWyf1bL311jnzzDNTV1eXUqn0no/74he/uK6jAQAA\nAPAOSj4AAAAAVeqD3I6rVCqlvr5+HaQBAAAAYE1qig4AAAAAQDGOPPLI9/2YtTnpBwAAAICPnpN8\nAAAAAAAAAACgmXv/ZzIDAAAAAAAAAABNSskHAAAAAAAAAACauZqiAwAAAABQjKOPPjqlUuld98vl\nctq3b5/u3bvnoIMOStu2bZswHQAAAABvV6pUKpWiQwAAAADQ9MrltT/kuX379rnyyiszcODAdZgI\nAAAAgHej5AMAAABQpa644oo17jc0NGT+/Pn5y1/+kltvvTUtW7bMY489lh133LFpAgIAAACwkpIP\nAAAAAO/p7rvvzn777Zejjz46l156adFxAAAAAKqOkg8AAAAAa+WAAw7IlClTMnXq1KKjAAAAAFSd\ntb/xOgAAAABVbeedd87f//73omMAAAAAVCUlHwAAAADWSn19fcplbycBAAAAFMG7MgAAAACslUcf\nfTSbb7550TEAAAAAqpKSDwAAAADv6corr8y9996bfv36FR0FAAAAoCqVKpVKpegQAAAAADS9c845\nJ6VS6V33Gxoa8sorr+TBBx/Mk08+mXbt2mXChAnp0qVLE6YEAAAAIFHyAQAAAKha5fLaH/LcrVu3\nXHPNNdl9993XYSIAAAAA3k1N0QEAAAAAKMZZZ521xv1yuZx27dqlR48e6dOnz/sqBQEAAADw0XKS\nDwAAAAAAAAAANHM+fgUAAAAAAAAAAM2c23UBAAAAkEqlknvvvTcPPPBA5syZkySpq6tL7969s/fe\nexecDgAAAAAlHwAAAIAqN378+JxwwgmZMmXKave33377jBgxQtkHAAAAoEClSqVSKToEAAAAAMX4\n/e9/n8GDB6e+vj4dO3bMF7/4xXTu3DlJMnPmzIwfPz5z5sxJTU1Nrrvuuhx88MEFJwYAAACoTko+\nAAAAAFVq9uzZ2XbbbdPQ0JCLLrooxxxzTFq0aNFopr6+PqNGjcp3vvOdlMvl/O1vf0tdXV1BiQEA\nAACqV7noAAAAAAAU4+KLL86SJUvy29/+Nscdd9wqBZ8kadGiRY499thce+21WbJkSS6++OICkgIA\nAADgJB8AAACAKrXzzjtnww03zEMPPbRW83vssUeWLFmSv/71r+s4GQAAAADv5CQfAAAAgCr1wgsv\npHfv3ms936tXrzz//PPrLhAAAAAA70rJBwAAAKBKLV++PC1btlzr+dra2qxYsWIdJgIAAADg3Sj5\nAAAAAFSpjh07ZuLEiWs9/8wzz6Rjx47rMBEAAAAA70bJBwAAAKBK7b333hk7dmwmT578nrOTJ0/O\nXXfdlb322qsJkgEAAADwTko+AAAAAFXqxBNPzPLlyzNgwIA8/fTT7zr3zDPPZODAgVmxYkVOPPHE\nJkwIAAAAwFtKlUqlUnQIAAAAAIpx+umn5/zzz0/Lli0zaNCg7Lvvvtl8882TJC+++GLuvvvujB49\nOsuXL88pp5ySX/ziFwUnBgAAAKhOSj4AAAAAVe7HP/5xzj333NTX1692v0WLFjnjjDMydOjQlEql\nJk4HAAAAQKLkAwAAAECS559/Ppdffnn+/Oc/Z86cOUmSjh07pk+fPjnqqKPStWvXghMCAAAAVDcl\nHwAAAADW2vz589OhQ4eiYwAAAABUnXLRAQAAAABo/u6+++4ceuih6dy5c9FRAAAAAKpSTdEBAAAA\nAGie5s6dm1GjRuWyyy7L9OnTkyTt2rUrOBUAAABAdVLyAQAAAGClSqWSu+66KyNHjsytt96aFStW\nJEn23HPPHHPMMTnkkEMKTggAAABQnZR8AAAAAMjs2bNXntrzwgsvJEk23XTTzJs3L0cddVRGjRpV\ncEIAAACA6qbkAwAAAFClGhoacuedd+aSSy7JHXfckfr6+tTW1uarX/1qjjrqqOy///5p2bJlamq8\nhQQAAABQNO/QAAAAAFSpLbfcMrNmzUqSdO/ePUOGDMnhhx+eT33qUwUnAwAAAOCdlHwAAAAAqtRb\nBZ9TTz0155xzTlq3bl1wIgAAAADeTbnoAAAAAAAUY5999kmS/OIXv0inTp1y3HHH5aGHHio4FQAA\nAACro+QDAAAAUKXGjh2bqVOn5vTTT0/r1q0zcuTI9OrVKzvssEN+/vOfZ/bs2UVHBAAAAOCfSpVK\npVJ0CAAAAACKtWLFitxyyy255JJLMnbs2FQqlbRo0SL19fUZOHBgbrzxxrRs2bLomAAAAABVS8kH\nAAAAgEZeeOGFXHrppRk1alTmzJmTJNl4441zxBFH5JhjjslOO+1UcEIAAACA6qPkAwAAAFClXn/9\n9Wy00Ubvul9fX5/bbrstI0eOzJgxY9LQ0JBSqZT6+vomTAkAAABAouQDAAAAULW22mqrXH311enV\nq9d7zs6cOTOXXXZZLr/88rzwwgtNkA4AAACAt1PyAQAAAKhStbW1SZIf/OAHGTp0aFq0aPGej2lo\naEi5XF7X0QAAAAB4B+/IAAAAAFSpBx98MN26dcuwYcPSs2fPPPfcc+/5GAUfAAAAgGJ4VwYAAACg\nSu2666558sknc9xxx+Wxxx7L5z73ufzv//5v0bEAAAAAWA236wIAAAAgd9xxR4YMGZJ58+ZlwIAB\nOf/889O6devVzm6xxRZNnA4AAAAAJR8AAAAAkiTz58/PkUcemTFjxqRUKq2yX6lUUiqVUl9fX0A6\nAAAAgOpWU3QAAAAAAJqHv/71r5k4cWKSZNNNN80GG2ywyszqyj8AAAAArHtKPgAAAABV7s0338wP\nf/jDXHzxxamtrc3PfvaznHrqqQo9AAAAAM2Ikg8AAABAFZs0aVK+8Y1vZOLEidlxxx1zzTXXpHv3\n7kXHAgAAAOAdykUHAAAAAKAYF110UXbddddMmjQpJ598ch5//HEFHwAAAIBmqlSpVCpFhwAAAACg\n6ZXL5XTq1CmXX355+vXrV3QcAAAAANbAST4AAAAAVeqggw7KxIkTFXwAAAAAPgac5AMAAAAAAAAA\nAM1cTdEBAAAAAGheXnnllYwcOTKPPvpoli5dmq5du2bw4MHp06dP0dEAAAAAqpaTfAAAAACq1IUX\nXpjRo0dn/PjxadGiRZLkscceS//+/TN//vxGs6VSKaecckrOP//8IqICAAAAVD0lHwAAAIAq1bNn\nz2y00UYZO3ZskmT58uXZZptt8uKLL+arX/1qBg0alPbt22fSpEm56KKL8vLLL+faa6/NYYcdVnBy\nAAAAgOqj5AMAAABQpTbZZJMMHjw4w4cPT5LcfvvtGThwYE477bT87Gc/azQ7a9as7Lzzztlpp51y\n3333FREXAAAAoKqViw4AAAAAQDFef/31tGvXbuXXzzzzTJLkxBNPXGW2c+fOOeigg/LUU081WT4A\nAAAA/kXJBwAAAKBKdezYMTNmzFj5dYsWLZKkUfHn7dq2bZvly5c3STYAAAAAGlPyAQAAAKhS++67\nb2677bbMmzcvSbLnnnsmScaMGbPKbH19fcaNG5ett966STMCAAAA8H+UfAAAAACq1Omnn55ly5al\nf//+mTJlSnbbbbd87Wtfy0knnZQbbrghy5YtS5JMnz49gwcPztNPP50jjzyy4NQAAAAA1alUqVQq\nRYcAAAAAoBg333xzDj/88KxYsSLdu3dPly5dcuutt6a+vj7lcjmtWrXK0qVLU6lU0q9fv9x6662p\nra0tOjYAAABA1VHyAQAAAKhykyZNyhlnnJHbb789q3urqFu3bjnppJNy8sknp0WLFgUkBAAAAEDJ\nBwAAAIAkyaJFi/L4449n3rx5aWhoyCc/+clst9126dq1a9HRAAAAAKqekg8AAAAAAAAAADRz5aID\nAAAAAAAAAAAAa6bkAwAAAFCl/vu//ztPPPFE0TEAAAAAWAtu1wUAAABQpcrlckqlUnbZZZccd9xx\nOfzww9OmTZuiYwEAAACwGko+AAAAAFWqXC6npqYmK1asSJK0bds2X//61/Mf//Ef+dznPldwOgAA\nAADezu26AAAAAKrYGWeckTvvvDODBg3K0qVLc8kll2TXXXfNrrvumpEjR2bx4sVFRwQAAAAgSj4A\nAAAAVa1cLme//fbL73//+8ycOTPDhg3LlltumccffzzHHXdc6urqcvzxx+fJJ58sOioAAABAVVPy\nAQAAACBJstlmm+WHP/xhpk6dmrvuuvZTdPgAAAu3SURBVCsHH3zwytN9vvCFL6w83QcAAACApqfk\nAwAAAEAjpVIpX/rSl3LjjTdm1qxZOe+889KtW7c8/vjjOf7444uOBwAAAFCVlHwAAAAAeFebbrpp\nTj/99Pztb3/L2LFjc8ghhxQdCQAAAKAq1RQdAAAAAIDmr1QqZZ999sk+++xTdBQAAACAquQkHwAA\nAIAqtcUWW6Rdu3ZFxwAAAABgLZQqlUql6BAAAAAAAAAAAMC7c5IPAAAAAAAAAAA0c0o+AAAAAAAA\nAADQzCn5AAAAAFS5v//97zn33HPTt2/f1NXVpXXr1mnTpk26du2aQw89NH/4wx+KjggAAABQ9UqV\nSqVSdAgAAAAAijFq1KicfPLJWbp06RrnevfunRtvvDEdO3ZsomQAAAAAvJ2SDwAAAECVGjduXPbd\nd99svvnmOeWUU9K1a9dMnz49F110UTp06JAbbrghL7zwQq666qpcddVV2XHHHfPYY4+lVatWRUcH\nAAAAqDpKPgAAAABVav/9988TTzyRp59+OptsssnK9Zdffjk77bRTBg8enF/+8pdJkquvvjrf+ta3\n8pOf/CQ/+MEPiooMAAAAULWUfAAAAACq1MYbb5yDDz44I0eOXGXv2GOPzZ133plZs2atXOvVq1fe\neOONPPHEE00ZEwAAAIAk5aIDAAAAAFCMpUuXpm3btqvda9OmTV5++eVGa717987f/va3pogGAAAA\nwDso+QAAAABUqS5duuTuu+9OQ0NDo/WGhoaMGzcudXV1q6wDAAAAUAwlHwAAAIAqdfDBB2fSpEk5\n7LDDMnny5CxbtiyTJ0/O4MGDM2nSpAwYMKDR/PTp09O5c+eC0gIAAABUt1KlUqkUHQIAAACApvfa\na69ljz32yOTJk1MqlVauVyqVbL755nn00Uez6aabJklef/31bLbZZvn617+eSy+9tKjIAAAAAFVL\nyQcAAACgir366qsZOnRoRo8enZdeeikdOnTIgAED8uMf/zgdO3ZcOVepVLJ48eK0atUqNTU1BSYG\nAAAAqE5KPgAAAAAAAAAA0MyViw4AAAAAAAAAAACsmZIPAAAAAGvltNNOS7du3YqOAQAAAFCVlHwA\nAAAAWCsvv/xynn/++aJjAAAAAFQlJR8AAAAAAAAAAGjmaooOAAAAAEAxvvnNb6ZUKq31/IMPPvi+\n5gEAAAD46JQqlUql6BAAAAAANL1y+f0f8lwqlVJfX78O0gAAAACwJk7yAQAAAKhSG220UTp37pwR\nI0ZkbT4H9tOf/jRjx45tgmQAAAAAvJOSDwAAAECV6t69e/76179m7733Xqv5K664Yt0GAgAAAOBd\nvf8zmQEAAABYL/To0SOvvfZapk2bttaPced3AAAAgGI4yQcAAACgSu299965//77M3PmzGy11Vbv\nOX/QQQela9euTZAMAAAAgHcqVXz8CgAAAAAAAAAAmjW36wIAAAAAAAAAgGZOyQcAAAAAAAAAAJo5\nJR8AAAAAAAAAAGjmlHwAAAAAAAAAAKCZU/IBAAAAAAAAAIBmTskHAAAAAAAAAACaOSUfAAAAAAAA\nAABo5pR8AAAAAAAAAACgmVPyAQAAAFgPbLnllunatWvRMVZRLpfTt2/ftZ4fP358yuVyzjnnnHWY\nCgAAAODjR8kHAAAAYD1RKpWKjrBaHyRXc/1eAAAAAIpSU3QAAAAAANZfzz77bDbccMOiYwAAAAB8\n7Cn5AAAAALDObLvttkVHAAAAAFgvuF0XAAAAwMfIr3/963zmM59J69at07lz55x88slZuHDhameX\nLVuWn/70p/nsZz+bNm3apF27dtlrr71y4403vuv1H3nkkRx22GH59Kc/nVatWqWuri777bffGh+z\nJuVyOX379l1lfe7cufn3f//3bLbZZtlwww2zyy675KqrrvpAzwEAAABQDZzkAwAAAPAx8Z3vfCfD\nhw9PXV1djjvuuNTU1OSPf/xjHn744SxfvjwbbLDBytk333wz++23X+67777ssMMOOemkk7J48eLc\ndNNNOeywwzJhwoQMGzas0fVHjhyZE044IbW1tTnwwAOzzTbbZO7cuXnssccyYsSIHHLIIR8od6lU\navT1/Pnz06tXr8yYMSN9+vTJnnvumdmzZ+f444/Pl770pQ/0HAAAAADrOyUfAAAAgI+BBx98MMOH\nD8/WW2+dRx55JO3bt0+SDBs2LH379s2cOXOy5ZZbrpy/4IILct9996V///655ZZbUi7/34HOZ599\ndnbbbbecd955GTBgQHr27JkkeeaZZ/Ltb3877du3z/33358ddtih0fPPnj37I/tezjjjjMyYMSPf\n+973csEFF6xcP+mkk1bmAQAAAKAxt+sCAAAA+Bi4/PLLkyQ/+tGPVhZ8kmSDDTbIeeedt8r8qFGj\nUi6Xc+GFF64s+CTJJptskjPPPDNJcumll65cHzFiROrr63PmmWeuUvBJkrq6uo/k+1i+fHmuueaa\nfOITn8jQoUMb7X3+85/PN77xjY/keQAAAADWN0o+AAAAAB8DTzzxREqlUvbee+9V9nr37t2oyPPa\na69l2rRpqaury7bbbrvK/Be/+MUkyYQJE1auPfTQQ0mSL3/5yx919EaeffbZLF26ND169Ejbtm1X\n2V/d9wcAAACAkg8AAADAx8LChQuTJJttttkqezU1NenQocMqs506dVrttTp27JgkWbBgwcq1BQsW\npFQq5dOf/vRHlnl11vR9vD0bAAAAAI0p+QAAAAB8DLRr1y5J8tJLL62yt2LFisyfP3+tZpNkzpw5\njeaSrLwF2KxZsz6awO/ireecO3fuavffLTMAAABAtVPyAQAAAPgY+PznP59KpZJ77713lb0///nP\naWhoWPl127Zts9VWW2XWrFmZOnXqKvP33HNPkuRzn/vcyrWePXumUqnkzjvvXAfp/2WHHXZI69at\nM2HChCxatGiV/fHjx6/T5wcAAAD4uFLyAQAAAPgYOOqoo5Ikw4YNy6uvvrpy/Y033sgPf/jDVeaH\nDBmSSqWS0047rVEBaP78+Tn33HNTKpUyZMiQlesnnHBCampqcu6552by5MmrXO+jOuGnpqYmRxxx\nRBYtWpShQ4c22nvsscdyzTXXfCTPAwAAALC+KVUqlUrRIQAAAAB4b9/5zncyfPjwdOrUKQcffHBq\na2vzxz/+MZ/61Kcya9astGzZMjNmzEiSLF++PPvss0/+/Oc/5zOf+Uy+/OUvZ8mSJbnxxhszf/78\nfP/73895553X6PqXXnppjj/++NTU1OQrX/lKtt5667zyyit59NFH065du4wbN+59Zy6Xy/m3f/u3\nRo995ZVXsvvuu2f69OnZc88907t378yZMyc33HBD+vXrl1tuuSVDhw7NWWed9eF+YAAAAADrESUf\nAAAAgI+R3/zmN/nNb36T6dOnp0OHDhk0aFCGDRuW7t27p1QqZfr06Stnly1blgsvvDDXXnttpk2b\nltra2nTv3j0nnnhiDjvssNVe/6GH/n+7dmyaUBiFYfj7JStYX7CycgTBFdxAcADrO4PgMA5gYZMx\nbO0U7G/6ECQpknuSPE99iq8+vK/Z7/c5n8+53W6ZTqdZLBbZbrdZr9df3vtR5JMk1+s1fd/neDzm\n8XhkPp9nt9ul67qsViuRDwAAAMA7Ih8AAAAAAAAAAChuMvYAAAAAAAAAAADgOZEPAAAAAAAAAAAU\n9zL2AAAAAAB+h/v9nsPh8KnbzWaTruu+eREAAADA/9GGYRjGHgEAAABAfZfLJbPZLK21PHsptdZy\nOp2yXC5/cB0AAADA3ybyAQAAAAAAAACA4iZjDwAAAAAAAAAAAJ4T+QAAAAAAAAAAQHEiHwAAAAAA\nAAAAKE7kAwAAAAAAAAAAxYl8AAAAAAAAAACgOJEPAAAAAAAAAAAUJ/IBAAAAAAAAAIDiRD4AAAAA\nAAAAAFCcyAcAAAAAAAAAAIoT+QAAAAAAAAAAQHEiHwAAAAAAAAAAKE7kAwAAAAAAAAAAxYl8AAAA\nAAAAAACguDerR64PPFSWAAAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], - "prompt_number": 88 + "prompt_number": 48 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "r = lambda: random.randint(0,255)\n", + "print('#%02X%02X%02X' % (r(),r(),r()))" + ], + "language": "python", + "metadata": {}, + "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "#or at the average topic probabilties \n", - "lda.pr_topic_g_doc.mean(axis=1).plot(kind='bar', figsize=(15,10), title='Average Topic Probabilities')" + "import random\n", + "my_colors = [\"%06x\" % random.randint(0,0xFFFFFF) for i in range(20)]\n", + "#my_colors = 'rgbkymc'\n", + "lda.pr_topic_g_doc.mean(axis=1).plot(kind='bar', figsize=(15,10), color=my_colors,\n", + " title='Average Topic Probabilities')" ], "language": "python", "metadata": {}, "outputs": [ { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 95, - "text": [ - "" + "ename": "ValueError", + "evalue": "to_rgba: Invalid rgba arg \"396cbf\"\nto_rgb: Invalid rgb arg \"396cbf\"\ninvalid literal for float(): 396cbf", + "output_type": "pyerr", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#my_colors = 'rgbkymc'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m lda.pr_topic_g_doc.mean(axis=1).plot(kind='bar', figsize=(15,10), color=my_colors,\n\u001b[0;32m----> 6\u001b[0;31m title='Average Topic Probabilities')\n\u001b[0m", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(series, label, kind, use_index, rot, xticks, yticks, xlim, ylim, ax, style, grid, legend, logx, logy, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1797\u001b[0m secondary_y=secondary_y, **kwds)\n\u001b[1;32m 1798\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1799\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1800\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1801\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 876\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 877\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 878\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 879\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_post_plot_logic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_adorn_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36m_make_plot\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1532\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1533\u001b[0m rect = bar_f(ax, self.ax_pos + i * 0.75 / K, y, 0.75 / K,\n\u001b[0;32m-> 1534\u001b[0;31m start=start, label=label, **kwds)\n\u001b[0m\u001b[1;32m 1535\u001b[0m \u001b[0mrects\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrect\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1536\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmark_right\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/pandas/tools/plotting.pyc\u001b[0m in \u001b[0;36mf\u001b[0;34m(ax, x, y, w, start, **kwds)\u001b[0m\n\u001b[1;32m 1479\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'bar'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1480\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1481\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbottom\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1482\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'barh'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/matplotlib/axes.pyc\u001b[0m in \u001b[0;36mbar\u001b[0;34m(self, left, height, width, bottom, **kwargs)\u001b[0m\n\u001b[1;32m 4976\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnbars\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4977\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4978\u001b[0;31m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmcolors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolorConverter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_rgba_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4979\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# until to_rgba_array is changed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4980\u001b[0m \u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/matplotlib/colors.pyc\u001b[0m in \u001b[0;36mto_rgba_array\u001b[0;34m(self, c, alpha)\u001b[0m\n\u001b[1;32m 409\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 410\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 411\u001b[0;31m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_rgba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 412\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 413\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/danielkrasner/anaconda/lib/python2.7/site-packages/matplotlib/colors.pyc\u001b[0m in \u001b[0;36mto_rgba\u001b[0;34m(self, arg, alpha)\u001b[0m\n\u001b[1;32m 363\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m raise ValueError(\n\u001b[0;32m--> 365\u001b[0;31m 'to_rgba: Invalid rgba arg \"%s\"\\n%s' % (str(arg), exc))\n\u001b[0m\u001b[1;32m 366\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mto_rgba_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: to_rgba: Invalid rgba arg \"396cbf\"\nto_rgb: Invalid rgb arg \"396cbf\"\ninvalid literal for float(): 396cbf" ] }, { "metadata": { "png": { - "height": 632, - "width": 876 + "height": 590, + "width": 877 } }, "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAABtgAAATxCAYAAAC1eZdDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xu01GXd///XNRsENshhI8qhZEMI2NLUrFSUHE/IymVa\nZlrdKmhoX1MTrcxsyYzdES41D2Xdec7bUlMzte4oUqBERcXwVCICmqghZwQEQT6/P/zN1GYfYPa8\n9Bouno+1WHft2TOf6/Pcnz2fda93156QZVkmAAAAAAAAAAAAAFslF3sBAAAAAAAAAAAAwLaEARsA\nAAAAAAAAAABQAQZsAAAAAAAAAAAAQAUYsAEAAAAAAAAAAAAVYMAGAAAAAAAAAAAAVIABGwAAAAAA\nAAAAAFABBmwAAAAAAAAAAABABRiwAQAAAAAAAAAAABVgwAYAAAAAAAAAAABUgAEbAAAAAAAAAAAA\nUAEGbAAAAAAAAAAAAEAFGLABAAAAAAAAAAAAFWDABgAAAAAAAAAAAFSAARsAAAAAJKaxsVG5XE7T\np0+PvZRopk2bplwup0GDBm1Tx23tZ9fW644ZM0a5XE7FYrFdxywUCsrlcho7dmy7ng8AAABsjxiw\nAQAAADXqt7/9rXK5nHK5nEaNGhV7Odu9fD5f/nlU+i+GEIJCCO/7cUqDn83/de7cWbvuuqu++MUv\n6sEHH3zf19GaD6KB+7ht/ezaet2WHisUCioWi1q5cuVWHRcAAADA1ukQewEAAAAAWvaLX/yi/J8f\neughvf766+rfv3/EFW3fevfurb59+zb7+ltvvaU1a9Yol8tp5513jrCy5oYMGaL6+nrV19d/oMft\n06eP6urqJEkrV67Ua6+9prvvvlt33323zj//fF122WUf6Hq2Re352fXv31/Dhw/XTjvt1OyxSy65\nRJI0duxY9ejRo8Xn9+nTR8OHD1e/fv3at2gAAABgOxSyLMtiLwIAAABAU0uWLFH//v21ceNG7b77\n7vrHP/6hH/7wh7rgggtiLw2bKRaLKhaLamxs1Pz582Mv5wM3bdo0HXrooQohaMGCBdp1113Ljz3z\nzDP6+te/rhkzZkiS7r33Xh1zzDEf6Lo+6J/L+3Xc9r5uLpdr8WcDAAAAoDr8iUgAAACgBt1+++3a\nuHGjDjroIF144YWSmu5oQ+3gf7PYuo997GN64IEHyjurfvazn0Ve0faL6xQAAADwYsAGAAAA1KDS\nMO3kk0/W5z//eXXt2lVz5szRE0880eT7Fi5cWP7Mq+eff77V11u3bp169uypXC6nBx54oNnjixcv\n1oUXXqg999xT3bp1U9euXbXHHnvoe9/7npYvX97iazY2NiqXy2n69Ol67bXXdOaZZ2rw4MHq1KmT\n9tlnnyZrvPzyyzV69Gjttttuqq+vV/fu3bXPPvuoUChs8bOhFi5cqNNOO00DBgxQ586dNXjwYJ13\n3nlasWKFbrnlFuVyOR1yyCGtPv/hhx/WiSeeqA996EPq1KmTevfurSOOOEJ33HFHm8d12bRpk268\n8UYdfPDBamhoUOfOnTVo0CCdccYZmjdvXovPKX2u2aBBgyRJDzzwgA455BD16tVL3bp104gRI3T7\n7be3esz//Nm0ZMOGDbruuut02GGHqU+fPurUqZMGDhyoUaNG6frrr9fatWurP/H/X8+ePXXkkUdK\nkp566qny1zf/2f3yl7/UwQcfrN69eyuXy+m+++4rf297Gm6u0obVXrftPe6WfnYtGTNmjHK5nIrF\nYrOvSe8N1wYNGtTkM/LGjh1b/t5CodDsa5trz+/RggUL9P/+3//T0KFD1aVLF9XX12vgwIHK5/Oa\nNGmSli5dutXnCAAAANScDAAAAEBNee6557IQQlZfX5+tXLkyy7IsGzt2bBZCyL7+9a83+/6DDz44\nCyFk3/3ud1t9zXvuuScLIWS9e/fONmzY0OSxv/71r1lDQ0MWQshyuVzWuXPnrL6+PgshZCGEbNdd\nd83mzJnT7DUHDhyY5XK57Lrrrst22mmnLISQdevWLdtxxx2zffbZp/x9xx13XPm1OnfunO20005Z\nhw4dyl8bMmRItnDhwhbX/fTTTzdZW/fu3bOuXbuWn/ejH/0oCyFkhxxySIvP//a3v10+Ti6Xy3r2\n7JnV1dWVv/alL30p27RpU6vdtsaECROyEEI2aNCgZo+tWbMmGzVqVPl4nTp1ynr16pXlcrkshJB1\n6dIlu++++5o9b+rUqeXXvPLKK7MQQlZXV5c1NDQ0aXfWWWe1uKbSz2b69OnNHlu4cGG29957l1+j\nQ4cO2U477ZR17ty5/LVp06Zt9fmX1prL5bJXXnmlxe8p/Rw6depU/trNN9+chRCyfD6fnX322eW1\n9O7dO+vQoUO5S7UNGxsb29Wwvddttcdt7Wf3n9fE5k455ZQshJAVi8Xy177xjW9k/fr1Kx9v5513\nzvr161f+d+6555a/t3QNjx07tsU1tef3aNasWdmOO+5Yfk6nTp2yhoaG8s8thJD98Y9/bPF4AAAA\nwLaAHWwAAABAjSntXvvsZz+r7t27S5JOOeUUSdKdd96pDRs2NPn+L3/5y5LU5k6S0o6Z4447Th06\ndCh//ZVXXtHRRx+tFStW6Mwzz9TcuXP19ttva82aNXr22Wc1atQovfrqq/r85z+vTZs2NXvdLMt0\n/vnna8CAAXrkkUf01ltvadWqVbrrrrvK3/PRj35UP/7xj8uvvXjxYq1bt07Tpk3TJz/5Sc2bN09n\nnHFGs9dev369jj/+eC1fvlxDhw7Vww8/rJUrV+qtt97S73//e61Zs0bf//73Wz3nq6++Wpdddpn6\n9u2r66+/XitWrNDy5cu1evVq3XHHHerbt6/uuOMOXXrppa2+RrXOO+88TZkyRZ07d9bPf/5zvfXW\nW1q2bJleeOEF5fN5rVu3Tl/+8pc1d+7cFp//5ptv6oILLtApp5yiN954Q0uXLtXixYt1/vnnS5Ku\nvfbaVndDZS38ScD169fr6KOP1tNPP60+ffro1ltv1apVq7R48WKtXbtWs2bN0vjx41VfX++LIOmf\n//ynpPd2s21u1qxZuvbaa3XJJZdo6dKlWrJkiZYvX64DDjhAUvUNFy9e3K6G7b1uqz2u5Plzjldd\ndZVef/11SVIIQU888YRef/318r8rr7xyq16nvb9H3/zmN7V69Wrtv//+euqpp7Ru3TotXbpUa9as\n0RNPPKHx48erR48eVZ8nAAAAEE3kAR8AAACA/7Bx48byrpM//OEPTR5rbGzMQgjZPffc0+Try5Yt\nyzp27Jjlcrns0Ucfbfaaq1atyrp06ZLlcrlmO5O+8pWvtLn77Z133sn22muvLISQ3X333U0eGzhw\nYBZCyBoaGrI333yzPaebLVu2LNt5552zXC6Xvfzyy00eu+mmm8o7+RYsWNDsuTNnzizvhtl8B9vy\n5cuzbt26ZfX19dkzzzzT4rEfffTRLJfLZQ0NDdk777zTrvVnWes72BYsWFBe33XXXdfseWvXrs2G\nDBmShRCyk08+ucljpd1KIYTsyCOPbPG4Y8aMyUII2W677dbssdLPZvNdUNdee21519ezzz5b6am2\naEs72F5//fXyTqbPfvaz5a+XdrCFELKLLrqoxdeO2bAtbV2379fPrtIdbCVb2l2YZa3vYKvm96j0\nnvP444+3elwAAABgW8YONgAAAKCGTJkyRf/617/Ut2/f8udWlZx88smS/r3DraRXr14aPXq0sixr\ncUfMb3/7W61bt04DBgzQwQcfXP762rVrddddd6murk7jx49vcT0dO3bUcccdJ0n685//3OL3nHzy\nyerTp8/Wn+Rmaz/ggAOUZZkeeeSRJo/95je/kSR94QtfUGNjY7PnfupTn1I+n2/xde+55x6tWbNG\nhx9+uPbcc88Wv2f//fdXY2OjVqxYoVmzZrVr/W259957lWWZ+vXrp69+9avNHu/SpYu+/e1vl7+3\npR2CIQRdeOGFLb7+RRddJEmaN2+enn766a1a06233ipJGjt2rPbYY4+tek4lsv/YebV8+XL96U9/\n0hFHHKHVq1crhKCzzjqr2XM6dOig8847r8XXq8WGUtvX7ft53A9aNb9H3bt3V5Zl5V10AAAAQGoY\nsAEAAAA15JZbbpEkfeUrX1EIocljpQHb5MmTtWTJkiaPlf5M5K9//etmQ4Zf/epXkqQTTjihyddn\nzZqlDRs2aNOmTdpjjz3Ut2/fFv9dfvnlkv79Z/42V/pTfm15/PHHdeqpp2r48OHq1q2bcrlc+d/9\n998vSXrjjTeaPOdvf/ubJOmggw5q9XVHjhzZ4tdLQ48HH3yw1fPq27evFi5cqCzL9Oqrr27xHCr1\n1FNPlde4+c+y5NBDD5UkrVmzRnPmzGn2eMeOHXXggQe2+NwhQ4aob9++yrKsfKy2bNiwQbNmzVII\nQZ/5zGe29jS2WpZlGjRoUPnn2rt3b40ePVp///vfVVdXp4kTJ+qII45o8TwaGhpafM3YDdtz3TqO\nWyuq+T066qijJL33vnXhhRdq5syZ2rhxY5TzAAAAAN4PHbb8LQAAAAA+CCtXrtR9992nEIJOOumk\nZo9/5CMf0YgRI/TII4/oV7/6lc4555zyY8ccc4zq6+u1aNEiPfTQQzr88MMlSUuWLNGf//xnhRDK\nQ7iS0mAgyzItXry4zbWFEPT222+3+NiWdq9dfvnl5V1GIQTV1dWpoaFBO+ywgyRpxYoVWrdundas\nWdPkeaUhYr9+/Vp97dYeK53b2rVrW113SVvnVo1S0wEDBrT6Pf/52OZDU0naaaedmnxmXkvP/9e/\n/tXicze3bNkyvfvuuwohaNddd93i97dHnz59VFdXJ0nq1KmTdt55Z+2333467bTTtNdee7X6nNbE\nbNje67ba49aSan6PLrvsMs2ZM0ePPPKILr30Ul166aXq1KmTRowYoeOPP15jxoxR586d39f1AwAA\nAO8ndrABAAAANeLOO+/U+vXrlWWZ9t577ya7ZUr/SjtKNv8zkV26dNGxxx4r6d871iTprrvu0rvv\nvqthw4Zpn332afKc0k63nj176t13393iv4ceeqjFdZcGKi15/vnndcEFFyiEoLPPPlvPP/+81q9f\nryVLluj111/X66+/Xv4TlP/55wWrVTq3c889d6vOrbQ78P2wbt269+21a0kIQU888UT557pgwQLN\nnDlT11xzTavDNant66fkg24Y67qtNdX8HjU0NOjhhx/WlClTdM455+jjH/+4Nm7cqKlTp+rMM8/U\nHnvsoddeey3WqQEAAABVY8AGAAAA1IjS0CyE0OY/6b0/n/jcc881eX5ph9q9996rDRs2SFL5M9m+\n9KUvNTte3759JUmrVq3SqlWr3pdzuueee5RlmY488khdffXVGj58eLM/9bdo0aIWn7vTTjtJUpuf\n4dTan+fbZZddJEmvvPJKe5ZtUdqZ1dYaFi5c2Oz7/9OSJUva/LN6pTZb8xl4DQ0N5WHWyy+/vMXv\nrwWxGlZz3VZz3Frj+D067LDDdNVVV+nJJ5/U4sWL9fOf/1wNDQ2aP39+q5/9CAAAAGwLGLABAAAA\nNWDu3Ll69NFHFULQ7NmztXz58hb/LVu2TEcffbSk5rvYRo0apd69e2vlypX63e9+p1dffVUPP/xw\ni38eUpI+8YlPqK6uTps2bdLkyZPfl/MqDT823z1XsmbNGj322GMtPvbxj39ckvTwww+3+vp//etf\nW/z6iBEjJEnTp0+PtoNs3333lfTe53i19uf1SrsCu3btqmHDhjV7fMOGDeVdi5t76aWX9MYbbyiE\nUG7Vlo4dO+oTn/iEsizT//3f/23taUQVq2E11201x30/tWennfv3qGfPnho3bpwmTpwoSfrLX/5S\n9WsCAAAAsTBgAwAAAGrArbfeKknaa6+9tOeee6p79+4t/uvRo4eOP/54SdIvf/nL8p9wk6QOHTqU\nH7v99tt1xx13SHpvkPaRj3yk2TG7deumL3zhC5Kkiy++WKtXr251fRs3bmz1s6ba0rNnT0nSM888\n0+LjP/jBD1o97uc+9zlJ7+0mamkHzRNPPKGpU6e2+Nzjjz9eXbt21bJly3TJJZe0ucbly5e3+Xh7\nff7zn1cul9OSJUt03XXXNXt87dq1uuyyy8rfu/kOKem9ocgPf/jDFl+/9PXddttNH/vYx7ZqTaU/\n4XfLLbfo2Wef3arnxBSrYTXXbTXHfT90795dUvuu8/b+HmVZ1ubuvdJnr61fv77iNQEAAAC1ggEb\nAAAAEFmWZfrf//1fSe8NCbbk6KOPVocOHbRo0SL98Y9/bPJYaafa7373O91yyy1NvtaSSZMmqaGh\nQS+++KJGjBihP/7xj+U/L5llmV544QVddtllGjZsmJ588slmz29poPGfjjjiCEnS73//e02aNKm8\nC2nx4sX61re+pUmTJql3794tPvfLX/6yhgwZorffflujR48u7xjKskyTJ0/WscceWx6EbK6hoaE8\nxJg0aZJOP/10zZ07t/z42rVrNXXqVJ1++uk68MAD2zyH9tp11111+umnS5K+853v6Prrr9c777wj\nSXrxxRd11FFHad68eeratau+973vtfga9fX1evDBB3Xaaadp8eLFkqQVK1boggsu0M0336wQggqF\nQovPbelnc9ppp2nvvffW+vXrddhhh+m2224r/0zeffddPfnkkxo3bpwef/zxak/fIlbDaq7bao5b\nsqXfq0rsscceyrJMt956a5OB/NZo7+/RypUrNWTIEE2cOFHPPfec3n33XUnvfabbgw8+qIsuukiS\ndOSRR1Z7egAAAEA8GQAAAICoHnrooSyEkOVyuezvf//7Vj1n9OjRWQghO+GEE5o9NnDgwCyEkIUQ\nsg4dOmT/+te/2nytJ554IhswYED5OR07dsx69+6d7bDDDuWv5XK57C9/+UuLx5k+fXqbr3/ccceV\nXyeEkPXq1av8n8eNG5eNGTMmCyFkxWKx2XNnz57d5Pu7deuWdenSJQshZEOHDs2uuOKKLISQjR49\nusVj//d//3eWy+XKz+/atWuT1wshZIMHD25z/VsyYcKELISQDRo0qNlja9euzUaNGtWkbc+ePcv/\nvUuXLtn999/f7HlTp04tv+bVV19d/hn06tWrfD65XC47++yzW1xTWz+bV199Ndtzzz3La6irq2vy\n887lclv8mba01hBC9sorr2z1826++eYshJAdcsghbX5ftQ0bGxvb1bC91221x23tZ/ef18TmTjnl\nlFZ/h0qdQwhZ586ds1133TUbOHBg9s1vfrP8PaVreOzYsS2uqdLfo+XLlzd5rGPHjllDQ0NWV1dX\n/tqQIUOy1157rcXjAQAAANsCdrABAAAAkZX+POTQoUO1++67b9VzjjvuOEnSAw88oFWrVjV57MQT\nT5T03i6YfD6vXXbZpc3X+sQnPqEXXnhBl156qUaMGKHu3btr1apV6tatmz75yU/qG9/4hqZPn66R\nI0c2eV4IYat22tx5552aNGmSdt99d3Xq1EkhBI0cOVK33npr+c/+tfY6e+21l55++mmNHTtW/fr1\n08aNG9WvXz+NHz9ejz/+uHK59/5fmtZ2sl100UV6+umndfrpp2vo0KGSpLffflsf+tCHNHr0aF12\n2WWtfo7b1mqrQZcuXfSHP/xBN9xwg0aOHKlu3bpp3bp1amxs1Lhx4/Tss8+WP1OvNeecc47uv/9+\nHXzwwZLe2xl1wAEH6LbbbtM111zT6ppaW9eHPvQhPfnkk7rmmmt00EEHqUePHlq7dq0GDBig0aNH\n64YbbtAnP/nJrTz7f59/pbuutvb729vwP9fVnobtvW6rPW5rP7u2erX18x4zZoyuv/56fepTn9IO\nO+yg1157Ta+++qqWLl26Vc+XKv896tGjh373u9/p3HPP1X777adddtlFa9as0Y477qhPfepTmjhx\nombPnq3+/fu3ekwAAACg1oUsa8cnHQMAAABADTjppJP0y1/+UoVCQRdffHHs5dhMmzZNhx56qBob\nGzV//vzYywEAAAAAbIYdbAAAAAC2SfPnz9c999yjEEL5M7MAAAAAAPggVD1gW7hwoU499VT1799f\nnTt31qBBgzR+/HitWLGi3a952223KZfLKZfL6cYbb2z1+x555BF95jOfUUNDg+rr67XXXnvp6quv\nrviDmwEAAADUpvvuu0/f/e539fe//10bNmyQJK1fv1733XefDj30UK1bt07777+/DjjggMgrBQAA\nAABsTzpU8+R58+ZpxIgRWrx4sY499lgNHz5cM2fO1NVXX63JkydrxowZamhoqOg1X331VZ111lnq\n1q2bVq9e3erfgb/vvvt03HHHqb6+XieccIIaGhp0//33a/z48ZoxY4Z+/etfV3NqAAAAAGrAkiVL\nNGnSJE2aNEkhBPXs2VOrVq3Su+++K0lqbGzUbbfdFnmVAAAAAIDtTVU72M4880wtXrxYP/7xj/Wb\n3/xGEydO1IMPPqjx48drzpw5uuiiiyp6vSzLNHbsWPXp00df+9rXWv2+VatWady4cerYsaOmTZum\n66+/Xpdeeqlmz56tAw44QHfffbfuvPPOak4NAAAAQA04/PDDddFFF2nEiBHq37+/1q5dq27dumnf\nffdVsVjU7NmzNWjQoNjLtGvtf2gIAAAAAKgNIcuyrD1PnDdvnnbbbTcNGjRI8+bNa/LY6tWr1bdv\nX4UQtGjRItXX12/Va1599dU677zzNH36dP35z3/WJZdcohtuuEGnnnpqk++76aab9NWvflWnnHKK\nbr755iaPTZ06VYcddpg+/elPa9q0ae05NQAAAAAAAAAAAKBV7d7BNnXqVEnSqFGjmj3WrVs3HXjg\ngVqzZo0ee+yxrXq9f/zjH/rOd76jc889VwcddFCb3/vQQw9JkkaPHt3ssU9/+tPq0qWLHn300fJn\nNAAAAAAAAAAAAAAu7R6wzZkzR5I0dOjQFh/fbbfdJElz587d4mtt3LhRJ510khobGzVx4sSqjl1X\nV6dBgwZp48aNmj9//hZfCwAAAAAAAAAAAKhEh/Y+ceXKlZKkHj16tPh46esrVqzY4mtdcsklmj17\ntmbMmKFOnTpt1bFDCG0eO8uyrTo2AAAAAAAAAAAAUIl2D9hcZs6cqR/+8If61re+pf322+8DPz4f\nHg4AAAAAAAAAALB9yrKsXc9r95+ILO0eK+1k21zp6z179mz1NTZu3KiTTz5Zw4YNU7FYbPF7Wjqx\n0g61ao4tMVwDAAAAAAAAAADYnrV3VtTuHWzDhw+X9O/PQ9tc6bPXWvuMNklavXp1+fs6d+7c4veM\nGzdO48aN0ze+8Q1deeWVkqRhw4Zp1qxZmjNnjvbZZ58m379x40YtWLBAHTt21ODBg7fqXNo7naxF\nIYSkzicmWnrQ0YeWPrT0oKMPLX1o6UFHH1r60NKDjj609KGlBx19aOlDSw86+tDSJ5WW1WzEaveA\n7ZBDDpEkTZkyRVmWNVnEW2+9pRkzZqhr167af//9W32Nzp0767TTTmvxBGbNmqW//e1vGjlypIYN\nG6YRI0aUHzvssMP0q1/9SpMnT9aJJ57Y5Hl/+ctf9Pbbb+vggw9Wx44d23t6AAAAAAAAAAAAQItC\nVsWIcfTo0frTn/6ka665RmeddVb56+edd56uuuoqfe1rX9NPf/pTSe/tLHvppZe0ww47bNXOskKh\noEsuuUQ33HCDTj311CaPvfXWW/rIRz6iVatWacaMGdp3330lSevWrdOhhx6qxx57THfccYe++MUv\ntnmM0mAvhSlrSSpT41pASw86+tDSh5YedPShpQ8tPejoQ0sfWnrQ0YeWPrT0oKMPLX1o6UFHH1r6\npNKymjlRu3ewSdJPf/pTjRgxQuecc44efPBBDR8+XDNnztS0adM0bNgw/eAHPyh/78KFC/XRj35U\nAwcO1IIFC6o5rHbccUddf/31+sIXvqB8Pq8TTzxRvXr10v33368XX3xRxx9//BaHawAAAAAAAAAA\nAEB75Kp58uDBg/Xkk09qzJgxmjlzpn70ox9pwYIFOvfcc/XYY4+pV69ezZ6ztX/PMoTQ5vcec8wx\nmj59uj796U/rnnvu0U9+8hN16tRJV155pe644452nxMA4P131FFHld/nY/yTFO3YRx11VOT6AAAA\nAAAAAKpV1Z+I3NbxJyLRFlp60NEnpZbVfHhoClL6OaZyLrHR0oeWHnT0oaUPLT3o6ENLH1p60NGH\nlj609KCjDy19UmkZ7U9EAgBQnVg34RDp2Nv3YBEAAAAAAABIRV2hUCjEXkQsxWJRkpRagnw+H3sJ\nyaClBx19UmlZev+VChFXkY9wzPTuO6lck7WAlj609KCjDy19aOlBRx9a+tDSg44+tPShpQcdfWjp\nk0LLauZE/IlIpfOnugBgW/HvPxG5vb3/ct8BAAAAAAAAakU1c6KcezGIK6VdEbHR0oOOPrR0KsRe\nQBK4Jn1o6UNLDzr60NKHlh509KGlDy096OhDSx9aetDRh5Y+tGQHm6S0dhKk8sGCtYCWHnT0Sall\n/B1scT+DLaWfYyrnEhstfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6UNLDzr60NInlZbVzIn4DDalN2lN\n4e+e1gpaetDRJ5WWfAZbIcKx3x+pXJO1gJY+tPSgow8tfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6ZNC\nSz6DrZ1S3MEGANuC+DvYYuG+AwAAAAAAANQKPoMNAAAAAAAAAAAA+IAwYAMAAAAAAAAAAAAqwIAN\nAAAAAAAAAAAAqAADNgAAAAAAAAAAAKACDNgSUygUYi8hGbT0oKMPLZ0KsReQBK5JH1r60NKDjj60\n9KGlBx19aOlDSw86+tDSh5YedPShpQ8tpZBlWRZ7EbGEECRJKSUIISR1PjHR0oOOPim1LL3/SrHO\nJ0Q6dlr3nZSuydho6UNLDzr60NKHlh509KGlDy096OhDSx9aetDRh5Y+qbSsZk5UV9iOx4zFYlFS\nepPWfD4fewnJoKUHHX1SaVl6/427kywf4Zjp3XdSuSZrAS19aOlBRx9a+tDSg44+tPShpQcdfWjp\nQ0sPOvooSgzqAAAgAElEQVTQ0ieFltXMidjBpnR2EgDAtiL+DrZYuO8AAAAAAAAAtaKaORGfwQYA\nAAAAAAAAAABUgAEbAAAAAAAAAAAAUAEGbAAAAAAAAAAAAEAFGLABAAAAAAAAAAAAFWDAlphCoRB7\nCcmgpQcdfWjpVIi9gCRwTfrQ0oeWHnT0oaUPLT3o6ENLH1p60NGHlj609KCjDy19aCmFLMuy2IuI\nJYQgSUopQQghqfOJiZYedPRJqWXp/VeKdT4h0rHTuu+kdE3GRksfWnrQ0YeWPrT0oKMPLX1o6UFH\nH1r60NKDjj609EmlZTVzorrCdjxmLBaLktKbtObz+dhLSAYtPejok0rL0vtv3J1k+QjHTO++k8o1\nWQto6UNLDzr60NKHlh509KGlDy096OhDSx9aetDRh5Y+KbSsZk7EDjals5MAALYV8XewxcJ9BwAA\nAAAAAKgV1cyJ+Aw2AAAAAAAAAAAAoAIM2AAAAAAAAAAAAIAKMGADAAAAAAAAAAAAKsCADQAAAAAA\nAAAAAKgAA7bEFAqF2EtIBi096OhDS6dC7AUkgWvSh5Y+tPSgow8tfWjpQUcfWvrQ0oOOPrT0oaUH\nHX1o6UNLKWRZlsVeRCwhBElSSglCCEmdT0y09KCjT0otS++/UqzzCZGOndZ9J6VrMjZa+tDSg44+\ntPShpQcdfWjpQ0sPOvrQ0oeWHnT0oaVPKi2rmRPVFbbjMWOxWJSU3qQ1n8/HXkIyaOlBR59UWpbe\nf+PuJMtHOGZ6951UrslaQEsfWnrQ0YeWPrT0oKMPLX1o6UFHH1r60NKDjj609EmhZTVzInawKZ2d\nBACwrYi/gy0W7jsAAAAAAABArahmTsRnsAEAAAAAAAAAAAAVYMAGAAAAAAAAAAAAVIABGwAAAAAA\nAAAAAFABBmwAAAAAAAAAAABABRiwJaZQKMReQjJo6UFHH1o6FWIvIAlckz609KGlBx19aOlDSw86\n+tDSh5YedPShpQ8tPejoQ0sfWkohy7Is9iJiCSFIklJKEEJI6nxioqUHHX1Sall6/5VinU+IdOy0\n7jspXZOx0dKHlh509KGlDy096OhDSx9aetDRh5Y+tPSgow8tfVJpWc2cqK6wHY8Zi8WipPQmrfl8\nPvYSkkFLDzr6pNKy9P4bdydZPsIx07vvpHJN1gJa+tDSg44+tPShpQcdfWjpQ0sPOvrQ0oeWHnT0\noaVPCi2rmROxg03p7CQAgG1F/B1ssXDfAQAAAAAAAGpFNXMiPoMNAAAAAAAAAAAAqAADNgAAAAAA\nAAAAAKACDNgAAAAAAAAAAACACjBgAwAAAAAAAAAAACrAgC0xhUIh9hKSQUsPOvrQ0qkQewFJ4Jr0\noaUPLT3o6ENLH1p60NGHlj609KCjDy19aOlBRx9a+tBSClmWZbEXEUsIQZKUUoIQQlLnExMtPejo\nk1LL0vuvFOt8QqRjp3XfSemajI2WPrT0oKMPLX1o6UFHH1r60NKDjj609KGlBx19aOmTSstq5kR1\nhe14zFgsFiWlN2nN5/Oxl5AMWnrQ0SeVlqX337g7yfIRjpnefSeVa7IW0NKHlh509KGlDy096OhD\nSx9aetDRh5Y+tPSgow8tfVJoWc2ciB1sSmcnAQBsK+LvYIuF+w4AAAAAAABQK6qZE/EZbAAAAAAA\nAAAAAEAFGLABAAAAAAAAAAAAFWDABgAAAAAAAAAAAFSAARsAAAAAAAAAAABQAQZsiSkUCrGXkAxa\netDRh5ZOhdgLSALXpA8tfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6UNLDzr60NKHllLIsiyLvYhYQgiS\npJQShBCSOp+YaOlBR5+UWpbef6VY5xMiHTut+05K12RstPShpQcdfWjpQ0sPOvrQ0oeWHnT0oaUP\nLT3o6ENLn1RaVjMnqitsx2PGYrEoKb1Jaz6fj72EZNDSg44+qbQsvf/G3UmWj3DM9O47qVyTtYCW\nPrT0oKMPLX1o6UFHH1r60NKDjj609KGlBx19aOmTQstq5kTsYFM6OwkAYFsRfwdbLNx3AAAAAAAA\ngFpRzZyIz2ADAAAAAAAAAAAAKsCADQAAAAAAAAAAAKgAAzYAAAAAAAAAAACgAgzYAAAAAAAAAAAA\ngAowYEtMoVCIvYRk0NKDjj60dCrEXkASuCZ9aOlDSw86+tDSh5YedPShpQ8tPejoQ0sfWnrQ0YeW\nPrSUQpZlWexFxBJCkCSllCCEkNT5xERLDzr6pNSy9P4rxTqfEOnYad13UromY6OlDy096OhDSx9a\netDRh5Y+tPSgow8tfWjpQUcfWvqk0rKaOVFdYTseMxaLRUnpTVrz+XzsJSSDlh509EmlZen9N+5O\nsnyEY6Z330nlmqwFtPShpQcdfWjpQ0sPOvrQ0oeWHnT0oaUPLT3o6ENLnxRaVjMnYgeb0tlJAADb\nivg72GLhvgMAAAAAAADUimrmRHwGGwAAAAAAAAAAAFABBmwAAAAAAAAAAABABRiwAQAAAAAAAAAA\nABVgwAYAAAAAAAAAAABUgAFbYgqFQuwlJIOWHnT0oaVTIfYCksA16UNLH1p60NGHlj609KCjDy19\naOlBRx9a+tDSg44+tPShpRSyLMtiLyKWEIIkKaUEIYSkzicmWnrQ0SellqX3XynW+YRIx07rvpPS\nNRkbLX1o6UFHH1r60NKDjj609KGlBx19aOlDSw86+tDSJ5WW1cyJ6grb8ZixWCxKSm/Sms/nYy8h\nGbT0oKNPKi1L779xd5LlIxwzvftOKtdkLaClDy096OhDSx9aetDRh5Y+tPSgow8tfWjpQUcfWvqk\n0LKaORE72JTOTgIA2FbE38EWC/cdAAAAAAAAoFZUMyfiM9gAAAAAAAAAAACACjBgAwAAAAAAAAAA\nACrAgA0AAAAAAAAAAACoAAM2AAAAAAAAAAAAoAIM2BJTKBRiLyEZtPSgow8tnQqxF5AErkkfWvrQ\n0oOOPrT0oaUHHX1o6UNLDzr60NKHlh509KGlDy2lkGVZFnsRsYQQJEkpJQghJHU+MdHSg44+KbUs\nvf9Ksc4nRDp2WvedlK7J2GjpQ0sPOvrQ0oeWHnT0oaUPLT3o6ENLH1p60NGHlj6ptKxmTlRX2I7H\njMViUVJ6k9Z8Ph97CcmgpQcdfVJpWXr/jbuTLB/hmOndd1K5JmsBLX1o6UFHH1r60NKDjj609KGl\nBx19aOlDSw86+tDSJ4WW1cyJ2MGmdHYSAMC2Iv4Otli47wAAAAAAAAC1opo5EZ/BBgAAAAAAAAAA\nAFSAARsAAAAAAAAAAABQAQZsAAAAAAAAAAAAQAUYsAEAAAAAAAAAAAAVYMCWmEKhEHsJyaClBx19\naOlUiL2AJHBN+tDSh5YedPShpQ8tPejoQ0sfWnrQ0YeWPrT0oKMPLX1oKYUsy7LYi4glhCBJSilB\nCCGp84mJlh509EmpZen9V4p1PiHSsdO676R0TcZGSx9aetDRh5Y+tPSgow8tfWjpQUcfWvrQ0oOO\nPrT0SaVlNXOiusJ2PGYsFouS0pu05vP52EtIBi096OiTSsvS+2/cnWT5CMdM776TyjVZC2jpQ0sP\nOvrQ0oeWHnT0oaUPLT3o6ENLH1p60NGHlj4ptKxmTsQONqWzkwAAthXxd7DFwn0HAAAAAAAAqBXV\nzIn4DDYAAAAAAAAAAACgAgzYAAAAAAAAAAAAgAowYAMAAAAAAAAAAAAqwIANAAAAAAAAAAAAqAAD\ntsQUCoXYS0gGLT3o6ENLp0LsBSSBa9KHlj609KCjDy19aOlBRx9a+tDSg44+tPShpQcdfWjpQ0sp\nZFmWxV5ELCEESVJKCUIISZ1PTLT0oKNPSi1L779SrPMJkY6d1n0npWsyNlr60NKDjj609KGlBx19\naOlDSw86+tDSh5YedPShpU8qLauZE9UVtuMxY7FYlJTepDWfz8deQjJo6UFHn1Ralt5/4+4ky0c4\nZnr3nVSuyVpASx9aetDRh5Y+tPSgow8tfWjpQUcfWvrQ0oOOPrT0SaFlNXMidrApnZ0EALCtiL+D\nLRbuOwAAAAAAAECtqGZOxGewAQAAAAAAAAAAABVgwAYAAAAAAAAAAABUgAEbAAAAAAAAAAAAUAEG\nbAAAAAAAAAAAAEAFGLAlplAoxF5CMmjpQUcfWjoVYi8gCVyTPrT0oaUHHX1o6UNLDzr60NKHlh50\n9KGlDy096OhDSx9aSiHLsiz2ImIJIUiSUkoQQkjqfGKipQcdfVJqWXr/lWKdT4h07LTuOyldk7HR\n0oeWHnT0oaUPLT3o6ENLH1p60NGHlj609KCjDy19UmlZzZyorrAdjxmLxaKk9Cat+Xw+9hKSQUsP\nOvqk0rL0/ht3J1k+wjHTu++kck3WAlr60NKDjj609KGlBx19aOlDSw86+tDSh5YedPShpU8KLauZ\nE7GDTensJACAbUX8HWyxcN8BAAAAAAAAakU1cyI+gw0AAAAAAAAAAACoAAM2AAAAAAAAAAAAoAIM\n2AAAAAAAAAAAAIAKMGADAAAAAAAAAAAAKsCALTGFQiH2EpJBSw86+tDSqRB7AUngmvShpQ8tPejo\nQ0sfWnrQ0YeWPrT0oKMPLX1o6UFHH1r60FIKWZZlsRcRSwhBkpRSghBCUucTEy096OiTUsvS+68U\n63xCpGOndd9J6ZqMjZY+tPSgow8tfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6ZNKy2rmRHWF7XjMWCwW\nJaU3ac3n87GXkAxaetDRJ5WWpfffuDvJ8hGOmd59J5VrshbQ0oeWHnT0oaUPLT3o6ENLH1p60NGH\nlj609KCjDy19UmhZzZyIHWxKZycBAGwr4u9gi4X7DgAAAAAAAFArqpkT8RlsAAAAAAAAAAAAQAUY\nsAEAAAAAAAAAAAAVYMAGAAAAAAAAAAAAVIABGwAAAAAAAAAAAFABBmyJKRQKsZeQDFp60NGHlk6F\n2AtIAtekDy19aOlBRx9a+tDSg44+tPShpQcdfWjpQ0sPOvrQ0oeWUsiyLIu9iFhCCJKklBKEEJI6\nn5ho6UFHn5Ralt5/pVjnEyIdO637TkrXZGy09KGlBx19aOlDSw86+tDSh5YedPShpQ8tPejoQ0uf\nVFpWMyeqK2zHY8ZisSgpvUlrPp+PvYRk0NKDjj6ptCy9/8bdSZaPcMz07jupXJO1gJY+tPSgow8t\nfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6ZNCy2rmROxgUzo7CQBgWxF/B1ss3HcAAAAAAACAWlHNnIjP\nYAMAAAAAAAAAAAAqwIANAAAAAAAAAAAAqAADNgAAAAAAAAAAAKACDNgAAAAAAAAAAACACjBgS0yh\nUIi9hGTQ0oOOPrR0KsReQBK4Jn1o6UNLDzr60NKHlh509KGlDy096OhDSx9aetDRh5Y+tJRClmVZ\ntS+ycOFCXXzxxZo8ebKWLVumfv366dhjj9WECRPUs2fPrXqNCy64QE8++aRefPFFLV26VJ07d9aH\nP/xhHX300Tr77LO1yy67NPn+l19+WYMHD2719U444QTdfvvtbR4zhCBJMiSoGSGEpM4nJlp60NEn\npZal918p1vmESMdO676T0jUZGy19aOlBRx9a+tDSg44+tPShpQcdfWjpQ0sPOvrQ0ieVltXMiTpU\ne/B58+ZpxIgRWrx4sY499lgNHz5cM2fO1NVXX63JkydrxowZamho2OLrXHXVVdp333115JFHaued\nd9aaNWv06KOPauLEibruuus0Y8YM7bbbbs2et/fee+vYY49t9vU99tij2lPbJk2YMCH2EpJBSw86\n+tDSiZYOXJM+tPShpQcdfWjpQ0sPOvrQ0oeWHnT0oaUPLT3o6ENLH1oadrAdeeSRmjJlin784x/r\n61//evnr559/vq688kqdccYZ+tnPfrbF13nnnXe0ww47NPv69773PU2cOFFjx47VjTfeWP56aQfb\nmDFjdNNNN7Vr7SnuYAOAbUH8HWyxcN8BAAAAAAAAakU1c6KqPoNt3rx5mjJligYNGtRkuCZJxWJR\n9fX1uu2227R27dotvlZLwzVJOv744yVJr7/+ejVLBQAAAAAAAAAAACyq+hORU6dOlSSNGjWq2WPd\nunXTgQceqClTpuixxx7ToYce2q5jPPDAA5KkfD7f4uOvvfaafv7zn2vp0qXq3bu3RowYoT333LNd\nxwIAAAAAAAAAAAC2pKoB25w5cyRJQ4cObfHx3XbbTVOmTNHcuXO3esB2+eWXa/Xq1Vq5cqWefPJJ\nzZw5U1/96ld13nnntfj9U6ZM0ZQpU5p8LZ/P6xe/+IU+/OEPV3A2AAAAAAAAAAAAwJZVNWBbuXKl\nJKlHjx4tPl76+ooVK7b6Na+44gotWrSo/N8PPPBAnXjiierYsWOT7+vatasuvvhiHXvssRo8eLAk\n6emnn1ahUNDUqVN12GGHafbs2aqvr6/onAAAAAAAAAAAAIC2VPUZbO+HN954Q5s2bdKiRYv0m9/8\nRosXL9aoUaN02223Nfm+Pn36qFAoaO+991b37t3VvXt3jRw5Un/605+033776aWXXtINN9wQ6Szi\nKRQKsZeQDFp60NGHlk6F2AtIAtekDy19aOlBRx9a+tDSg44+tPShpQcdfWjpQ0sPOvrQ0oeWUsiy\nLGvvk7/1rW/piiuu0BVXXKHx48c3e/yss87ST3/6U/3sZz/TGWec0a5j/POf/9TQoUPVo0ePJjvb\n2nLjjTdq3LhxOu6443TXXXe1+n0hBElSFQlqTgghqfOJiZYedPRJqWXp/VeKdT4h0rHTuu+kdE3G\nRksfWnrQ0YeWPrT0oKMPLX1o6UFHH1r60NKDjj609EmlZTVzoqp2sA0fPlzSvz+LbXNz586V1Ppn\ntG2NXXfdVbvvvruWLFmy1QO2nXbaSZK0Zs2arfr+EEKr//L5vEIIrU5jC4VCTT0+YcKEml7ftvT4\nhAkTanp928rj//l/a3F929Ljqf1+vyeo9d1khffx8Qnv8+tv+fHY/fn9rq3HU/v9jvk4929+v2vt\ncX6/fY/z+83vd609zu+373F+v/n9rrXH+f32Pc7vN7/ftfY4v9++x7el3+/SnKelf9Woagfb/Pnz\nNWTIEA0aNEgvvfRSk8W89dZb6tevn0IIevPNN9WlS5d2L3KXXXbR0qVLtXLlSnXt2nWL33/hhRfq\n0ksv1Zlnnqmf/OQnrX5fab0pTFkBYFvy7/vF9vb+y30HAAAAAAAAqBXVzImq2sE2ePBgjRo1SgsW\nLNC1117b5LEJEyZo7dq1Oumkk8rDtY0bN+qFF17Q/Pnzm3zv3LlztXLlymavv2nTJl100UVavHix\nDj/88CbDtaeeeqrFE37wwQd15ZVXKoSg//qv/6rm9AAAAAAAAAAAAIBmqtrBJr23i23EiBF68803\ndcwxx2j48OGaOXOmpk2bpmHDhumRRx5Rr169JEkvv/yyBg8erIEDB2rBggXl17jqqqt04YUXauTI\nkWpsbFTv3r21aNEiTZ8+XQsWLNDAgQM1depUNTY2lp+Tz+f10ksvacSIERowYIAk6ZlnntHUqVMV\nQtD3v/99ffe732375NnBBgBRsINteztvAAAAAAAAoPZUMyeqesAmSQsXLtTFF1+syZMna+nSperf\nv78+97nPacKECerRo0f5+0oDtsbGxia72J5//nn9z//8jx5++GEtXLhQK1as0I477qjhw4fr6KOP\n1tlnn61u3bo1OeZNN92ke++9V88995yWLFmiDRs2qG/fvjrggAN01lln6cADD9zyyTNgA4AoGLBt\nb+cNAAAAAAAA1J7oA7ZtFQM2AIiDAdv2dt4AAAAAAABA7Yn2GWyoPYVCIfYSkkFLDzr60NKpEHsB\nSeCa9KGlDy096OhDSx9aetDRh5Y+tPSgow8tfWjpQUcfWvrQkh1sktLaSRBCSOp8YqKlBx19UmoZ\nfwdbiHTstO47KV2TsdHSh5YedPShpQ8tPejoQ0sfWnrQ0YeWPrT0oKMPLX1SaVnNnKiusB2PGYvF\noqT0Jq35fD72EpJBSw86+qTSsvT+G3cnWT7CMdO776RyTdYCWvrQ0oOOPrT0oaUHHX1o6UNLDzr6\n0NKHlh509KGlTwotq5kTsYNN6ewkAIBtRfwdbLFw3wEAAAAAAABqBZ/BBgAAAAAAAAAAAHxAGLAB\nAAAAAAAAAAAAFWDABgAAAAAAAAAAAFSAARsAAAAAAAAAAABQAQZsiSkUCrGXkAxaetDRh5ZOhdgL\nSALXpA8tfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6UNLDzr60NKHllLIsiyLvYhYQgiSpJQShBCSOp+Y\naOlBR5+UWpbef6VY5xMiHTut+05K12RstPShpQcdfWjpQ0sPOvrQ0oeWHnT0oaUPLT3o6ENLn1Ra\nVjMnqitsx2PGYrEoKb1Jaz6fj72EZNDSg44+qbQsvf/G3UmWj3DM9O47qVyTtYCWPrT0oKMPLX1o\n6UFHH1r60NKDjj609KGlBx19aOmTQstq5kTsYFM6OwkAYFsRfwdbLNx3AAAAAAAAgFpRzZyIz2AD\nAAAAAAAAAAAAKsCADQAAAAAAAAAAAKgAAzYAAAAAAAAAAACgAgzYAAAAAAAAAAAAgAowYEtMoVCI\nvYRk0NKDjj60dCrEXkASuCZ9aOlDSw86+tDSh5YedPShpQ8tPejoQ0sfWnrQ0YeWPrSUQpZlWexF\nxBJCkCSllCCEkNT5xERLDzr6pNSy9P4rxTqfEOnYad13UromY6OlDy096OhDSx9aetDRh5Y+tPSg\now8tfWjpQUcfWvqk0rKaOVFdYTseMxaLRUnpTVrz+XzsJSSDlh509EmlZen9N+5OsnyEY6Z330nl\nmqwFtPShpQcdfWjpQ0sPOvrQ0oeWHnT0oaUPLT3o6ENLnxRaVjMnYgeb0tlJAADbivg72GLhvgMA\nAAAAAADUimrmRHwGGwAAAAAAAAAAAFABBmwAAAAAAAAAAABABRiwAQAAAAAAAAAAABVgwAYAAAAA\nAAAAAABUgAFbYgqFQuwlJIOWHnT0oaVTIfYCksA16UNLH1p60NGHlj609KCjDy19aOlBRx9a+tDS\ng44+tPShpRSyLMtiLyKWEIIkKaUEIYSkzicmWnrQ0SellqX3XynW+YRIx07rvpPSNRkbLX1o6UFH\nH1r60NKDjj609KGlBx19aOlDSw86+tDSJ5WW1cyJ6grb8ZixWCxKSm/Sms/nYy8hGbT0oKNPKi1L\n779xd5LlIxwzvftOKtdkLaClDy096OhDSx9aetDRh5Y+tPSgow8tfWjpQUcfWvqk0LKaORE72JTO\nTgIA2FbE38EWC/cdAAAAAAAAoFZUMyfiM9gAAAAAAAAAAACACjBgAwAAAAAAAAAAACrAgA0AAAAA\nAAAAAACoAAM2AAAAAAAAAAAAoAIM2BJTKBRiLyEZtPSgow8tnQqxF5AErkkfWvrQ0oOOPrT0oaUH\nHX1o6UNLDzr60NKHlh509KGlDy2lkGVZFnsRsYQQJEkpJQghJHU+MdHSg44+KbUsvf9Ksc4nRDp2\nWvedlK7J2GjpQ0sPOvrQ0oeWHnT0oaUPLT3o6ENLH1p60NGHlj6ptKxmTlRX2I7HjMViUVJ6k9Z8\nPh97CcmgpQcdfVJpWXr/jbuTLB/hmOndd1K5JmsBLX1o6UFHH1r60NKDjj609KGlBx19aOlDSw86\n+tDSJ4WW1cyJ2MGmdHYSAMC2Iv4Otli47wAAAAAAAAC1opo5EZ/BBgAAAAAAAAAAAFSAARsAAAAA\nAAAAAABQAQZsAAAAAAAAAAAAQAUYsAEAAAAAAAAAAAAVYMCWmEKhEHsJyaClBx19aOlUiL2AJHBN\n+tDSh5YedPShpQ8tPejoQ0sfWnrQ0YeWPrT0oKMPLX1oKYUsy7LYi4glhCBJSilBCCGp84mJlh50\n9EmpZen9V4p1PiHSsdO676R0TcZGSx9aetDRh5Y+tPSgow8tfWjpQUcfWvrQ0oOOPrT0SaVlNXOi\nusJ2PGYsFouS0pu05vP52EtIBi096OiTSsvS+2/cnWT5CMdM776TyjVZC2jpQ0sPOvrQ0oeWHnT0\noaUPLT3o6ENLH1p60NGHlj4ptKxmTsQONqWzkwAAthXxd7DFwn0HAAAAAAAAqBXVzIn4DDYAAAAA\nAAAAAACgAgzYAAAAAAAAAAAAgAowYAMAAAAAAAAAAAAqwIANAAAAAAAAAAAAqAADtsQUCoXYS0gG\nLT3o6ENLp0LsBSSBa9KHlj609KCjDy19aOlBRx9a+tDSg44+tPShpQcdfWjpQ0spZFmWxV5ELCEE\nSVJKCUIISZ1PTLT0oKNPSi1L779SrPMJkY6d1n0npWsyNlr60NKDjj609KGlBx19aOlDSw86+tDS\nh5YedPShpU8qLauZE9UVtuMxY7FYlJTepDWfz8deQjJo6UFHn1Ralt5/4+4ky0c4Znr3nVSuyVpA\nSx9aetDRh5Y+tPSgow8tfWjpQUcfWvrQ0oOOPrT0SaFlNXMidrApnZ0EALCtiL+DLRbuOwAAAAAA\nAECtqGZOxGewAQAAAAAAAAAAABVgwAYAAAAAAAAAAABUgAEbAAAAAAAAAAAAUAEGbAAAAAAAAAAA\nAEAFGLAlplAoxF5CMmjpQUcfWjoVYi8gCVyTPrT0oaUHHX1o6UNLDzr60NKHlh509KGlDy096OhD\nSx9aSiHLsiz2ImIJIUiSUkoQQkjqfGKipQcdfVJqWXr/lWKdT4h07LTuOyldk7HR0oeWHnT0oaUP\nLT3o6ENLH1p60NGHlj609KCjDy19UmlZzZyorrAdjxmLxaKk9Cat+Xw+9hKSQUsPOvqk0rL0/ht3\nJ1k+wjHTu++kck3WAlr60NKDjj609KGlBx19aOlDSw86+tDSh5YedPShpU8KLauZE7GDTensJACA\nbUX8HWyxcN8BAAAAAAAAakU1cyI+gw0AAAAAAAAAAACoAAM2AAAAAAAAAAAAoAIM2AAAAAAAAAAA\nANl/nlsAACAASURBVIAKMGADAAAAAAAAAAAAKsCALTGFQiH2EpJBSw86+tDSqRB7AUngmvShpQ8t\nPejoQ0sfWnrQ0YeWPrT0oKMPLX1o6UFHH1r60FIKWZZlsRcRSwhBkpRSghBCUucTEy096OiTUsvS\n+68U63xCpGOndd9J6ZqMjZY+tPSgow8tfWjpQUcfWvrQ0oOOPrT0oaUHHX1o6ZNKy2rmRHWF7XjM\nWCwWJaU3ac3n87GXkAxaetDRJ5WWpfffuDvJ8hGOmd59J5VrshbQ0oeWHnT0oaUPLT3o6ENLH1p6\n0NGHlj609KCjDy19UmhZzZyIHWxKZycBAGwr4u9gi4X7DgAAAAAAAFArqpkT8RlsAAAAAAAAAAAA\nQAUYsAEAAAAAAAAAAAAVYMAGAAAAAAAAAAAAVIABGwAAAAAAAAAAAFABBmyJKRQKsZeQDFp60NGH\nlk6F2AtIAtekDy19aOlBRx9a+tDSg44+tPShpQcdfWjpQ0sPOvrQ0oeWUsiyLIu9iFhCCJKklBKE\nEJI6n5ho6UFHn5Ralt5/pVjnEyIdO637TkrXZGy09KGlBx19aOlDSw86+tDSh5YedPShpQ8tPejo\nQ0ufVFpWMyeqK2zHY8bi/8fevcdaVtf3/3+vHi84oMB4LY0XJuDgrYq1aofabkDByh+CYqGJppUo\n3luVtGoxzNrRljatFbxB05HU1qBVS6v9xzKFUZsBadQ/TK1aHDAttSJqQRG1Ivv3h789zXQA3bNf\n/X72+ZzHI5kYz5pz1mc9XbNW4jufs6fTqupv0jqZTFovoRtaZuiY00vL+fO37U6ySYNz9vfe6eWe\nXAVa5miZoWOOljlaZuiYo2WOlhk65miZo2WGjjla5vTQcpk5kR1s1c9OAoD1ov0Otla8dwAAAABg\nVSwzJ/IZbAAAAAAAALAAAzYAAAAAAABYgAEbAAAAAAAALMCADQAAAAAAABZgwNaZcRxbL6EbWmbo\nmKNl0th6AV1wT+ZomaNlho45WuZomaFjjpY5WmbomKNljpYZOuZomaNl1TCbzWatF9HKMAxVVdVT\ngmEYurqelrTM0DGnp5bz529Vq+sZGp27r/dOT/dka1rmaJmhY46WOVpm6JijZY6WGTrmaJmjZYaO\nOVrm9NJymTnR2riBx4zT6bSq+pu0TiaT1kvohpYZOub00nL+/G27k2zS4Jz9vXd6uSdXgZY5Wmbo\nmKNljpYZOuZomaNlho45WuZomaFjjpY5PbRcZk5kB1v1s5MAYL1ov4OtFe8dAAAAAFgVy8yJfAYb\nAAAAAAAALMCADQAAAAAAABZgwAYAAAAAAAALMGADAAAAAACABRiwdWYcx9ZL6IaWGTrmaJk0tl5A\nF9yTOVrmaJmhY46WOVpm6JijZY6WGTrmaJmjZYaOOVrmaFk1zGazWetFtDIMQ1VV9ZRgGIaurqcl\nLTN0zOmp5fz5W9XqeoZG5+7rvdPTPdmaljlaZuiYo2WOlhk65miZo2WGjjla5miZoWOOljm9tFxm\nTrQ2buAx43Q6rar+Jq2TyaT1ErqhZYaOOb20nD9/2+4kmzQ4Z3/vnV7uyVWgZY6WGTrmaJmjZYaO\nOVrmaJmhY46WOVpm6JijZU4PLZeZE9nBVv3sJABYL9rvYGvFewcAAAAAVsUycyKfwQYAAAAAAAAL\nMGADAAAAAACABRiwAQAAAAAAwAIM2AAAAAAAAGABBmydGcex9RK6oWWGjjlaJo2tF9AF92SOljla\nZuiYo2WOlhk65miZo2WGjjla5miZoWOOljlaVg2z2WzWehGtDMNQVVU9JRiGoavraUnLDB1zemo5\nf/5WtbqeodG5+3rv9HRPtqZljpYZOuZomaNlho45WuZomaFjjpY5WmbomKNlTi8tl5kTrY0beMw4\nnU6rqr9J62Qyab2EbmiZoWNOLy3nz9+2O8kmDc7Z33unl3tyFWiZo2WGjjla5miZoWOOljlaZuiY\no2WOlhk65miZ00PLZeZEdrBVPzsJANaL9jvYWvHeAQAAAIBVscycyGewAQAAAAAAwAIM2AAAAAAA\nAGABBmwAAAAAAACwAAM2AAAAAAAAWIABW2fGcWy9hG5omaFjjpZJY+sFdME9maNljpYZOuZomaNl\nho45WuZomaFjjpY5WmbomKNljpZVw2w2m7VeRCvDMFRVVU8JhmHo6npa0jJDx5yeWs6fv1Wtrmdo\ndO6+3js93ZOtaZmjZYaOOVrmaJmhY46WOVpm6JijZY6WGTrmaJnTS8tl5kRr4wYeM06n06rqb9I6\nmUxaL6EbWmbomNNLy/nzt+1OskmDc/b33unlnlwFWuZomaFjjpY5WmbomKNljpYZOuZomaNlho45\nWub00HKZOZEdbNXPTgKA9aL9DrZWvHcAAAAAYFUsMyfyGWwAAAAAAACwAAM2AAAAAAAAWIABGwAA\nAAAAACzAgA0AAAAAAAAWYMDWmXEcWy+hG1pm6JijZdLYegFdcE/maJmjZYaOOVrmaJmhY46WOVpm\n6JijZY6WGTrmaJmjZdUwm81mrRfRyjAMVVXVU4JhGLq6npa0zNAxp6eW8+dvVavrGRqdu6/3Tk/3\nZGta5miZoWOOljlaZuiYo2WOlhk65miZo2WGjjla5vTScpk50dq4gceM0+m0qvqbtE4mk9ZL6IaW\nGTrm9NJy/vxtu5Ns0uCc/b13erknV4GWOVpm6JijZY6WGTrmaJmjZYaOOVrmaJmhY46WOT20XGZO\nZAdb9bOTAGC9aL+DrRXvHQAAAABYFcvMiXwGGwAAAAAAACzAgA0AAAAAAAAWYMAGAAAAAAAACzBg\nAwAAAAAAgAUYsHVmHMfWS+iGlhk65miZNLZeQBfckzla5miZoWOOljlaZuiYo2WOlhk65miZo2WG\njjla5mhZNcxms1nrRbQyDENVVfWUYBiGrq6nJS0zdMzpqeX8+VvV6nqGRufu673T0z3ZmpY5Wmbo\nmKNljpYZOuZomaNlho45WuZomaFjjpY5vbRcZk60Nm7gMeN0Oq2q/iatk8mk9RK6oWWGjjm9tJw/\nf9vuJJs0OGd/751e7slVoGWOlhk65miZo2WGjjla5miZoWOOljlaZuiYo2VODy2XmRPZwVb97CQA\nWC/a72BrxXsHAAAAAFbFMnMin8EGAAAAAAAAC1h6wHbDDTfUWWedVUcccUQddNBBdeSRR9ZrXvOa\nuvnmm3/in/G6172uTjzxxHroQx9amzZtqs2bN9fjH//4euMb31g33njjXX7fVVddVc961rNq8+bN\ntWnTpnr84x9fF154Yd1xxx3LXhYAAAAAAADcqaV+ReSePXtq27ZtddNNN9Wpp55axxxzTF1zzTW1\na9eu2rp1a+3evbs2b978Y3/Ove997/q5n/u5evSjH10PetCD6jvf+U5dffXV9alPfaoe8IAH1O7d\nu+voo4/e53s+/OEP13Of+9zatGlTnXHGGbV58+b6yEc+Ul/84hfr9NNPrw984AM//uL9ikiAJvyK\nyI123QAAAACwepaZEy01YDv55JNr586d9fa3v71e8YpX7P36OeecU29961vrJS95SV100UU/9uf8\n93//d93rXvfa7+tvfOMb6/d///frhS98Yb373e/e+/VvfetbddRRR9W3v/3t2r17dz3xiU+sqqrv\nf//7dcIJJ9TVV19d73vf++qMM8642/MasAG0YcC20a4bAAAAAFZPk89g27NnT+3cubOOPPLIfYZr\nVVXT6bQ2bdpU733ve+u22277sT/rzoZrVVXPe97zqqrqK1/5yj5f/9CHPlRf//rX68wzz9w7XKv6\n0U64N7/5zVVVP9Fgr0fjOLZeQje0zNAxR8uksfUCuuCezNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8sc\nLTN0zNEyR8sldrDt2LGjzj777LvcpTbf3fYP//APdcIJJxzQ4t785jfXeeedV+eff3697nWv2/v1\n5z//+XXppZfe6S61H/7wh3W/+92vbr/99rr11lvrnve8513+/B53sA3D0NX1tKRlho45PbVsv4Nt\naHTuvt47Pd2TrWmZo2WGjjla5miZoWOOljlaZuiYo2WOlhk65miZ00vLZeZE9zjQk37xi1+sqqpH\nPvKRd3r86KOPrp07d9a11177Ew/Y/viP/7huvfXWuuWWW+pTn/pUXXPNNfWiF72oXvva1/7E515b\nW6sjjzyyPv/5z9d1111XW7duXeSy1r3t27e3XkI3tMzQMUfLJC0T3JM5WuZomaFjjpY5WmbomKNl\njpYZOuZomaNlho45WuZoucQOtrPPPrt27NhRO3bsqLPOOmu/4+eee26df/75++0+uzs//dM/XTfe\neOPe/37cccfVdDrdb0D3yEc+svbs2VPXXnttbdmyZb+fc9xxx9XVV19dV199dT3lKU+5y/P1uIMN\nYD1ov4OtFe8dAAAAAFgVTT6D7f/Cf/7nf9Ydd9xRN954Y1122WV100031UknnVTvfe97Wy8NAAAA\nAAAAqmqJAduhhx5aVVW33HLLnR6ff/2www5b+Gc/8IEPrFNPPbUuv/zyusc97lHnnHPOfueezWax\ncw/DcJd/JpNJDcNwlx/YN46j44477rjjB3D8R4aquqvjY9fHW/d33HHHHXfccccdd9xxxx133HHH\nHXfc8Y1wfD7nubM/yzjgXxH57ne/u1784hfX2WefXRdffPF+x08++eTauXNnXXHFFXX88ccf8AKP\nPfbY+uxnP1tf+cpX6sEPfnBVVT3/+c+vSy+9tC699NI688wz9/n7t99+ex166KF1++2316233lr3\nvOc97/Jnz+P5VV0A/2/9z8troz1/vXcAAAAAYFUsMyc64B1s86HZzp079zvxt7/97dq9e3cdfPDB\n9dSnPvVAT1FVVV/5yldqGIY65JBD9n7txBNPrKqqj370o/v9/U984hP13e9+t7Zt23a3wzUAAAAA\nAAA4EAc8YNuyZUuddNJJdf3119c73/nOfY5t3769brvttnrBC15Q97nPfarqRzvLvvCFL9R11123\nz9+99tpr7/RXPd5xxx117rnn1k033VRPf/rT6+CDD9577PTTT68HPOAB9f73v78+/elP7/369773\nvXrjG99YVVUve9nLDvTS1rW72grJ4rTM0DFHy6Sx9QK64J7M0TJHywwdc7TM0TJDxxwtc7TM0DFH\nyxwtM3TM0TJHyyV+RWRV1XXXXVfbtm2rr33ta/XsZz+7jjnmmLrmmmvqYx/7WG3durWuuuqqOvzw\nw6uq6stf/nJt2bKlHv7wh9f111+/92dccMEF9YY3vKGe9rSn1SMe8Yi6//3vXzfeeGN9/OMfr+uv\nv74e/vCH165du+oRj3jEPuf+8Ic/XKeffnoddNBBdeaZZ9bhhx9eH/nIR+pf//Vf63nPe1791V/9\n1Y+/+A5/ReQwDF1dT0taZuiY01PL9r8icmh07r7eOz3dk61pmaNlho45WuZomaFjjpY5WmbomKNl\njpYZOuZomdNLy2XmRGvjEmPGww8/vM4888z6r//6r/r4xz9eV155Zf3whz+sF77whfXe9763Djvs\nsL1/9+abb64LL7ywDj/88Pqt3/qtvV+/733vW3fccUd94QtfqH/6p3+qK6+8sq6//vp6xCMeUS97\n2cvqz//8z+tBD3rQfuc+5phj6ulPf3r927/9W11++eV11VVX1YMe9KB6wxveUH/0R3/0E3043XQ6\nrar+Jq2TyaT1ErqhZYaOOb20nD9/2+4kmzQ4Z3/vnV7uyVWgZY6WGTrmaJmjZYaOOVrmaJmhY46W\nOVpm6JijZU4PLZeZEy21g22963EHG8B60H4HWyveOwAAAACwKpaZEx3wZ7ABAAAAAADARmTABgAA\nAAAAAAswYAMAAAAAAIAFGLABAAAAAADAAgzYOjOOY+sldEPLDB1ztEwaWy+gC+7JHC1ztMzQMUfL\nHC0zdMzRMkfLDB1ztMzRMkPHHC1ztKwaZrPZrPUiWhmGoaqqekowDENX19OSlhk65vTUcv78rWp1\nPUOjc/f13unpnmxNyxwtM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHy5xeWi4zJ1obN/CYcTqdVlV/\nk9bJZNJ6Cd3QMkPHnF5azp+/bXeSTRqcs7/3Ti/35CrQMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0z\ndMzRMqeHlsvMiexgq352EgCsF+13sLXivQMAAAAAq2KZOZHPYAMAAAAAAIAFGLABAAAAAADAAgzY\nAAAAAAAAYAEGbAAAAAAAALAAA7bOjOPYegnd0DJDxxwtk8bWC+iCezJHyxwtM3TM0TJHywwdc7TM\n0TJDxxwtc7TM0DFHyxwtq4bZbDZrvYhWhmGoqqqeEgzD0NX1tKRlho45PbWcP3+rWl3P0Ojcfb13\neronW9MyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLTN0zNEyp5eWy8yJ1sYNPGacTqdV1d+kdTKZtF5C\nN7TM0DGnl5bz52/bnWSTBufs773Tyz25CrTM0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM6aHl\nMnMiO9iqn50EAOtF+x1srXjvAAAAAMCqWGZO5DPYAAAAAAAAYAEGbAAAAAAAALAAAzYAAAAAAABY\ngAEbAAAAAAAALMCArTPjOLZeQje0zNAxR8uksfUCuuCezNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8sc\nLTN0zNEyR8uqYTabzVovopVhGKqqqqcEwzB0dT0taZmhY05PLefP36pW1zM0Ondf752e7snWtMzR\nMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzppeUyc6K1cQOPGafTaVX1N2mdTCatl9ANLTN0zOml\n5fz523Yn2aTBOft77/RyT64CLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXN6aLnMnMgOtupn\nJwHAetF+B1sr3jsAAAAAsCqWmRP5DDYAAAAAAABYgAEbAAAAAAAALMCADQAAAAAAABZgwAYAAAAA\nAAALMGDrzDiOrZfQDS0zdMzRMmlsvYAuuCdztMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzR\nsmqYzWaz1otoZRiGqqrqKcEwDF1dT0taZuiY01PL+fO3qtX1DI3O3dd7p6d7sjUtc7TM0DFHyxwt\nM3TM0TJHywwdc7TM0TJDxxwtc3ppucycaG3cwGPG6XRaVf1NWieTSesldEPLDB1zemk5f/623Uk2\naXDO/t47vdyTq0DLHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLnB5aLjMnsoOt+tlJALBetN/B\n1or3DgAAAACsimXmRD6DDQAAAAAAABZgwAYAAAAAAAALMGADAAAAAACABRiwAQAAAAAAwAIM2Doz\njmPrJXRDywwdc7RMGlsvoAvuyRwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7SsGmaz2az1\nIloZhqGqqnpKMAxDV9fTkpYZOub01HL+/K1qdT1Do3P39d7p6Z5sTcscLTN0zNEyR8sMHXO0zNEy\nQ8ccLXO0zNAxR8ucXlouMydaGzfwmHE6nVZVf5PWyWTSegnd0DJDx5xeWs6fv213kk0anLO/904v\n9+Qq0DJHywwdc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TKnh5bLzInsYKt+dhIArBftd7C14r0DAAAA\nAKtimTmRz2ADAAAAAACABRiwAQAAAAAAwAIM2AAAAAAAAGABBmwAAAAAAACwAAO2zozj2HoJ3dAy\nQ8ccLZPG1gvognsyR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLauG2Ww2a72IVoZhqKqq\nnhIMw9DV9bSkZYaOOT21nD9/q1pdz9Do3H29d3q6J1vTMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0z\ndMzRMqeXlsvMidbGDTxmnE6nVdXfpHUymbReQje0zNAxp5eW8+dv251kkwbn7O+908s9uQq0zNEy\nQ8ccLXO0zNAxR8scLTN0zNEyR8sMHXO0zOmh5TJzIjvYqp+dBADrRfsdbK147wAAAADAqlhmTuQz\n2AAAAAAAAGABBmwAAAAAAACwAAM2AAAAAAAAWIABGwAAAAAAACzAgK0z4zi2XkI3tMzQMUfLpLH1\nArrgnszRMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLqmE2m81aL6KVYRiqqqqnBMMwdHU9\nLWmZoWNOTy3nz9+qVtczNDp3X++dnu7J1rTM0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM6aXl\nMnOitXEDjxmn02lV9TdpnUwmrZfQDS0zdMzppeX8+dt2J9mkwTn7e+/0ck+uAi1ztMzQMUfLHC0z\ndMzRMkfLDB1ztMzRMkPHHC1zemi5zJzIDrbqZycBwHrRfgdbK947AAAAALAqlpkT+Qw2AAAAAAAA\nWIABGwAAAAAAACzAgA0AAAAAAAAWYMAGAAAAAAAACzBg68w4jq2X0A0tM3TM0TJpbL2ALrgnc7TM\n0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0bJqmM1ms9aLaGUYhqqq6inBMAxdXU9LWmbomNNT\ny/nzt6rV9QyNzt3Xe6ene7I1LXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXN6abnMnGht3MBj\nxul0WlX9TVonk0nrJXRDywwdc3ppOX/+tt1JNmlwzv7eO73ck6tAyxwtM3TM0TJHywwdc7TM0TJD\nxxwtc7TM0DFHy5weWi4zJ7KDrfrZSQCwXrTfwdaK9w4AAAAArIpl5kQ+gw0AAAAAAAAWYMAGAAAA\nAAAACzBgAwAAAAAAgAUYsAEAAAAAAMACDNg6M45j6yV0Q8sMHXO0TBpbL6AL7skcLXO0zNAxR8sc\nLTN0zNEyR8sMHXO0zNEyQ8ccLXO0rBpms9ms9SJaGYahqqp6SjAMQ1fX05KWGTrm9NRy/vytanU9\nQ6Nz9/Xe6emebE3LHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLnF5aLjMnWhs38JhxOp1WVX+T\n1slk0noJ3dAyQ8ecXlrOn79td5JNGpyzv/dOL/fkKtAyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLTN0\nzNEyp4eWy8yJ7GCrfnYSAKwX7XewteK9AwAAAACrYpk5kc9gAwAAAAAAgAUYsAEAAAAAAMACDNgA\nAAAAAABgAQZsAAAAAAAAsAADts6M49h6Cd3QMkPHHC2TxtYL6IJ7MkfLHC0zdMzRMkfLDB1ztMzR\nMkPHHC1ztMzQMUfLHC2rhtlsNmu9iFaGYaiqqp4SDMPQ1fW0pGWGjjk9tZw/f6taXc/Q6Nx9vXd6\nuidb0zJHywwdc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TKnl5bLzInWxg08ZpxOp1XV36R1Mpm0XkI3\ntMzQMaeXlvPnb9udZJMG5+zvvdPLPbkKtMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzpoeUy\ncyI72KqfnQQA60X7HWyteO8AAAAAwKpYZk7kM9gAAAAAAABgAQZsAAAAAAAAsAADNgAAAAAAAFiA\nARsAAAAAAAAswICtM+M4tl5CN7TM0DFHy6Sx9QK64J7M0TJHywwdc7TM0TJDxxwtc7TM0DFHyxwt\nM3TM0TJHy6phNpvNWi+ilWEYqqqqpwTDMHR1PS1pmaFjTk8t58/fqlbXMzQ6d1/vnZ7uyda0zNEy\nQ8ccLXO0zNAxR8scLTN0zNEyR8sMHXO0zOml5TJzorVxA48Zp9NpVfU3aZ1MJq2X0A0tM3TM6aXl\n/PnbdifZpME5+3vv9HJPrgItc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc3poucycyA626mcn\nAcB60X4HWyveOwAAAACwKpaZE/kMNgAAAAAAAFiAARsAAAAAAAAswIANAAAAAAAAFmDABgAAAAAA\nAAswYOvMOI6tl9ANLTN0zNEyaWy9gC64J3O0zNEyQ8ccLXO0zNAxR8scLTN0zNEyR8sMHXO0zNGy\napjNZrPWi2hlGIaqquopwTAMXV1PS1pm6JjTU8v587eq1fUMjc7d13unp3uyNS1ztMzQMUfLHC0z\ndMzRMkfLDB1ztMzRMkPHHC1zemm5zJxobdzAY8bpdFpV/U1aJ5NJ6yV0Q8sMHXN6aTl//rbdSTZp\ncM7+3ju93JOrQMscLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8ucHlouMyeyg6362UkAsF6038HW\nivcOAAAAAKyKZeZEPoMNAAAAAAAAFmDABgAAAAAAAAswYAMAAAAAAIAFGLABAAAAAADAAgzYOjOO\nY+sldEPLDB1ztEwaWy+gC+7JHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRMkPHHC1ztKwaZrPZrPUi\nWhmGoaqqekowDENX19OSlhk65vTUcv78rWp1PUOjc/f13unpnmxNyxwtM3TM0TJHywwdc7TM0TJD\nxxwtc7TM0DFHy5xeWi4zJ1obN/CYcTqdVlV/k9bJZNJ6Cd3QMkPHnF5azp+/bXeSTRqcs7/3Ti/3\n5CrQMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0zdMzRMqeHlsvMiexgq352EgCsF+13sLXivQMAAAAA\nq2KZOZHPYAMAAAAAAIAFGLABAAAAAADAAgzYAAAAAAAAYAEGbAAAAAAAALAAA7bOjOPYegnd0DJD\nxxwtk8bWC+iCezJHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHyxwtq4bZbDZrvYhWhmGoqqqe\nEgzD0NX1tKRlho45PbWcP3+rWl3P0Ojcfb13eronW9MyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLTN0\nzNEyp5eWy8yJ1sYNPGacTqdV1d+kdTKZtF5CN7TM0DGnl5bz52/bnWSTBufs773Tyz25CrTMxem7\n+QAAIABJREFU0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM6aHlMnMiO9iqn50EAOtF+x1srXjv\nAAAAAMCqWGZO5DPYAAAAAAAAYAEGbAAAAAAAALAAAzYAAAAAAABYgAEbAAAAAAAALMCArTPjOLZe\nQje0zNAxR8uksfUCuuCezNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLTN0zNEyR8uqYTabzVovopVh\nGKqqqqcEwzB0dT0taZmhY05PLefP36pW1zM0Ondf752e7snWtMzRMkPHHC1ztMzQMUfLHC0zdMzR\nMkfLDB1ztMzppeUyc6K1cQOPGafTaVX1N2mdTCatl9ANLTN0zOml5fz523Yn2aTBOft77/RyT64C\nLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXN6aLnMnMgOtupnJwHAetF+B1sr3jsAAAAAsCqW\nmRP5DDYAAAAAAABYgAEbAAAAAAAALMCADQAAAAAAABZgwAYAAAAAAAALiAzYbrjhhjrrrLPqiCOO\nqIMOOqiOPPLIes1rXlM333zzT/T93/zmN2vHjh112mmn1VFHHVWbNm2qww47rJ72tKfVJZdccqcf\nLvflL3+5fuqnfuou//zar/1a4tLWnXEcWy+hG1pm6JijZdLYegFdcE/maJmjZYaOOVrmaJmhY46W\nOVpm6JijZY6WGTrmaJmjZdUwu7Pp1QL27NlT27Ztq5tuuqlOPfXUOuaYY+qaa66pXbt21datW2v3\n7t21efPmu/0ZF198cb385S+vI444oo4//vh62MMeVl/96lfrsssuq1tuuaWe+9zn1gc/+MF9vufL\nX/5ybdmypZ7whCfUqaeeut/PfOxjH1vPec5z7va8wzBUVd3pAG+9Goahq+tpScsMHXN6ajl//la1\nup6h0bn7eu/0dE+2pmWOlhk65miZo2WGjjla5miZoWOOljlaZuiYo2VOLy2XmRPdY9mTv/zlL6+b\nbrqp3v72t9crXvGKvV8/55xz6q1vfWude+65ddFFF93tz9i6dWv93d/9XZ1yyin7fP33f//368lP\nfnL99V//dV122WV3OjB7whOeUOedd96yl9GN7du3t15CN7TM0DFHyyQtE9yTOVrmaJmhY46WOVpm\n6JijZY6WGTrmaJmjZYaOOVrmaLnkDrY9e/bU0UcfXUceeWTt2bNnn2O33nprPeQhD6lhGOrGG2+s\nTZs2HdA5zj///Dr33HPrVa96VV144YV7vz7fwfYbv/EbdckllxzQz+5xBxvAetB+B1sr3jsAAAAA\nsCqa7WDbtWtXVVWddNJJ+x075JBD6rjjjqudO3fWJz/5yTrhhBMO6Bz3uMc99vnP/+0//uM/6k//\n9E/rG9/4Rt3//vevbdu21eMe97gDOhcAAAAAAAD8OEsN2L74xS9WVdUjH/nIOz1+9NFH186dO+va\na689oAHb7bffXn/xF39RVVXPfOYz7/Tv7Ny5s3bu3LnP1yaTSb3nPe+phz70oQufEwAAAAAAAO7O\nTy3zzbfccktVVR166KF3enz+9ZtvvvmAfv7rX//6+tznPlennHJKPeMZz9jn2MEHH1znnXdefeYz\nn6mbb765br755vr4xz9exx9/fH3sYx+rE088sW677bYDOi8AAAAAAADclaUGbP+X3va2t9Wf/Mmf\n1KMe9aj6y7/8y/2OP/CBD6xxHOsJT3hC3e9+96v73e9+9bSnPa0uv/zyespTnlJf+tKXaseOHQ1W\nDgAAAAAAQM+WGrDNd6jNd7L9b/OvH3bYYQv93He84x316le/uh7zmMfUrl27Fvr+tbW1etGLXlRV\nVf/4j/+40Hl7MI5j6yV0Q8sMHXO0TBpbL6AL7skcLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8cc\nLXO0rKrZEnbs2DEbhmH2kpe85E6Pn3TSSbNhGGZXXnnlT/wz3/rWt86GYZj97M/+7Oymm246oHX9\n7d/+7WwYhtmv/Mqv3O3fq6of++eXf/mXZ1U12759+53+jO3bt6/U8f/9P+mqrW89HZ9/fVXX5/jG\nO97Tv+99n7XbZ1WzO/mz/f/weP0f//y7Ol57/3dc5f99HPfvez0f9/52fNWO+/edO+7ft+Ordty/\n79xx/74dX7Xj/n3njvv37fiqHffvO3d8Pf37ns957u7PgVhqwLZnz57ZMAyzLVu2zO644459jn3r\nW9+aHXzwwbNDDjlkdtttt/1EP+8P/uAPZsMwzJ74xCfOvvGNbxzwul7/+tfPhmGYveIVr7jbv7dM\nuFV1VzcSi9MyQ8ecnlr+z8tr1ujP9kbn7eu909M92ZqWOVpm6JijZY6WGTrmaJmjZYaOOVrmaJmh\nY46WOb20XOb/rxv+/x9wwJ75zGfW5ZdfXm9729vqla985d6vv/a1r60LLrigXvrSl9a73vWuqqq6\n/fbb60tf+lLd6173qi1btuzzc970pjfV9u3b60lPelJdfvnlP/bXQn7mM5+pY489toZh2OfrV1xx\nRZ1yyin1gx/8oHbv3l1PfepT7/JnzL93yQQALOh/nt0b7fnrvQMAAAAAq2KZOdHSA7brrruutm3b\nVl/72tfq2c9+dh1zzDF1zTXX1Mc+9rHaunVrXXXVVXX44YdXVdWXv/zl2rJlSz384Q+v66+/fu/P\neM973lMvfOELa21trV71qlfV/e53v/3Oc+SRR9av//qv7/3vk8mkvvSlL9W2bdvqZ37mZ6qq6rOf\n/Wzt2rWrhmGoN73pTfW7v/u7d3/xBmwATRiwbbTrBgAAAIDV03TAVlV1ww031HnnnVcf/ehH6xvf\n+EYdccQRddppp9X27dvr0EMP3fv35gO2RzziEXXdddft/fp0Oq3pdFrDMNzlRUwmk7ryyiv3/vdL\nLrmk/uZv/qb++Z//ub7+9a/XD37wg3rIQx5Sv/ALv1CvfOUr67jjjvux6zZgA2jDgG2jXTcAAAAA\nrJ7mA7b1yoANoA0Dto123QAAAACwepaZE/1UejEAAAAAAADQMwO2zozj2HoJ3dAyQ8ccLZPG1gvo\ngnsyR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLf2KyKrq61d13d3n2LEYLTN0zOmpZftf\nETk0Ondf752e7snWtMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzppeUyc6K1cQOPGafTaVX1\nN2mdTCatl9ANLTN0zOml5fz523Yn2aTBOft77/RyT64CLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEy\nQ8ccLXN6aLnMnMgOtupnJwHAetF+B1sr3jsAAAAAsCqWmRP5DDYAAAAAAABYgAEbAAAAAAAALMCA\nDQAAAAAAABZgwAYAAAAAAAALMGDrzDiOrZfQDS0zdMzRMmlsvYAuuCdztMzRMkPHHC1ztMzQMUfL\nHC0zdMzRMkfLDB1ztMzRsmqYzWaz1otoZRiGqqrqKcEwDF1dT0taZuiY01PL+fO3qtX1DI3O3dd7\np6d7sjUtc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc3ppucycaG3cwGPG6XRaVf1NWieTSesl\ndEPLDB1zemk5f/623Uk2aXDO/t47vdyTq0DLHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLnB5a\nLjMnsoOt+tlJALBetN/B1or3DgAAAACsimXmRD6DDQAAAAAAABZgwAYAAAAAAAALMGADAAAAAACA\nBRiwAQAAAAAAwAIM2DozjmPrJXRDywwdc7RMGlsvoAvuyRwtc7TM0DFHyxwtM3TM0TJHywwdc7TM\n0TJDxxwtc7SsGmaz2az1IloZhqGqqnpKMAxDV9fTkpYZOub01HL+/K1qdT1Do3P39d7p6Z5sTcsc\nLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8ucXlouMydaGzfwmHE6nVZVf5PWyWTSegnd0DJDx5xe\nWs6fv213kk0anLO/904v9+Qq0DJHywwdc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TKnh5bLzInsYKt+\ndhIArBftd7C14r0DAAAAAKtimTmRz2ADAAAAAACABRiwAQAAAAAAwAIM2AAAAAAAAGABBmwAAAAA\nAACwAAO2zozj2HoJ3dAyQ8ccLZPG1gvognsyR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8sc\nLauG2Ww2a72IVoZhqKqqnhIMw9DV9bSkZYaOOT21nD9/q1pdz9Do3H29d3q6J1vTMkfLDB1ztMzR\nMkPHHC1ztMzQMUfLHC0zdMzRMqeXlsvMidbGDTxmnE6nVdXfpHUymbReQje0zNAxp5eW8+dv251k\nkwbn7O+908s9uQq0zNEyQ8ccLXO0zNAxR8scLTN0zNEyR8sMHXO0zOmh5TJzIjvYqp+dBADrRfsd\nbK147wAAAADAqlhmTuQz2AAAAAAAAGABBmwAAAAAAACwAAM2AAAAAAAAWIABGwAAAAAAACzAgK0z\n4zi2XkI3tMzQMUfLpLH1ArrgnszRMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLqmE2m81a\nL6KVYRiqqqqnBMMwdHU9LWmZoWNOTy3nz9+qVtczNDp3X++dnu7J1rTM0TJDxxwtc7TM0DFHyxwt\nM3TM0TJHywwdc7TM6aXlMnOitXEDjxmn02lV9TdpnUwmrZfQDS0zdMzppeX8+dt2J9mkwTn7e+/0\nck+uAi1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRMkPHHC1zemi5zJzIDrbqZycBwHrRfgdbK947AAAA\nALAqlpkT+Qw2AAAAAAAAWIABGwAAAAAAACzAgA0AAAAAAAAWYMAGAAAAAAAACzBg68w4jq2X0A0t\nM3TM0TJpbL2ALrgnc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0bJqmM1ms9aLaGUYhqqq\n6inBMAxdXU9LWmbomNNTy/nzt6rV9QyNzt3Xe6ene7I1LXO0zNAxR8scLTN0zNEyR8sMHXO0zNEy\nQ8ccLXN6abnMnGht3MBjxul0WlX9TVonk0nrJXRDywwdc3ppOX/+tt1JNmlwzv7eO73ck6tAyxwt\nM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHy5weWi4zJ7KDrfrZSQCwXrTfwdaK9w4AAAAArIpl5kQ+\ngw0AAAAAAAAWYMAGAAAAAAAACzBgAwAAAAAAgAUYsAEAAAAAAMACDNg6M45j6yV0Q8sMHXO0TBpb\nL6AL7skcLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO0rBpms9ms9SJaGYahqqp6SjAMQ1fX\n05KWGTrm9NRy/vytanU9Q6Nz9/Xe6emebE3LHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLnF5a\nLjMnWhs38JhxOp1WVX+T1slk0noJ3dAyQ8ecXlrOn79td5JNGpyzv/dOL/fkKtAyR8sMHXO0zNEy\nQ8ccLXO0zNAxR8scLTN0zNEyp4eWy8yJ7GCrfnYSAKwX7XewteK9AwAAAACrYpk5kc9gAwAAAAAA\ngAUYsAEAAAAAAMACDNgAAAAAAABgAQZsAAAAAAAAsAADts6M49h6Cd3QMkPHHC2TxtYL6IJ7MkfL\nHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC2rhtlsNmu9iFaGYaiqqp4SDMPQ1fW0pGWGjjk9\ntZw/f6taXc/Q6Nx9vXd6uidb0zJHywwdc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TKnl5bLzInWxg08\nZpxOp1XV36R1Mpm0XkI3tMzQMaeXlvPnb9udZJMG5+zvvdPLPbkKtMzRMkPHHC1ztMzQMUfLHC0z\ndMzRMkfLDB1ztMzpoeUycyI72KqfnQQA60X7HWyteO8AAAAAwKpYZk7kM9gAAAAAAABgAQZsAAAA\nAAAAsAADNgAAAAAAAFiAARsAAAAAAAAswICtM+M4tl5CN7TM0DFHy6Sx9QK64J7M0TJHywwdc7TM\n0TJDxxwtc7TM0DFHyxwtM3TM0TJHy6phNpvNWi+ilWEYqqqqpwTDMHR1PS1pmaFjTk8t58/fqlbX\nMzQ6d1/vnZ7uyda0zNEyQ8ccLXO0zNAxR8scLTN0zNEyR8sMHXO0zOml5TJzorVxA48Zp9NpVfU3\naZ1MJq2X0A0tM3TM6aXl/PnbdifZpME5+3vv9HJPrgItc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJD\nxxwtc3poucycyA626mcnAcB60X4HWyveOwAAAACwKpaZE/kMNgAAAAAAAFiAARsAAAAAAAAswIAN\nAAAAAAAAFmDABgAAAAAAAAswYOvMOI6tl9ANLTN0zNEyaWy9gC64J3O0zNEyQ8ccLXO0zNAxR8sc\nLTN0zNEyR8sMHXO0zNGyapjNZrPWi2hlGIaqquopwTAMXV1PS1pm6JjTU8v587eq1fUMjc7d13un\np3uyNS1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRMkPHHC1zemm5zJxobdzAY8bpdFpV/U1aJ5NJ6yV0\nQ8sMHXN6aTl//rbdSTZpcM7+3ju93JOrQMscLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8ucHlou\nMyeyg6362UkAsF6038HWivcOAAAAAKyKZeZEPoMNAAAAAAAAFmDABgAAAAAAAAswYAMAAAAAAIAF\nGLABAAAAAADAAgzYOjOOY+sldEPLDB1ztEwaWy+gC+7JHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzR\nMkPHHC1ztKwaZrPZrPUiWhmGoaqqekowDENX19OSlhk65vTUcv78rWp1PUOjc/f13unpnmxNyxwt\nM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHy5xeWi4zJ1obN/CYcTqdVlV/k9bJZNJ6Cd3QMkPHnF5a\nzp+/bXeSTRqcs7/3Ti/35CrQMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0zdMzRMqeHlsvMiexgq352\nEgCsF+13sLXivQMAAAAAq2KZOZHPYAMAAAAAAIAFGLABAAAAAADAAgzYAAAAAAAAYAEGbAAAAAAA\nALAAA7bOjOPYegnd0DJDxxwtk8bWC+iCezJHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHyxwt\nq4bZbDZrvYhWhmGoqqqeEgzD0NX1tKRlho45PbWcP3+rWl3P0Ojcfb13eronW9MyR8sMHXO0zNEy\nQ8ccLXO0zNAxR8scLTN0zNEyp5eWy8yJ1sYNPGacTqdV1d+kdTKZtF5CN7TM0DGnl5bz52/bnWST\nBufs773Tyz25CrTM0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM6aHlMnMiO9iqn50EAOtF+x1s\nrXjvAAAAAMCqWGZO5DPYAAAAAAAAYAEGbAAAAAAAALAAAzYAAAAAAABYgAEbAAAAAAAALMCArTPj\nOLZeQje0zNAxR8uksfUCuuCezNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLTN0zNEyR8uqYTabzVov\nopVhGKqqqqcEwzB0dT0taZmhY05PLefP36pW1zM0Ondf752e7snWtMzRMkPHHC1ztMzQMUfLHC0z\ndMzRMkfLDB1ztMzppeUyc6K1cQOPGafTaVX1N2mdTCatl9ANLTN0zOml5fz523Yn2aTBOft77/Ry\nT64CLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXN6aLnMnMgOtupnJwHAetF+B1sr3jsAAAAA\nsCqWmRP5DDYAAAAAAABYgAEbAAAAAAAALMCADQAAAAAAABZgwAYAAAAAAAALMGDrzDiOrZfQDS0z\ndMzRMmlsvYAuuCdztMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRsmqYzWaz1otoZRiGqqrq\nKcEwDF1dT0taZuiY01PL+fO3qtX1DI3O3dd7p6d7sjUtc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJD\nxxwtc3ppucycaG3cwGPG6XRaVf1NWieTSesldEPLDB1zemk5f/623Uk2aXDO/t47vdyTq0DLHC0z\ndMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLnB5aLjMnsoOt+tlJALBetN/B1or3DgAAAACsimXmRD6D\nDQAAAAAAABZgwAYAAAAAAAALMGADAAAAAACABRiwAQAAAAAAwAIM2DozjmPrJXRDywwdc7RMGlsv\noAvuyRwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7SsGmaz2az1IloZhqGqqnpKMAxDV9fT\nkpYZOub01HL+/K1qdT1Do3P39d7p6Z5sTcscLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8ucXlou\nMydaGzfwmHE6nVZVf5PWyWTSegnd0DJDx5xeWs6fv213kk0anLO/904v9+Qq0DJHywwdc7TM0TJD\nxxwtc7TM0DFHyxwtM3TM0TKnh5bLzInsYKt+dhIArBftd7C14r0DAAAAAKtimTmRz2ADAAAAAACA\nBRiwAQAAAAAAwAIM2AAAAAAAAGABBmwAAAAAAACwAAO2zozj2HoJ3dAyQ8ccLZPG1gvognsyR8sc\nLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLauG2Ww2a72IVoZhqKqqnhIMw9DV9bSkZYaOOT21\nnD9/q1pdz9Do3H29d3q6J1vTMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0zdMzRMqeXlsvMidbGDTxm\nnE6nVdXfpHUymbReQje0zNAxp5eW8+dv251kkwbn7O+908s9uQq0zNEyQ8ccLXO0zNAxR8scLTN0\nzNEyR8sMHXO0zOmh5TJzIjvYqp+dBADrRfsdbK147wAAAADAqlhmTrT0Z7DdcMMNddZZZ9URRxxR\nBx10UB155JH1mte8pm6++eaf6Pu/+c1v1o4dO+q0006ro446qjZt2lSHHXZYPe1pT6tLLrnkbi/q\nqquuqmc961m1efPm2rRpUz3+8Y+vCy+8sO64445lLwsAAAAAAADu1FI72Pbs2VPbtm2rm266qU49\n9dQ65phj6pprrqldu3bV1q1ba/fu3bV58+a7/RkXX3xxvfzlL68jjjiijj/++HrYwx5WX/3qV+uy\nyy6rW265pZ773OfWBz/4wf2+78Mf/nA997nPrU2bNtUZZ5xRmzdvro985CP1xS9+sU4//fT6wAc+\n8OMv3g42gCbsYNto1w0AAAAAq2eZOdFSA7aTTz65du7cWW9/+9vrFa94xd6vn3POOfXWt761XvKS\nl9RFF110tz9j165dddttt9Upp5yyz9dvvPHGevKTn1z//u//Xh/60IfqOc95zt5j3/rWt+qoo46q\nb3/727V79+564hOfWFVV3//+9+uEE06oq6++ut73vvfVGWeccbfnNmADaMOAbaNdNwAAAACsnia/\nInLPnj21c+fOOvLII/cZrlX96EPhNm3aVO9973vrtttuu9ufc/zxx+83XKuqevCDH1wvfelLq6rq\n4x//+D7HPvShD9XXv/71OvPMM/cO16qq7n3ve9eb3/zmqqofO9gDAAAAAACAA3HAA7Zdu3ZVVdVJ\nJ52037FDDjmkjjvuuPrOd75Tn/zkJw94cfe4xz32+c+5K6+8sqqqnvnMZ+73Pb/0S79U97nPferq\nq6+uH/zgBwd87vVqHMfWS+iGlhk65miZNLZeQBfckzla5miZoWOOljlaZuiYo2WOlhk65miZo2WG\njjla5mi5xK+I/O3f/u16y1veUm95y1vqNa95zX7HX/nKV9a73vWuuuiii+olL3nJwj//9ttvr2OP\nPbY+97nP1d///d/XM57xjL3Hfv7nf74+/elP16c//ek69thj9/vexz72sfX5z3++/uVf/qW2bt16\nl+fo8VdEDsPQ1fW0pGWGjjk9tWz/KyKHRufu673T0z3ZmpY5WmbomKNljpYZOuZomaNlho45WuZo\nmaFjjpY5vbRs8isib7nllqqqOvTQQ+/0+PzrN9988wH9/Ne//vX1uc99rk455ZR9hmvzcw/DcLfn\nns1mB3zu9Wz79u2tl9ANLTN0zNEyScsE92SOljlaZuiYo2WOlhk65miZo2WGjjla5miZoWOOljla\nLrGD7eyzz64dO3bUjh076qyzztrv+Lnnnlvnn39+nX/++fW6171uoZ/9tre9rV796lfXox71qNq9\ne3cddthh+xx/5CMfWXv27Klrr722tmzZst/3H3fccXX11VfX1VdfXU95ylPu8jw97mADWA/a72Br\nxXsHAAAAAFZFkx1s891j851s/9v86/97OPbjvOMd76hXv/rV9ZjHPKZ27dp1p98/36GWOvcwDHf5\nZzKZ1DAMd/n7RMdxdNxxxx13/ACO/8hQd/15aGPXx1v3d9xxxx133HHHHXfccccdd9xxxx133PGN\ncHw+57mzP8s44B1s7373u+vFL35xnX322XXxxRfvd/zkk0+unTt31hVXXFHHH3/8T/QzL7jggnrt\na19bj3vc4+qKK66oBzzgAXf6957//OfXpZdeWpdeemmdeeaZ+xy7/fbb69BDD63bb7+9br311rrn\nPe95l+ebx7OTAOD/rf95eW2056/3DgAAAACsimXmRAe8g20+NNu5c+d+J/72t79du3fvroMPPrie\n+tSn/kQ/7w//8A/rta99bR177LG1a9euuxyuVVWdeOKJVVX10Y9+dL9jn/jEJ+q73/1ubdu27W6H\nawAAAAAAAHAgDnjAtmXLljrppJPq+uuvr3e+8537HNu+fXvddttt9YIXvKDuc5/7VNWPdpZ94Qtf\nqOuuu26/n/WmN72p3vCGN9STnvSkuuKKK2rz5s13e+7TTz+9HvCAB9T73//++vSnP73369/73vfq\njW98Y1VVvexlLzvQSwMAAAAAAIC7dMADtqqqd73rXfWgBz2ofvM3f7NOO+20esMb3lDMVIA4AAAg\nAElEQVQnnHBCXXDBBbV169b6vd/7vb1/94YbbqhHP/rRe3efzb3nPe+p7du319raWv3iL/5iXXDB\nBTWO4z5/3vOe9+zzPfe9733rz/7sz+qHP/xhTSaTevGLX1y/8zu/U094whPqk5/8ZD3vec+rX/3V\nX13m0tatu/pdoyxOywwdc7RMGlsvoAvuyRwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7Rc\n4jPY5m644YY677zz/j/27jd0+7uu///z5Vn4r5yaQv5Dd87pIAKpQJ1/Opyk4S6opWi0gYxSyozK\nIPqDx/tDhoTgCBW9sKSmmN9QmoIyPNOdK9wclKR0YTb354IXxFRW6jIcvX8X5KO/tT/u2PFor8/n\n+bndYFd2bOf79b6fr+N4jz0/r/Ooq6++ur7+9a/XE5/4xHrlK19Z2+22zjnnnO//c7fddludPn26\nnva0p93lFNvBwUEdHBzUGONe/4zLzWZTn/70p+/296+77rr6sz/7s7r++uvrO9/5Tp1//vl12WWX\n1W//9m/fry+n6/gdbPfVkd1omaFjTqeW87+DbUy6dq/nTqc9OZuWOVpm6JijZY6WGTrmaJmjZYaO\nOVrmaJmhY46WOV1a7jMn+pF9L/7kJz+53ve+9/3Qf+5pT3ta/c///M/d/v52u63tdvuArn3hhRfW\nxz/+8Qf073b1QFtyd1pm6JijZZKWCfZkjpY5WmbomKNljpYZOuZomaNlho45WuZomaFjjpY5WgZO\nsB1nHU+wARwH80+wzeK5AwAAAABHxT5zor2+gw0AAAAAAABOGgM2AAAAAAAA2IEBGwAAAAAAAOzA\ngA0AAAAAAAB2YMDWzLIss5fQhpYZOuZombTMXkAL9mSOljlaZuiYo2WOlhk65miZo2WGjjla5miZ\noWOOljlaVo11XdfZi5hljFFVVZ0SjDFa3c9MWmbomNOp5eHnb9Ws+xmTrt3rudNpT86mZY6WGTrm\naJmjZYaOOVrmaJmhY46WOVpm6JijZU6XlvvMiU4tJ3jMeHBwUFX9Jq2bzWb2EtrQMkPHnC4tDz9/\n554k20y4Zr/nTpc9eRRomaNlho45WuZomaFjjpY5WmbomKNljpYZOuZomdOh5T5zIifYqs9JAoDj\nYv4Jtlk8dwAAAADgqNhnTuQ72AAAAAAAAGAHBmwAAAAAAACwAwM2AAAAAAAA2IEBGwAAAAAAAOzA\ngK2ZZVlmL6ENLTN0zNEyaZm9gBbsyRwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7SsGuu6\nrrMXMcsYo6qqOiUYY7S6n5m0zNAxp1PLw8/fqln3MyZdu9dzp9OenE3LHC0zdMzRMkfLDB1ztMzR\nMkPHHC1ztMzQMUfLnC4t95kTnVpO8Jjx4OCgqvpNWjebzewltKFlho45XVoefv7OPUm2mXDNfs+d\nLnvyKNAyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLTN0zNEyp0PLfeZETrBVn5MEAMfF/BNss3juAAAA\nAMBRsc+cyHewAQAAAAAAwA4M2AAAAAAAAGAHBmwAAAAAAACwAwM2AAAAAAAA2IEBWzPLssxeQhta\nZuiYo2XSMnsBLdiTOVrmaJmhY46WOVpm6JijZY6WGTrmaJmjZYaOOVrmaFk11nVdZy9iljFGVVV1\nSjDGaHU/M2mZoWNOp5aHn79Vs+5nTLp2r+dOpz05m5Y5WmbomKNljpYZOuZomaNlho45WuZomaFj\njpY5XVruMyc6tZzgMePBwUFV9Zu0bjab2UtoQ8sMHXO6tDz8/J17kmwz4Zr9njtd9uRRoGWOlhk6\n5miZo2WGjjla5miZoWOOljlaZuiYo2VOh5b7zImcYKs+JwkAjov5J9hm8dwBAAAAgKNinzmR72AD\nAAAAAACAHRiwAQAAAAAAwA4M2AAAAAAAAGAHBmwAAAAAAACwAwO2ZpZlmb2ENrTM0DFHy6Rl9gJa\nsCdztMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRsmqs67rOXsQsY4yqquqUYIzR6n5m0jJD\nx5xOLQ8/f6tm3c+YdO1ez51Oe3I2LXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO6tNxnTnRq\nOcFjxoODg6rqN2ndbDazl9CGlhk65nRpefj5O/ck2WbCNfs9d7rsyaNAyxwtM3TM0TJHywwdc7TM\n0TJDxxwtc7TM0DFHy5wOLfeZEznBVn1OEgAcF/NPsM3iuQMAAAAAR8U+cyLfwQYAAAAAAAA7MGAD\nAAAAAACAHRiwAQAAAAAAwA4M2AAAAAAAAGAHBmzNLMsyewltaJmhY46WScvsBbRgT+ZomaNlho45\nWuZomaFjjpY5WmbomKNljpYZOuZomaNl1VjXdZ29iFnGGFVV1SnBGKPV/cykZYaOOZ1aHn7+Vs26\nnzHp2r2eO5325Gxa5miZoWOOljlaZuiYo2WOlhk65miZo2WGjjla5nRpuc+c6NRygseMBwcHVdVv\n0rrZbGYvoQ0tM3TM6dLy8PN37kmyzYRr9nvudNmTR4GWOVpm6JijZY6WGTrmaJmjZYaOOVrmaJmh\nY46WOR1a7jMncoKt+pwkADgu5p9gm8VzBwAAAACOin3mRL6DDQAAAAAAAHZgwAYAAAAAAAA7MGAD\nAAAAAACAHRiwAQAAAAAAwA4M2JpZlmX2EtrQMkPHHC2TltkLaMGezNEyR8sMHXO0zNEyQ8ccLXO0\nzNAxR8scLTN0zNEyR8uqsa7rOnsRs4wxqqqqU4IxRqv7mUnLDB1zOrU8/PytmnU/Y9K1ez13Ou3J\n2bTM0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM6dJynznRqeUEjxkPDg6qqt+kdbPZzF5CG1pm\n6JjTpeXh5+/ck2SbCdfs99zpsiePAi1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRMkPHHC1zOrTcZ07k\nBFv1OUkAcFzMP8E2i+cOAAAAABwV+8yJfAcbAAAAAAAA7MCADQAAAAAAAHZgwAYAAAAAAAA7MGAD\nAAAAAACAHRiwNbMsy+wltKFlho45WiYtsxfQgj2Zo2WOlhk65miZo2WGjjla5miZoWOOljlaZuiY\no2WOllVjXdd19iJmGWNUVVWnBGOMVvczk5YZOuZ0ann4+Vs1637GpGv3eu502pOzaZmjZYaOOVrm\naJmhY46WOVpm6JijZY6WGTrmaJnTpeU+c6JTywkeMx4cHFRVv0nrZrOZvYQ2tMzQMadLy8PP37kn\nyTYTrtnvudNlTx4FWuZomaFjjpY5WmbomKNljpYZOuZomaNlho45WuZ0aLnPnMgJtupzkgDguJh/\ngm0Wzx0AAAAAOCr2mRP5DjYAAAAAAADYgQEbAAAAAAAA7MCADQAAAAAAAHZgwAYAAAAAAAA7MGBr\nZlmW2UtoQ8sMHXO0TFpmL6AFezJHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHyxwtq8a6ruvs\nRcwyxqiqqk4Jxhit7mcmLTN0zOnU8vDzt2rW/YxJ1+713Om0J2fTMkfLDB1ztMzRMkPHHC1ztMzQ\nMUfLHC0zdMzRMqdLy33mRKeWEzxmPDg4qKp+k9bNZjN7CW1omaFjTpeWh5+/c0+SbSZcs99zp8ue\nPAq0zNEyQ8ccLXO0zNAxR8scLTN0zNEyR8sMHXO0zOnQcp85kRNs1eckAcBxMf8E2yyeOwAAAABw\nVOwzJ/IdbAAAAAAAALADAzYAAAAAAADYgQEbAAAAAAAA7MCADQAAAAAAAHZgwNbMsiyzl9CGlhk6\n5miZtMxeQAv2ZI6WOVpm6JijZY6WGTrmaJmjZYaOOVrmaJmhY46WOVpWjXVd19mLmGWMUVVVnRKM\nMVrdz0xaZuiY06nl4edv1az7GZOu3eu502lPzqZljpYZOuZomaNlho45WuZomaFjjpY5WmbomKNl\nTpeW+8yJTi0neMx4cHBQVf0mrZvNZvYS2tAyQ8ecLi0PP3/nniTbTLhmv+dOlz15FGiZo2WGjjla\n5miZoWOOljlaZuiYo2WOlhk65miZ06HlPnMiJ9iqz0kCgONi/gm2WTx3AAAAAOCo2GdO5DvYAAAA\nAAAAYAcGbAAAAAAAALADAzYAAAAAAADYgQEbAAAAAAAA7MCArZllWWYvoQ0tM3TM0TJpmb2AFuzJ\nHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzRMkPHHC1ztKwa67qusxcxyxijqqo6JRhjtLqfmbTM0DGn\nU8vDz9+qWfczJl2713On056cTcscLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8ucLi33mROdWk7w\nmPHg4KCq+k1aN5vN7CW0oWWGjjldWh5+/s49SbaZcM1+z50ue/Io0DJHywwdc7TM0TJDxxwtc7TM\n0DFHyxwtM3TM0TKnQ8t95kROsFWfkwQAx8X8E2yzeO4AAAAAwFGxz5zId7ABAAAAAADADgzYAAAA\nAAAAYAcGbAAAAAAAALADAzYAAAAAAADYgQFbM8uyzF5CG1pm6JijZdIyewEt2JM5WuZomaFjjpY5\nWmbomKNljpYZOuZomaNlho45WuZoWTXWdV1nL2KWMUZVVXVKMMZodT8zaZmhY06nloefv1Wz7mdM\nunav506nPTmbljlaZuiYo2WOlhk65miZo2WGjjla5miZoWOOljldWu4zJzq1nOAx48HBQVX1m7Ru\nNpvZS2hDywwdc7q0PPz8nXuSbDPhmv2eO1325FGgZY6WGTrmaJmjZYaOOVrmaJmhY46WOVpm6Jij\nZU6HlvvMiZxgqz4nCQCOi/kn2Gbx3AEAAACAo2KfOZHvYAMAAAAAAIAdGLABAAAAAADADgzYAAAA\nAAAAYAcGbAAAAAAAALADA7ZmlmWZvYQ2tMzQMUfLpGX2AlqwJ3O0zNEyQ8ccLXO0zNAxR8scLTN0\nzNEyR8sMHXO0zNGyaqzrus5exCxjjKqq6pRgjNHqfmbSMkPHnE4tDz9/q2bdz5h07V7PnU57cjYt\nc7TM0DFHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7q03GdOdGo5wWPGg4ODquo3ad1sNrOX0IaWGTrm\ndGl5+Pk79yTZZsI1+z13uuzJo0DLHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLnA4t95kTOcFW\nfU4SABwX80+wzeK5AwAAAABHxT5zIt/BBgAAAAAAADswYAMAAAAAAIAdGLABAAAAAADADgzYAAAA\nAAAAYAcGbM0syzJ7CW1omaFjjpZJy+wFtGBP5miZo2WGjjla5miZoWOOljlaZuiYo2WOlhk65miZ\no2XVWNd1nb2IWcYYVVXVKcEYo9X9zKRlho45nVoefv5WzbqfMenavZ47nfbkbFrmaJmhY46WOVpm\n6JijZY6WGTrmaJmjZYaOOVrmdGm5z5zo1HKCx4wHBwdV1W/SutlsZi+hDS0zdMzp0vLw83fuSbLN\nhGv2e+502ZNHgZY5WmbomKNljpYZOuZomaNlho45WuZomaFjjpY5HVruMydygq36nCQAOC7mn2Cb\nxXMHAAAAAI6KfeZEvoMNAAAAAAAAdmDABgAAAAAAADswYAMAAAAAAIAdGLABAAAAAADADgzYmlmW\nZfYS2tAyQ8ccLZOW2QtowZ7M0TJHywwdc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TJHy6qxrus6exGz\njDGqqqpTgjFGq/uZScsMHXM6tTz8/K2adT9j0rV7PXc67cnZtMzRMkPHHC1ztMzQMUfLHC0zdMzR\nMkfLDB1ztMzp0nKfOdGp5QSPGQ8ODqqq36R1s9nMXkIbWmbomNOl5eHn79yTZJsJ1+z33OmyJ48C\nLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXM6tNxnTuQEW/U5SQBwXMw/wTaL5w4AAAAAHBX7\nzIl8BxsAAAAAAADswIANAAAAAAAAdmDABgAAAAAAADswYAMAAAAAAIAdGLA1syzL7CW0oWWGjjla\nJi2zF9CCPZmjZY6WGTrmaJmjZYaOOVrmaJmhY46WOVpm6JijZY6WVWNd13X2ImYZY1RVVacEY4xW\n9zOTlhk65nRqefj5WzXrfsaka/d67nTak7NpmaNlho45WuZomaFjjpY5WmbomKNljpYZOuZomdOl\n5T5zolPLCR4zHhwcVFW/Setms5m9hDa0zNAxp0vLw8/fuSfJNhOu2e+502VPHgVa5miZoWOOljla\nZuiYo2WOlhk65miZo2WGjjla5nRouc+cyAm26nOSAOC4mH+CbRbPHQAAAAA4KvaZE/kONgAAAAAA\nANiBARsAAAAAAADswIANAAAAAAAAdhAZsH35y1+uyy67rJ74xCfWwx72sDr33HPrd3/3d+v222+/\n37/Ghz/84XrTm95UL3jBC+pRj3pUPeQhD6lLL730Xv/52267rR7ykIfc61+/8iu/krg1AAAAAAAA\nuIu9B2w333xz/ezP/mz91V/9VT3nOc+p3/u936vTp0/XX/zFX9Rzn/vc+sY3vnG/fp23vvWt9e53\nv7u+8IUv1JOf/OSq+sGXy92XZz3rWbUsy93+evWrX73XfR1Xy7LMXkIbWmbomKNl0jJ7AS3Ykzla\n5miZoWOOljlaZuiYo2WOlhk65miZo2WGjjla5mhZNdZ1Xff5BV760pfWmTNn6p3vfGe98Y1v/P7f\nf/Ob31yXX355veENb6j3vOc9P/TXOXv2bD3lKU+p8847r6699tp60YteVJdcckldeeWV9/jP33bb\nbXX69Ol63eteV+973/se0NoPB3h7JjhSxhit7mcmLTN0zOnU8gc/QDHrfsaka/d67nTak7NpmaNl\nho45WuZomaFjjpY5WmbomKNljpYZOuZomdOl5T5zor1OsN1888115syZOvfcc+8yXKuqOjg4qEc8\n4hH1gQ98oO64444f+mttNps677zzqqrP/3icYbvdzl5CG1pm6JijZZKWCfZkjpY5WmbomKNljpYZ\nOuZomaNlho45WuZomaFjjpY5Wu55gu2KK66o17/+9fd6Su3wdNvf//3f10UXXXS/f92zZ8/WRRdd\ndL9OsP3CL/xC/dIv/VJ9/etfr5/4iZ+oCy+8sH76p3/6fl2n4wk2gONg/gm2WTx3AAAAAOCo2GdO\n9CP7XPiLX/xiVVU94xnPuMfXzz///Dpz5kzddNNNOw3YdnHmzJk6c+bMXf7eZrOpv/7rv66nPOUp\n/yfXBAAAAAAA4OTa64+I/I//+I+qqjrnnHPu8fXDv3/77bfvc5l79MhHPrLe8pa31Oc+97m6/fbb\n6/bbb//+d7edPXu2XvziF9+vP5oSAAAAAAAAdrHXgG2mxz/+8bUsSz3rWc+qRz3qUfWoRz2qXvCC\nF9QnP/nJevazn11f+tKX6oorrpi9TAAAAAAAAJrZa8B2eELt8CTb/3b49x/96Efvc5mdnDp1qn7t\n136tqqr+8R//8UG7LgAAAAAAACfDXgO2Cy64oKp+8F1s/9tNN91UVff+HW3/Vx73uMdVVdW3v/3t\n+/XPjzHu9a/NZlNjjFqW5R7/3WVZjtTr//ufO2rrO06vL8typNfn9ZP3erf39/eMqrq315f/w9eX\n/+Nf/4e/Pru/14/W693e3zNfXzy/vX7EXvf+zr3u/e31o/a693fude9vrx+1172/c697f3v9qL3u\n/Z17/Ti9vw/nPPf01z7Guq7rA/2Xb7nllnr6059e5557bn3pS1+6y2K++c1v1hOe8IQaY9RXv/rV\nevjDH36/f92zZ8/WRRddVJdcckldeeWVO6/rD//wD+vP//zP6zd/8zfrXe96173+c4fr3SPBkTPG\naHU/M2mZoWNOp5Y/eF7Mup8x6dq9njud9uRsWuZomaFjjpY5WmbomKNljpYZOuZomaNlho45WuZ0\nabnPnGivE2ynT5+ul7zkJXXrrbfWu9/97ru8tt1u64477qhLL730+8O1O++8s2688ca65ZZb9rls\nVVV97nOfu8cb/tSnPlWXX355jTHqkksu2fs6x812u529hDa0zNAxR8skLRPsyRwtc7TM0DFHyxwt\nM3TM0TJHywwdc7TM0TJDxxwtc7Tc8wRb1fdOsV144YX11a9+tV7+8pfXBRdcUDfccEOdPXu2nvnM\nZ9Z1111Xj3nMY6qq6rbbbqvTp0/XU5/61Lr11lvv8utcddVVddVVV1VV1Ve+8pX65Cc/WadPn67n\nP//5VVX1+Mc/vt7+9rd//5/fbDb1pS99qS688MJ60pOeVFVVX/jCF+qaa66pMUb96Z/+af3RH/3R\nfd98wxNsAMfB/BNss3juAAAAAMBRsc+caO8BW1XVl7/85XrLW95SV199dX3961+vJz7xifXKV76y\nttttnXPOOd//5w4HbE972tPudort4OCgDg4O7vZnXh4u73//O+973/vq7/7u7+pf//Vf62tf+1p9\n97vfrZ/8yZ+s5z73ufVbv/Vb9bznPe+HrtuADWAOA7aTdt8AAAAAcPRMH7AdVwZsAHMYsJ20+wYA\nAACAo2fad7ABAAAAAADASWPABgAAAAAAADswYGtmWZbZS2hDywwdc7RMWmYvoAV7MkfLHC0zdMzR\nMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC19B1tV9founDFGq/uZScsMHXM6tZz/HWxj0rV7PXc67cnZ\ntMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLDB1ztMzp0nKfOdGp5QSPGQ8ODqqq36R1s9nMXkIbWmbo\nmNOl5eHn79yTZJsJ1+z33OmyJ48CLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXM6tNxnTuQE\nW/U5SQBwXMw/wTaL5w4AAAAAHBX7zIl8BxsAAAAAAADswIANAAAAAAAAdmDABgAAAAAAADswYAMA\nAAAAAIAdGLA1syzL7CW0oWWGjjlaJi2zF9CCPZmjZY6WGTrmaJmjZYaOOVrmaJmhY46WOVpm6Jij\nZY6WVWNd13X2ImYZY1RVVacEY4xW9zOTlhk65nRqefj5WzXrfsaka/d67nTak7NpmaNlho45WuZo\nmaFjjpY5WmbomKNljpYZOuZomdOl5T5zolPLCR4zHhwcVFW/Setms5m9hDa0zNAxp0vLw8/fuSfJ\nNhOu2e+502VPHgVa5miZoWOOljlaZuiYo2WOlhk65miZo2WGjjla5nRouc+cyAm26nOSAOC4mH+C\nbRbPHQAAAAA4KvaZE/kONgAAAAAAANiBARsAAAAAAADswIANAAAAAAAAdmDABgAAAAAAADswYGtm\nWZbZS2hDywwdc7RMWmYvoAV7MkfLHC0zdMzRMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC2rxrqu6+xF\nzDLGqKqqTgnGGK3uZyYtM3TM6dTy8PO3atb9jEnX7vXc6bQnZ9MyR8sMHXO0zNEyQ8ccLXO0zNAx\nR8scLTN0zNEyp0vLfeZEp5YTPGY8ODioqn6T1s1mM3sJbWiZoWNOl5aHn79zT5JtJlyz33Ony548\nCrTM0TJDxxwtc7TM0DFHyxwtM3TM0TJHywwdc7TM6dBynzmRE2zV5yQBwHEx/wTbLJ47AAAAAHBU\n7DMn8h1sAAAAAAAAsAMDNgAAAAAAANiBARsAAAAAAADswIANAAAAAAAAdmDA1syyLLOX0IaWGTrm\naJm0zF5AC/ZkjpY5WmbomKNljpYZOuZomaNlho45WuZomaFjjpY5WlaNdV3X2YuYZYxRVVWdEowx\nWt3PTFpm6JjTqeXh52/VrPsZk67d67nTaU/OpmWOlhk65miZo2WGjjla5miZoWOOljlaZuiYo2VO\nl5b7zIlOLSd4zHhwcFBV/Satm81m9hLa0DJDx5wuLQ8/f+eeJNtMuGa/506XPXkUaJmjZYaOOVrm\naJmhY46WOVpm6JijZY6WGTrmaJnToeU+cyIn2KrPSQKA42L+CbZZPHcAAAAA4KjYZ07kO9gAAAAA\nAABgBwZsAAAAAAAAsAMDNgAAAAAAANiBARsAAAAAAADswICtmWVZZi+hDS0zdMzRMmmZvYAW7Mkc\nLXO0zNAxR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO0rBrruq6zFzHLGKOqqjolGGO0up+ZtMzQMadT\ny8PP36pZ9zMmXbvXc6fTnpxNyxwtM3TM0TJHywwdc7TM0TJDxxwtc7TM0DFHy5wuLfeZE51aTvCY\n8eDgoKr6TVo3m83sJbShZYaOOV1aHn7+zj1JtplwzX7PnS578ijQMkfLDB1ztMzRMkPHHC1ztMzQ\nMUfLHC0zdMzRMqdDy33mRE6wVZ+TBADHxfwTbLN47gAAAADAUbHPnMh3sAEAAAAAAMAODNgAAAAA\nAABgBwZsAAAAAAAAsAMDNgAAAAAAANiBAVszy7LMXkIbWmbomKNl0jJ7AS3Ykzla5miZoWOOljla\nZuiYo2WOlhk65miZo2WGjjla5mhZNdZ1XWcvYpYxRlVVdUowxmh1PzNpmaFjTqeWh5+/VbPuZ0y6\ndq/nTqc9OZuWOVpm6JijZY6WGTrmaJmjZYaOOVrmaJmhY46WOV1a7jMnOrWc4DHjwcFBVfWbtG42\nm9lLaEPLDB1zurQ8/Pyde5JsM+Ga/Z47XfbkUaBljpYZOuZomaNlho45WuZomaFjjpY5WmbomKNl\nToeW+8yJnGCrPicJAI6L+SfYZvHcAQAAAICjYp85ke9gAwAAAAAAgB0YsAEAAAAAAMAODNgAAAAA\nAABgBwZsAAAAAAAAsAMDtmaWZZm9hDa0zNAxR8ukZfYCWrAnc7TM0TJDxxwtc7TM0DFHyxwtM3TM\n0TJHywwdc7TM0bJqrOu6zl7ELGOMqqrqlGCM0ep+ZtIyQ8ecTi0PP3+rZt3PmHTtXs+dTntyNi1z\ntMzQMUfLHC0zdMzRMkfLDB1ztMzRMkPHHC1zurTcZ050ajnBY8aDg4Oq6jdp3QgE7/kAACAASURB\nVGw2s5fQhpYZOuZ0aXn4+Tv3JNlmwjX7PXe67MmjQMscLTN0zNEyR8sMHXO0zNEyQ8ccLXO0zNAx\nR8ucDi33mRM5wVZ9ThIAHBfzT7DN4rkDAAAAAEfFPnMi38EGAAAAAAAAOzBgAwAAAAAAgB0YsAEA\nAAAAAMAODNgAAAAAAABgBwZszSzLMnsJbWiZoWOOlknL7AW0YE/maJmjZYaOOVrmaJmhY46WOVpm\n6JijZY6WGTrmaJmjZdVY13WdvYhZxhhVVdUpwRij1f3MpGWGjjmdWh5+/lbNup8x6dq9njud9uRs\nWuZomaFjjpY5WmbomKNljpYZOuZomaNlho45WuZ0abnPnOjUcoLHjAcHB1XVb9K62WxmL6ENLTN0\nzOnS8vDzd+5Jss2Ea/Z77nTZk0eBljlaZuiYo2WOlhk65miZo2WGjjla5miZoWOOljkdWu4zJ3KC\nrfqcJAA4LuafYJvFcwcAAAAAjop95kS+gw0AAAAAAAB2YMAGAAAAAAAAOzBgAwAAAAAAgB0YsAEA\nAAAAAMAODNiaWZZl9hLa0DJDxxwtk5bZC2jBnszRMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC0zdMzR\nMkfLqrGu6zp7EbOMMaqqqlOCMUar+5lJywwdczq1PPz8rZp1P2PStXs9dzrtydk6tbz44ovrE5/4\nxOxlTPGyl72sPv7xj89eRkSnPTmbljlaZuiYo2WOlhk65miZo2WGjjla5nRpuc+c6NRygseMBwcH\nVdVv0rrZbGYvoQ0tM3TM6dLy8PN37kmyzYRr9nvudNmTR0GXlpdccsnsJUxz0003eX9zj7TM0TJD\nxxwtc7TM0DFHyxwtM3TM0TKnQ8t95kROsFWfkwQAx8X8E2yzeO7Qn/f3SbtvAAAAOL72mRP5DjYA\nAAAAAADYgQEbAAAAAAAA7MCADQAAAAAAAHZgwAYAAAAAAAA7MGBrZlmW2UtoQ8sMHXO0TFpmL6AF\nezJHy6Rl9gJasCdztMzRMkPHHC1ztMzQMUfLHC0zdMzRMkfLqrGu6zp7EbOMMaqqqlOCMUar+5lJ\nywwdczq1PPz8rZp1P2PStXs9dzrtydk6tfT+7vP72OVeZtMyR8sMHXO0zNEyQ8ccLXO0zNAxR8uc\nLi33mRM5wdbMdrudvYQ2tMzQMUfLJC0T7MkcLZO0TLAnc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TJH\nSyfYqqrPTxoDHBfzT7jM4rlDf97fJ+2+AQAA4Phygg0AAAAAAAAeJAZsAAAAAAAAsAMDNgAAAAAA\nANiBARsAAAAAAADswICtmWVZZi+hDS0zdMzRMmmZvYAW7MkcLZOW2QtowZ7M0TJHywwdc7TM0TJD\nxxwtc7TM0DFHyxwtq8a6ruvsRcwyxqiqqk4Jxhit7mcmLTN0zOnU8vDzt2rW/YxJ1+713Om0J2fr\n1NL7u8/vY5d7mU3LHC0zdMzRMkfLDB1ztMzRMkPHHC1zurTcZ07kBFsz2+129hLa0DJDxxwtk7RM\nsCdztEzSMsGezNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLZ1gq6o+P2kMcFzMP+Eyi+cO/Xl/n7T7\nBgAAgOPLCTYAAAAAAAB4kBiwAQAAAAAAwA4M2AAAAAAAAGAHBmwAAAAAAACwAwO2ZpZlmb2ENrTM\n0DFHy6Rl9gJasCdztExaZi+gBXsyR8scLTN0zNEyR8sMHXO0zNEyQ8ccLXO0rBrruq6zFzHLGKOq\nqjolGGO0up+ZtMzQMadTy8PP36pZ9zMmXbvXc6fTnpytU0vv7z6/j13uZTYtc7TM0DFHyxwtM3TM\n0TJHywwdc7TM6dJynzmRE2zNbLfb2UtoQ8sMHXO0TNIywZ7M0TJJywR7MkfLHC0zdMzRMkfLDB1z\ntMzRMkPHHC1ztHSCrar6/KQxwHEx/4TLLJ479Of9fdLuGwAAAI4vJ9gAAAAAAADgQWLABgAAAAAA\nADswYAMAAAAAAIAdGLABAAAAAADADgzYmlmWZfYS2tAyQ8ccLZOW2QtowZ7M0TJpmb2AFuzJHC1z\ntMzQMUfLHC0zdMzRMkfLDB1ztMzRsmqs67rOXsQsY4yqquqUYIzR6n5m0jJDx5xOLQ8/f6tm3c+Y\ndO1ez51Oe3K2Ti29v/v8Pna5l9m0zNEyQ8ccLXO0zNAxR8scLTN0zNEyp0vLfeZETrA1s91uZy+h\nDS0zdMzRMknLBHsyR8skLRPsyRwtc7TM0DFHyxwtM3TM0TJHywwdc7TM0dIJtqrq85PGAMfF/BMu\ns3ju0J/390m7bwAAADi+nGADAAAAAACAB4kBGwAAAAAAAOzAgA0AAAAAAAB2YMAGAAAAAAAAOzBg\na2ZZltlLaEPLDB1ztExaZi+gBXsyR8ukZfYCWrAnc7TM0TJDxxwtc7TM0DFHyxwtM3TM0TJHy6qx\nrus6exGzjDGqqqpTgjFGq/uZScsMHXM6tTz8/K2adT9j0rV7PXc67cnZOrX0/u7z+9jlXmbTMkfL\nDB1ztMzRMkPHHC1ztMzQMUfLnC4t95kTOcHWzHa7nb2ENrTM0DFHyyQtE+zJHC2TtEywJ3O0zNEy\nQ8ccLXO0zNAxR8scLTN0zNEyR0sn2Kqqz08aAxwX80+4zOK5Q3/e3yftvgEAAOD4coINAAAAAAAA\nHiQGbAAAAAAAALADAzYAAAAAAADYgQEbAAAAAAAA7MCArZllWWYvoQ0tM3TM0TJpmb2AFuzJHC2T\nltkLaMGezNEyR8sMHXO0zNEyQ8ccLXO0zNAxR8scLavGuq7r7EXMMsaoqqpOCcYYre5nJi0zdMzp\n1PLw87dq1v2MSdfu9dzptCdn69TS+7vP72OXe5lNyxwtM3TM0TJHywwdc7TM0TJDxxwtc7q03GdO\n5ARbM9vtdvYS2tAyQ8ccLZO0TLAnc7RM0jLBnszRMkfLDB1ztMzRMkPHHC1ztMzQMUfLHC2dYKuq\nPj9pDHBczD/hMovnDv15f5+0+wYAAIDjywk2AAAAAAAAeJAYsAEAAAAAAMAODNgAAAAAAABgBwZs\nAAAAAAAAsAMDtmaWZZm9hDa0zNAxR8ukZfYCWrAnc7RMWmYvoAV7MkfLHC0zdMzRMkfLDB1ztMzR\nMkPHHC1ztKwa67qusxcxyxijqqo6JRhjtLqfmbTM0DGnU8vDz9+qWfczJl2713On056crVNL7+8+\nv49d7mU2LXO0zNAxR8scLTN0zNEyR8sMHXO0zOnScp85kRNszWy329lLaEPLDB1ztEzSMsGezNEy\nScsEezJHyxwtM3TM0TJHywwdc7TM0TJDxxwtc7QMnGD78pe/XG95y1vq6quvrm984xv1hCc8oV7x\nilfUdrutRz/60ffr1/jwhz9c1157bf3Lv/xLff7zn69vfetb9au/+qv1/ve//z7/veuuu67e+ta3\n1mc/+9n6zne+U+eff35ddtll9aY3vake8pAfPjvseIIN4DiYf8JlFs8d+vP+Pmn3DQAAAMfXPnOi\nvQZsN998c1144YX17//+7/WKV7yiLrjggrrhhhvqmmuuqWc+85n1mc98ph772Mf+0F/nWc96Vn3h\nC1+oH//xH68nPelJdeONN9Yll1xSV1555b3+Ox/96Efrl3/5l+sRj3hEveY1r6nHPvax9bGPfay+\n+MUv1qte9ar627/92x96XQM2gDn8D/iTdt+cJN7fJ+2+AQAA4PiaNmB76UtfWmfOnKl3vvOd9cY3\nvvH7f//Nb35zXX755fWGN7yh3vOe9/zQX+fs2bP1lKc8pc4777y69tpr60UvetF9Dtj+8z//s57+\n9KfXN7/5zfrMZz5TP/MzP1NVVf/93/9dF110UV1//fX1N3/zN/Wa17zmPq9rwAYwh/8Bf9Lum5PE\n+/uk3TcAAAAcX1O+g+3mm2+uM2fO1LnnnnuX4VpV1cHBQT3iEY+oD3zgA3XHHXf80F9rs9nUeeed\nV1X37yY+/OEP19e+9rV67Wtf+/3hWlXVQx/60HrrW99aVXW/BnsAAAAAAACwqwc8YLvmmmuqquol\nL3nJ3V77sR/7sXre855X3/72t+uzn/3sA1/dvfj0pz9dVVW/+Iu/eLfXXvjCF9bDH/7wuv766+u7\n3/1u/NoAAAAAAACcbA94wPbFL36xqqqe8Yxn3OPr559/flVV3XTTTQ/0Eg/o2qdOnapzzz237rzz\nzrrlllvi1z7qlmWZvYQ2tMzQMUfLpGX2AlqwJ3O0TFpmL6AFezJHyxwtM3TM0TJHywwdc7TM0TJD\nxxwtc7Tc4zvYXv/619cVV1xRV1xxRV122WV3e/2P//iP621ve1u97W1vqz/4gz+437/u2bNn66KL\nLrrP72B7xjOeUTfffHPddNNNdfr06bu9/rznPa+uv/76uv766+vZz372vV6r43ewjTFa3c9MWmbo\nmNOp5fzvaBqTrt3rudNpT87WqaX3d5/fxy73MpuWOVpm6JijZY6WGTrmaJmjZYaOOVrmdGk55TvY\nOJq22+3sJbShZYaOOVomaZlgT+ZomaRlgj2Zo2WOlhk65miZo2WGjjla5miZoWOOljlaVtX6AP3+\n7//+OsZY3/GOd9zj62984xvXMcb63ve+d6df95prrlnHGOull156r//Mz/3cz61jjPVzn/vcPb7+\nUz/1U+sYY73xxhvv81r1vR9vvs+/fv7nf36tqnW73d7jr7Hdbr3uda973es7vn7Xz9rtWrXew1/b\nhq9/755n9/e6172/vb+97nWve93rXve6173uda973etePymvH8557uuvB+IB/xGRf/mXf1m//uu/\nXq9//evrve99791ef+lLX1pnzpypT33qU/WiF73ofv+69+ePiLzkkkvqgx/8YH3wgx+s1772tXd5\n7c4776xzzjmn7rzzzvrWt75VP/qjP3qv1+r4R0QCHAfz/wi5WTx36M/7+6TdNwAAABxfU/6IyMOh\n2ZkzZ+524W9+85v1mc98ph75yEfWc57znAd6iXv14he/uKqqrr766ru99g//8A/1X//1X3XhhRfe\n53ANAAAAAAAAHogHPGA7ffp0veQlL6lbb7213v3ud9/lte12W3fccUddeuml9fCHP7yqvney7MYb\nb6xbbrllvxVX1ate9ap63OMeVx/60Ifqn//5n7//97/zne/Un/zJn1RV1W/8xm/sfR0AAAAAAAD4\n3x7wHxFZVXXLLbfUhRdeWF/96lfr5S9/eV1wwQV1ww031NmzZ+uZz3xmXXfddfWYxzymqqpuu+22\nOn36dD31qU+tW2+99S6/zlVXXVVXXXVVVVV95StfqU9+8pN1+vTpev7zn19VVY9//OPr7W9/+13+\nnY9+9KP1qle9qh72sIfVa1/72nrMYx5TH/vYx+rf/u3f6tWvfnX9v//3/374zfsjIgGm8EfInbT7\n5iTx/j5p9w0AAADH15Q/IrLqe6fY/umf/qle97rX1Q033FDveMc76tZbb63f+Z3fqc9+9rPfH67d\n02L//z7/+c/XlVdeWe9///vrzJkzNcaoW2+9ta688sq68sor6yMf+cjd/p2Xv/zlde2119YLX/jC\n+shHPlLvete76qEPfWhdfvnl9aEPfWif2zrWlmWZvYQ2tMzQMUfLpGX2AlqwJ3O0TFpmL6AFezJH\nyxwtM3TM0TJHywwdc7TM0TJDxxwtc7Tc8wTbcdfxBNsYo9X9zKRlho45nVrOP+EyJl2713On056c\nrVNL7+8+v49d7mU2LXO0zNAxR8scLTN0zNEyR8sMHXO0zOnSctoJNo6e7XY7ewltaJmhY46WSVom\n2JM5WiZpmWBP5miZo2WGjjla5miZoWOOljlaZuiYo2WOlk6wVVWfnzQGOC7mn3CZxXOH/ry/T9p9\nAwAAwPHlBBsAAAAAAAA8SAzYAAAAAAAAYAcGbAAAAAAAALADAzYAAAAAAADYgQFbM8uyzF5CG1pm\n6JijZdIyewEt2JM5WiYtsxfQgj2Zo2WOlhk65miZo2WGjjla5miZoWOOljlaVo11XdfZi5hljFFV\nVZ0SjDFa3c9MWmbomNOp5eHnb9Ws+xmTrt3rudNpT87WqaX3d5/fxy73MpuWOVpm6JijZY6WGTrm\naJmjZYaOOVrmdGm5z5zICbZmttvt7CW0oWWGjjlaJmmZYE/maJmkZYI9maNljpYZOuZomaNlho45\nWuZomaFjjpY5WjrBVlV9ftIY4LiYf8JlFs8d+vP+Pmn3DQAAAMeXE2wAAAAAAADwIDFgAwAAAAAA\ngB0YsAEAAAAAAMAODNgAAAAAAABgBwZszSzLMnsJbWiZoWOOlknL7AW0YE/maJm0zF5AC/ZkjpY5\nWmbomKNljpYZOuZomaNlho45WuZoWTXWdV1nL2KWMUZVVXVKMMZodT8zaZmhY06nloefv1Wz7mdM\nunav506nPTlbp5be331+H7vcy2xa5miZoWOOljlaZuiYo2WOlhk65miZ06XlPnMiJ9ia2W63s5fQ\nhpYZOuZomaRlgj2Zo2WSlgn2ZI6WOVpm6JijZY6WGTrmaJmjZYaOOVrmaOkEW1X1+UljgONi/gmX\nWTx36M/7+6TdNwAAABxfTrABAAAAAADAg8SADQAAAAAAAHZgwAYAAAAAAAA7MGADAAAAAACAHRiw\nNbMsy+wltKFlho45WiYtsxfQgj2Zo2XSMnsBLdiTOVrmaJmhY46WOVpm6JijZY6WGTrmaJmjZdVY\n13WdvYhZxhhVVdUpwRij1f3MpGWGjjmdWh5+/lbNup8x6dq9njud9uRsnVp6f/f5fexyL7NpmaNl\nho45WuZomaFjjpY5WmbomKNlTpeW+8yJnGBrZrvdzl5CG1pm6JijZZKWCfZkjpZJWibYkzla5miZ\noWOOljlaZuiYo2WOlhk65miZo6UTbFXV5yeNAY6L+SdcZvHcoT/v75N23wAAAHB8OcEGAAAAAAAA\nDxIDNgAAAAAAANiBARsAAAAAAADswIANAAAAAAAAdmDA1syyLLOX0IaWGTrmaJm0zF5AC/ZkjpZJ\ny+wFtGBP5miZo2WGjjla5miZoWOOljlaZuiYo2WOllVjXdd19iJmGWNUVVWnBGOMVvczk5YZOuZ0\nann4+Vs1637GpGv3eu502pOzdWrp/d3n97HLvcymZY6WGTrmaJmjZYaOOVrmaJmhY46WOV1a7jMn\ncoKtme12O3sJbWiZoWOOlklaJtiTOVomaZlgT+ZomaNlho45WuZomaFjjpY5WmbomKNljpZOsFVV\nn580Bjgu5p9wmcVzh/68v0/afQMAAMDx5QQbAAAAAAAAPEgM2AAAAAAAAGAHBmwAAAAAAACwAwM2\nAAAAAAAA2IEBWzPLssxeQhtaZuiYo2XSMnsBLdiTOVomLbMX0II9maNljpYZOuZomaNlho45WuZo\nmaFjjpY5WlaNdV3X2YuYZYxRVVWdEowxWt3PTFpm6JjTqeXh52/VrPsZk67d67nTaU/O1qml93ef\n38cu9zKbljlaZuiYo2WOlhk65miZo2WGjjla5nRpuc+cyAm2Zrbb7ewltKFlho45WiZpmWBP5miZ\npGWCPZmjZY6WGTrmaJmjZYaOOVrmaJmhY46WOVo6wVZVfX7SGOC4mH/CZRbPHfrz/j5p9w0AAADH\nlxNsAAAAAAAA8CAxYAMAAAAAAIAdGLABAAAAAADADgzYAAAAAAAAYAcGbM0syzJ7CW1omaFjjpZJ\ny+wFtGBP5miZtMxeQAv2ZI6WOVpm6JijZY6WGTrmaJmjZYaOOVrmaFk11nVdZy9iljFGVVV1SjDG\naHU/M2mZoWNOp5aHn79Vs+5nTLp2r+dOpz05W6eW3t99fh+73MtsWuZomaFjjpY5WmbomKNljpYZ\nOuZomdOl5T5zIifYmtlut7OX0IaWGTrmaJmkZYI9maNlkpYJ9mSOljlaZuiYo2WOlhk65miZo2WG\njjla5mjpBFtV9flJY4DjYv4Jl1k8d+jP+/uk3TcAAAAcX06wAQAAAAAAwIPEgA0AAAAAAAB2YMAG\nAAAAAAAAOzBgAwAAAAAAgB0YsDWzLMvsJbShZYaOOVomLbMX0II9maNl0jJ7AS3Ykzla5miZoWOO\nljlaZuiYo2WOlhk65miZo2XVWNd1nb2IWcYYVVXVKcEYo9X9zKRlho45nVoefv5WzbqfMenavZ47\nnfbkbJ1aen/3+X3sci+zaZmjZYaOOVrmaJmhY46WOVpm6JijZU6XlvvMiZxga2a73c5eQhtaZuiY\no2WSlgn2ZI6WSVom2JM5WuZomaFjjpY5WmbomKNljpYZOuZomaOlE2xV1ecnjQGOi/knXGbx3KE/\n7++Tdt8AAABwfDnBBgAAAAAAAA8SAzYAAAAAAADYgQEbAAAAAAAA7MCADQAAAAAAAHZgwNbMsiyz\nl9CGlhk65miZtMxeQAv2ZI6WScvsBbRgT+ZomaNlho45WuZomaFjjpY5WmbomKNljpZVY13XdfYi\nZhljVFVVpwRjjFb3M5OWGTrmdGp5+PlbNet+xqRr93rudNqTs3Vq6f3d5/exy73MpmWOlhk65miZ\no2WGjjla5miZoWOOljldWu4zJ3KCrZntdjt7CW1omaFjjpZJWibYkzlaJmmZYE/maJmjZYaOOVrm\naJmhY46WOVpm6JijZY6WTrBVVZ+fNAY4LuafcJnFc4f+vL9P2n0DAORdfPHF9YlPfGL2MqZ42cte\nVh//+MdnLwPgxNhnTmTAVv5HCMCDzf+AP2n3zUni/X3S7hsAIO8H/015MvlvSoAHzz5zoh9JLwYA\nAAAAYH8nbdB0sgeLAMeN72ADAAAAAACAHRiwAQAAAAAAwA4M2JpZlmX2EtrQMkPHHC2TltkLaMGe\nzNEyaZm9gBbsyRwtc7TM0DFHyxwtM3RMWmYvoA37MkPHHC1ztKwa6wn+1sx9vrzuqBpjtLqfmbTM\n0DGnU8sffGH1rPsZk67d67nTaU/O1qml93ef38cu9zKbljlaZuiYo2WOlhmdOvpvyh6/j1W99uVM\nOuZomdOl5T5zIifYmtlut7OX0IaWGTrmaJmkZYI9maNlkpYJ9mSOljlaZuiYo2WOlhk6JmmZYl9m\n6JijZY6WTrBVVa+fCgE4Dub/NOIsnjv05/190u4bACDPf1OetPsGmMcJNgAAAAAAAHiQGLABAAAA\nAADADgzYAAAAAAAAYAcGbAAAAAAAALADA7ZmlmWZvYQ2tMzQMUfLpGX2AlqwJ3O0TFpmL6AFezJH\nyxwtM3TM0TJHywwdk5bZC2jDvszQMUfLHC2rxrqu6+xFzDLGqKqqTgnGGK3uZyYtM3TM6dTy8PO3\natb9jEnX7vXc6bQnZ+vU0vu7z+9jl3uZTcscLTN0zNEyR8uMTh39N2WP38eqXvtyJh1ztMzp0nKf\nOZETbM1st9vZS2hDywwdc7RM0jLBnszRMknLBHsyR8scLTN0zNEyR8sMHZO0TLEvM3TM0TJHSyfY\nqqrXT4UAHAfzfxpxFs8d+vP+Pmn3DQCQ578pT9p9A8zjBBsAAAAAAAA8SAzYAAAAAAAAYAcGbAAA\nAAAAALADAzYAAAAAAADYgQFbM8uyzF5CG1pm6JijZdIyewEt2JM5WiYtsxfQgj2Zo2WOlhk65miZ\no2WGjknL7AW0YV9m6JijZY6WVWNd13X2ImYZY1RVVacEY4xW9zOTlhk65nRqefj5WzXrfsaka/d6\n7nTak7N1aun93ef3scu9zKZljpYZOuZomaNlRqeO/puyx+9jVa99OZOOOVrmdGm5z5zICbZmttvt\n7CW0oWWGjjlaJmmZYE/maJmkZYI9maNljpYZOuZomaNlho5JWqbYlxk65miZo6UTbFXV66dCAI6D\n+T+NOIvnDv15f5+0+wYAyPPflCftvgHmcYINAAAAgAfk4osvrjHGifzr4osvnp0fADimnGArPxUC\n8GDz04gn7b45Sby/T9p9A9DBD57fJ5Pn99HjvylP2n0DzLPPnOhH0osBAAAA4Dg6af9T/2QPFgGA\n/fgjIgEAAAAAAGAHBmzNLMsyewltaJmhY46WScvsBbRgT+ZombTMXkAL9mSOljlaZuiYo2XSMnsB\nLdiTScvsBbRhX2bomKNljpa+g62qev25xmOMVvczk5YZOuZ0ajn/z9Mfk67d67nTaU/O1qml93ef\n38cu9zKbljlaZuiY06ml53ef38dO9/I99uRx12lfzqRjjpY5XVruMydygq2Z7XY7ewltaJmhY46W\nSVom2JM5WiZpmWBP5miZo2WGjjlaJmmZYE8maZliX2bomKNljpZOsFVVr58KATgO5v804iyeO/Tn\n/X3S7huADjy/T9p9H3325Em7b4B5nGADAAD4/9i70zAryjv9479qWmULSwNKQNY0S4wxoCIKUVZB\n6RkFRdGYCDJGnUAyI26oCacYRxOvaDSJmhiNojE4E+NCFCU6bBNBiYJxCRGwAREXRLSRTbZ+/i/4\ndzvYC3363PRT9Zzv57p4YZ/DeX519111KOtUNwAAAAAADYQLbAAAAAAAAAAAAEAWuMAGAAAAAAAA\nAAAAZIELbAAAAAAAAAAAAEAWuMAWmDiOfY8QDLLUIEcdslSKfQ8QBDqpQ5ZKse8BgkAndchShyw1\nyFGHLJVi3wMEgU4qxb4HCAa91CBHHbLUIUuzyDnnfA/hSxRFZmYWUgRRFAW1PT6RpQY56oSUZcXx\n18zX9kSe1g7rfSekTvoWUpbs3+F8H0PZFt/IUocsNchRJ6Qsef8O5/sY0rbsQyfTLqRe+kSOOmSp\nE0qWuVwn4g62wGQyGd8jBIMsNchRhyyVyFKBTuqQpRJZKtBJHbLUIUsNctQhSyWyVKCTSmSpQi81\nyFGHLHXIkjvYzCysT4UAQBr4/zSiL7zvIHzs3/m23QCAEPD+nW/bnXx0Mt+2GwD84Q42AAAAAAAA\nAAAAoIFwgQ0AAAAAAAAAAADIAhfYAAAAAAAAAAAAgCxwgQ0AAAAAAAAA6X3NUwAAIABJREFUAADI\nAhfYAhPHse8RgkGWGuSoQ5ZKse8BgkAndchSKfY9QBDopA5Z6pClBjnqkKVS7HuAINBJpdj3AMGg\nlxrkqEOWOmRpFjnnnO8hfImiyMzMQoogiqKgtscnstQgR52Qsqw4/pr52p7I09phve+E1EnfQsqS\n/Tuc72Mo2+IbWeqQpQY56oSUJe/f4XwfQ9qWfehk2oXUS5/IUYcsdULJMpfrRNzBFphMJuN7hGCQ\npQY56pClElkq0EkdslQiSwU6qUOWOmSpQY46ZKlElgp0UoksVeilBjnqkKUOWXIHm5mF9akQAEgD\n/59G9IX3HYSP/TvfthsAEALev/Ntu5OPTubbdgOAP9zBBgAAAAAAAAAAADQQLrABAAAAAAAAAAAA\nWeACGwAAAAAAAAAAAJAFLrABAAAAAAAAAAAAWeACW2DiOPY9QjDIUoMcdchSKfY9QBDopA5ZKsW+\nBwgCndQhSx2y1CBHHbJUin0PEAQ6qRT7HiAY9FKDHHXIUocszSLnnPM9hC9RFJmZWUgRRFEU1Pb4\nRJYa5KgTUpYVx18zX9sTeVo7rPedkDrpW0hZsn+H830MZVt8I0sdstQgR52QsuT9O5zvY0jbsg+d\nTLuQeukTOeqQpU4oWeZynYg72AKTyWR8jxAMstQgRx2yVCJLBTqpQ5ZKZKlAJ3XIUocsNchRhyyV\nyFKBTiqRpQq91CBHHbLUIUvuYDOzsD4VAgBp4P/TiL7wvoPwsX/n23YDAELA+3e+bXfy0cl8224A\n8Ic72AAAAAAAAAAAAIAGwgU2AAAAAAAAAAAAIAuSC2zr16+3iRMnWocOHaxx48bWrVs3u/zyy62s\nrOygvc7atWutoKCgxj/nn3++YtMAAAAAAAAAAACA/RTm+gKlpaU2YMAA27hxo40ePdp69+5tS5Ys\nsZ///Oc2Z84cW7RokRUVFR201+nTp4+NHj26ytePPvroXDcNAAAAAAAAAAAAqCLnO9i+973v2caN\nG+2Xv/ylPfbYY3bTTTfZ3Llz7fLLL7cVK1bY9ddff1Bfp0+fPjZt2rQqf84666xcNy2V4jj2PUIw\nyFKDHHXIUin2PUAQ6KQOWSrFvgcIAp3UIUsdstQgRx2yVIp9DxAEOqkU+x4gGPRSgxx1yFKHLM0i\n55yr718uLS21Hj16WLdu3ay0tHS/x7Zu3Wrt27e3KIpsw4YN1rRpU+nrrF271rp3724TJkyw++67\nr17zR1FkZmY5RJA4URQFtT0+kaUGOeqElGXF8dfM1/ZEntYO630npE76FlKW7N/hfB9D2RbfyFKH\nLDXIUSekLHn/Duf7GNK27EMn0y6kXvpEjjpkqRNKlrlcJ8rpDrb58+ebmdmIESOqPNa8eXMbOHCg\nbdu2zV588cWD9jrvvvuu3X333XbTTTfZ3Xffba+//np9NiUYmUzG9wjBIEsNctQhSyWyVKCTOmSp\nRJYKdFKHLHXIUoMcdchSiSwV6KQSWarQSw1y1CFLHbLM8Q62q666ym699Va79dZb7fLLL6/y+OTJ\nk+2uu+6yX/3qV3bppZdKX6fiDrbqDB482B544AHr1KlTrfOHeAcbAKSB/08j+sL7DsLH/p1v2w0A\nCAHv3/m23clHJ/NtuwHAH293sG3evNnMzFq2bFnt4xVfLysrk79Os2bNbNq0abZs2TIrKyuzsrIy\nW7hwoQ0ZMsQWLFhgw4YNs+3bt2e3QQAAAAAAAAAAAMAB5HSBzad27dpZHMfWp08fa9GihbVo0cJO\nPvlke/bZZ61///721ltv2b333ut7TAAAAAAAAAAAAAQmpwtsFXeWVdyB9kUVX2/VqlWDvI6ZWaNG\njeziiy82M7O//OUvB3w+AAAAAAAAAAAAkI2cLrD17t3bzMxWrFhR7eOrVq0yM7OePXs2yOtUaNu2\nrZmZbdu2rU7Pj6Koxj+DBw+2KIosjuNq/24cxzzO4zzO4zxej8f3icyspsfjoB/3nT+P8zj7N/s3\nj/M4j/M4j/N4Vcl9f+X9O78f992Phnu8hkcT/v3hcR7ncR5P+uMV13mq+5MTl4PS0lIXRZHr3r27\nKy8v3++xTz/91DVr1sw1b97cbd++vUFep8LUqVNdFEVu0qRJtT7P9v2m1Dq9ZlpkMhnfIwSDLDXI\nUSekLCuOv2bO05+Mp3XDet8JqZO+hZQl+3cYQuqkb2SpQ5Ya5KgTUpa8f4eBTtLJJAqplz6Row5Z\n6oSSZS7H3uj/v0C9nXbaafbss8/aL37xC5s8eXLl16dMmWK33367XXbZZXbXXXeZmdmePXvsrbfe\nskMPPdS6d+9e79cxM1u2bJn17du3yhXGuXPnWklJie3evdsWLVpkJ554Yo2zV/zdHCNIlCiKgtoe\nn8hSgxx1Qsry82O3r+2JPK0d1vtOSJ30LaQs2b/D+T6Gsi2+kaUOWWqQo05IWfL+Hc73MaRt2YdO\npl1IvfSJHHXIUieULHO5TlSY6+J33XWXDRgwwH7wgx/Y3LlzrXfv3rZkyRJbsGCB9erVy2688cbK\n565fv96OOuoo69Kli61Zs6ber2O278LbW2+9ZQMGDLCOHTuamdlrr71m8+fPtyiK7IYbbqj14lqo\nMpmM7xGCQZYa5KhDlkpkqUAndchSiSwV6KQOWeqQpQY56pClElkq0EklslShlxrkqEOWOmRplvMd\nbGb7LpxNmzbN5syZY5s2bbIOHTrYmDFjLJPJWMuWLSuft3btWuvevbt17drVVq9eXe/XMTO77777\n7PHHH7c33njDPvroI9u9e7e1b9/eTjrpJJs8ebINHDjwwBsf4B1sAJAG/j+N6AvvOwgf+3e+bTcA\nIAS8f+fbdicfncy37QYAf3K5TiS5wJZWXGADAD84Wcq37UY+Yf/Ot+0GAISA9+982+7ko5P5tt0A\n4E8u14kK1MMAAAAAAAAAAAAAIeMCGwAAAAAAAAAAAJAFLrABAAAAAAAAAAAAWeACW2DiOPY9QjDI\nUoMcdchSKfY9QBDopA5ZKsW+BwgCndQhSx2y1CBHHbJUin0PEAQ6qRT7HiAY9FKDHHVCyrKkpMSi\nKMrLPyUlJb7jNzOzyOXxb83M5ZfXJVUURUFtj09kqUGOOiFl6f8XVkee1g7rfSekTvoWUpbs3+F8\nH0PZFt/IUocsNchRJ6Qsef8O5/sY0rbsQyfTLqRe+kSOOiFl+fmxMj+pvo+5XCfiDrbAZDIZ3yME\ngyw1yFGHLJXIUoFO6pClElkq0EkdstQhSw1y1CFLJbJUoJNKZKlCLzXIUSfMLJ2nPxlP6yYHd7BZ\nWJ8KAYA08P9pRF9430H42L/zbbsBACHg/Tvftjv56GS+bTeA+uBYyR1sAAAAAAAAWeP3jgAAAMAn\n7mAzPhUCAA2NT9jk23Yjn7B/59t2A4A//N4R3XsO79/5tt3JRyfzbbsB1AfHSv93sBVKJgAAAAAA\nAPAiP/+nEgAAAPziR0QCAAAAAAAAAAAAWeACW2DiOPY9QjDIUoMcdchSKfY9QBDopA5ZKsW+BwgC\nndQhSx2y1CBHpdj3AAGJfQ8QBPZvpdj3AMGglxrkqEOWSrHvAbzjd7BZWD/XOIqioLbHJ7LUIEed\nkLL0/zOiI09rh/W+E1InfQspS/bvcL6PoWyLb2SpQ5YaIeXIe05Iv4MtnCx9Yv+WTuBp7bA6aRZW\nL30iR52QsuRY6f93sHEHW2AymYzvEYJBlhrkqEOWSmSpQCd1yFKJLBXopA5Z6pClBjkqkaUOWSqw\nfyuRpQq91CBHHbJUIkvuYLOwPhUCAGng/xM2vvC+g/Cxf+fbdgOAP7znhHQHmy+8fycVncy37QZQ\nHxwruYMNAAAAAAAAAAAASBUusAEAAAAAAAAAAABZ4AIbAAAAAAAAAAAAkAUusAEAAAAAAAAAAABZ\n4AJbYOI49j1CMMhSgxx1yFIp9j1AEOikDlkqxb4HCAKd1CFLHbLUIEel2PcAAYl9DxAE9m+l2PcA\nwaCXGuSoQ5ZKse8BvIucc873EL5EUWRmZiFFEEVRUNvjE1lqkKNOSFlWHH/NfG1P5GntsN53Quqk\nbyFlyf4dzvcxlG3xjSx1yFIjpBx5z9GtTZbh7BMhbcs+dDLtQuqlT+SoE1KWHCs1a+dynYg72AKT\nyWR8jxAMstQgRx2yVCJLBTqpQ5ZKZKlAJ3XIUocsNchRiSx1yFKB/VuJLFXopQY56pClEllyB5uF\n9akQAEgD/5+w8YX3HYSP/TvfthsA/OE9J6Q72Hzh/Tup6GS+bTeA+uBYyR1sAAAAAAAAAAAAQKpw\ngQ0AAAAAAAAAAADIAhfYAAAAAAAAAAAAgCxwgQ0AAAAAAAAAAADIAhfYAhPHse8RgkGWGuSoQ5ZK\nse8BgkAndchSKfY9QBDopA5Z6pClBjkqxb4HCEjse4AgsH8rxb4HCAa91CBHHbJUin0P4F3knHO+\nh/AliiIzMwspgiiKgtoen8hSgxx1Qsqy4vhr5mt7Ik9rh/W+E1InfQspS/bvcL6PoWyLb2SpQ5Ya\nIeXIe45ubbIMZ58IaVv2oZNpF1IvfSJHnZCy5FipWTuX60TcwRaYTCbje4RgkKUGOeqQpRJZKtBJ\nHbJUIksFOqlDljpkqUGOSmSpQ5YK7N9KZKlCLzXIUYcslciSO9gsrE+FAEAa+P+EjS+87yB87N/5\ntt0A4A/vOSHdweYL799JRSfzbbsB1AfHSu5gAwAAAAAAAAAAAFKFC2wAAAAAAAAAAABAFrjABgAA\nAAAAAAAAAGSBC2wAAAAAAAAAAABAFrjAFpg4jn2PEAyy1CBHHbJUin0PEAQ6qUOWSrHvAYJAJ3XI\nUocsNchRKfY9QEBi3wMEgf1bKfY9QDDopQY56pClUux7AO8i55zzPYQvURSZmVlIEURRFNT2+ESW\nGuSoE1KWFcdfM1/bE3laO6z3nZA66VtIWbJ/h/N9DGVbfCNLHbLUCClH3nN0a5NlOPtESNuyD51M\nu5B66RM56oSUJcdKzdq5XCfiDrbAZDIZ3yMEgyw1yFGHLJXIUoFO6pClElkq0EkdstQhSw1yVCJL\nHbJUYP9WIksVeqlBjjpkqUSW3MFmYX0qBADSwP8nbHzhfQfhY//Ot+0GAH94zwnpDjZfeP9OKjqZ\nb9sNoD44VnIHGwAAAAAAAAAAAJAqXGADAAAAAAAAAAAAssAFNgAAAAAAAAAAACALXGADAAAAAAAA\nAAAAssAFtsDEcex7hGCQpQY56pClUux7gCDQSR2yVIp9DxAEOqlDljpkqUGOSrHvAQIS+x4gCOzf\nSrHvAYJBLzXIUYcslWLfA3gXOeec7yF8iaLIzMxCiiCKoqC2xyey1CBHnZCyrDj+mvnansjT2mG9\n74TUSd9CypL9O5zvYyjb4htZ6pClRkg58p6jW5ssw9knQtqWfehk2oXUS5/IUSekLDlWatbO5ToR\nd7AFJpPJ+B4hGGSpQY46ZKlElgp0UocslchSgU7qkKUOWWqQoxJZ6pClAvu3Elmq0EsNctQhSyWy\n5A42C+tTIcAXlZSU2NNPP+17DC9GjRpls2fP9j0GquH/Eza+8L6D8LF/59t2A4A/vOeEdAebL7x/\nJxWdzLftBlAfHCv938HGBTbjTQth+/xAm5/Yv5OJfwDk23Yjn7B/59t2A4A/vOdwgS13vH8nFZ3M\nt+0GUB8cK/1fYCuUTAAgBfLzQAsAAAAAAAAAgBq/gw0AAAAAAAAAAADIAhfYAAAAAAAAAAAAgCxw\ngS0wcRz7HiEYZKkS+x4gGHRSKfY9QBDopA5ZKsW+BwgCndQhSx2y1CBHpdj3AAGJfQ8QBPZvpdj3\nAMGglxrkqEOWSrHvAbyLXB7/1sxcfnldUkVRFNT2+BRKlv5/2WXkaW327ySjl+F8H0PZFt9CypL9\nO5zvYyjb4htZ6pClRkg58p6jW5ssw9knQtqWfehk2oXUS5/IUSekLDlWatbO5ToRd7AFJpPJ+B4h\nGGSpQo4qdFKJLBXopA5ZKpGlAp3UIUsdstQgRyWy1CFLBfZvJbJUoZca5KhDlkpkyR1sFtanQoAv\n8v9JBl/Yv5OMXubbdiOfsH/n23YDgD+854R0B5svvH8nFZ3Mt+0GUB8cK7mDDQAAAAAAAAAAAEgV\nLrABAAAAAAAAAAAAWeACGwAAAAAAAAAAAJAFLrABAAAAAAAAAAAAWeACW2DiOPY9QjDIUiX2PUAw\n6KRS7HuAINBJHbJUin0PEAQ6qUOWOmSpQY5Kse8BAhL7HiAI7N9Kse8BgkEvNchRhyyVYt8DeBc5\n55zvIXyJosjMzEKKIIqioLbHp1CyrOi5ma9tiTytzf6dZPQynO9jKNviW0hZsn+H830MZVt8I0sd\nstQIKUfec3Rrk2U4+0RI27IPnUy7kHrpEznqhJQlx0rN2rlcJ+IOtsBkMhnfIwSDLFXIUYVOKpGl\nAp3UIUslslSgkzpkqUOWGuSoRJY6ZKnA/q1Elir0UoMcdchSiSy5g83C+lQI8EX+P8ngC/t3ktHL\nfNtu5BP273zbbgDZKikpsaefftr3GF6MGjXKZs+eLXs93nNCuoPNF96/k4pO5tt2A6gPjpX+72Dj\nApvxpoWwcaDNt+1OB3qZb9uNfML+nW/bDSBbnx8n8xMXhRS4wKbD+3dS0cl8224A9cGx0v8FtkLJ\nBAAAAAAAIAv5+T9CAAAAgFDwO9gAAAAAAAAAAACALHCBDQAA5L2SkhKLoigv/5SUlPiOHwAAAAAA\nIHW4wBaYOI59jxAMslSJfQ8QDDqpFPseIAghdfLpp5/2PYI34W177HuAIIS0f/tGljpkqRL7HiAg\nse8BAhL7HiAIHCeVYt8DBINeapCjDlkqxb4H8C5yefxbM3P55XVJFUVRUNvjUyhZ+v9ll5Gntdm/\nk4xehvN9DGlb9qGTOb8iWXpYWy+k/ds3stQJJUuOk7znaNYlS926vH8nEZ0M4/toFlYvfSJHnZCy\n5FipWTuX60TcwRaYTCbje4RgkKUKOarQSSWyVKCTSmSpQ5YK7N86ZKlDlirkqEOWOmSpwHFSiSxV\nQuml718rYGb8WgGRUDqZDGTJHWwW1qdCgC/y/0kGX9i/k4xe5tt2Jx+dDOkT8L6wfwOoG46TvOfk\njix1eP9OKjqZb9udfJ93Mj/RyWTiWOn/DrZCyQQAAAAAAAAAAAQtPy9kAKgePyISAAAASBjfP4LG\n55/QfgQNAAAAACBM/IhI4xZXhI1bhfNtu9OBXubbdicfneRHTOXu4PyIinzFcRIh4zjJe07uyFKH\nf58nFZ3Mt+1OPjqZb9udDvSSHxEJAAAAoEb5eaIEAAAAAEDS8SMiAxPHse8RgkGWKrHvAYJBJ5Vi\n3wMEgU4qxb4HCEjse4BAxL4HCAbHSh2yVIl9DxCQ2PcAAYl9DxAEjpNKse8BgkEvVWLfAwSDTirF\nvgfwjh8RaWHd4hpFUVDb41MoWfq/VTjytDb7d5LRy3C+jyFtyz50MudXJEvNq5Gjh7UPjpCOlb6F\nkiX7N+85mnXJUrduOO87oRwnzehkKN9Hs3B6SSfT/z2sEEonzehlEn5EJHewBSaTyfgeIRhkqUKO\nKnRSiSwV6KQSWeqQpQY5qnCs1CFLFXLUIUsdslTgOKlElir0UoUcVeikEllyB5uFdQUe+CL/n2Tw\nhf07yehlvm138tHJkD4B70tod7D5wnES4WP/5j0nd2Spw/tOUtHJfNvu5KOT+bbd6UAvuYMNAAAA\nAAAAAAAASBUusAEAAAAAAAAAAABZ4AIbAAAAAAAAAAAAkAUusAEAAAAAAAAAAABZ4AJbYOI49j1C\nMMhSJfY9QDDopFLse4Ag0Eml2PcAAYl9DxCI2PcAweBYqUOWKrHvAQIS+x4gILHvAYLAcVIp9j1A\nMOilSux7gGDQSaXY9wDeRc4553sIX6IoMjOzkCKIoiio7fEplCwrem7ma1siT2uzfycZvQzn+xjS\ntuxDJ3N+RbLUvBo5elj74AjpWOlbKFmyf/Oeo1mXLHXrhvO+E8px0oxOhvJ9NAunl3Qy/d/DCqF0\n0oxeqs+/6/N63MEWmEwm43uEYJClSjg5lpSUWBRF3v6Ymbe1S0pKPKevFk4vfeI4qUSWOmSpQY4q\nHCt1yFKFHHXIUocsFThOKpGlCr1UIUcVOqlEltzBZmFdgQe+yP8nGXw5mJ/qzE9hfULWF953kopO\nsn/nLrQ72HzhOInwsX/znpM7stThfSep6GS+bXfy0cl82+50oJf+72ArlEwAAHklP9+0AAAAAAAA\nAAD78CMiAQAAAAAAAAAAgCxwgQ0AAAAAAAAAAADIAhfYAAAAAAAAAAAAgCxwgS0wcRz7HiEYZKkS\n+x4gILHvAQIS+x4gCBwnlWLfAwQk9j1AIGLfAwSDY6UOWarEvgcISOx7gIDEvgcIAsdJpdj3AMGg\nlyqx7wGCQSeVYt8DeBc555zvIXyJosjMzEKKIIqioLbHp1CyrOi5ma9tiTytrd+/yZIsNeuG874T\nynHSjE6yf6vW1WVJjmEcW8zCOlb6FkqW7N+852jWJUvduuG874RynDSjk6F8H83C6SWdTP/3sEIo\nnTSjl+rz7/q8HnewiZWUlFgURd7+mJm3tUtKSjynr5XJZHyPEAhy1CFLnTCy5D0nJGF0MhnIUoMc\nVfg3pQ5ZqpCjDlnqkKUCx0klslShlyrkqEInlciSO9jsYH3qKz/lcZ0Sy/8nGXwJ8VOdvpClzsG6\nwyU/0UkF9m+d0O5g8yW8T8gCX8T+zXtO7shSR5tlSUmJPf3005LXSptRo0bZ7NmzZa9HJ/Ntu5OP\nTubbdqcDvfR/BxsX2Ix/lGpwsE0qOsn+nTuy1OF/wGvQSR2y1GH/1uDflAgf+zfvObkjSx0+AKdE\nJxX4t1BS0UnddvNhBD6MkLvkXGDjR0QisXz/6DOff8L70WcAAAB+8G9KskxilgBC5/LsD5KM928k\nTb5eXDPL720PFXewGZ+w0eDHbarxCfhcsX/rkKUOd7ho0EkdstRh/9bg35RqZKnD/p0r3nN0yFKH\n928NOqnDv4XU2L9zxf6tQ5Y6ybmDrVAyAXBQ5ecBAgAAAEr8m1KHLAEASB/evwFAjR8RGZzY9wAB\niX0PEIjY9wABiX0PEJDY9wCBiH0PEJDY9wABiX0PEIjY9wABiX0PEJDY9wCBiH0PEJDY9wABiX0P\nEIjY9wABiX0PEJDY9wCBiH0PEJDY9wABiX0P4B0/ItJCuy0z8rQ2WWrXDekW9jByNCNLslSty/6t\nWZdO6tYlS9267N+ademkbl2y1K3L/q1Zl07q1iVL3brs35p16aRuXbLUrcv+rVmXTurWJUvdusn4\nEZHcwRacjO8BAkKWGuSoQ5Y6ZKlBjjpkqUOWGuSoQ5Y6ZKlBjjpkqUOWGuSoQ5Y6ZKlBjjpkqUOW\n3MFmoV019oUsdUL7hI0vdFKHLHXYvzXopA5Z6rB/a9BJHbLUYf/WoJM6ZKnD/q1BJ3XIUof9W4NO\n6pClDnewAQAAAAAAAAAAAKnEBTYAAAAAAAAAAAAgC1xgAwAAAAAAAAAAALLABTYAAAAAAAAAAAAg\nC1xgC07se4CAxL4HCETse4CAxL4HCEjse4BAxL4HCEjse4CAxL4HCETse4CAxL4HCEjse4BAxL4H\nCEjse4CAxL4HCETse4CAxL4HCEjse4BAxL4HCEjse4CAxL4H8C5yzjnfQ/gSRZGZmSkjqHhNM1+x\nRp7WJkvturosyZFOatYlS9267N+ademkbl2y1K3L/q1Zl07q1iVL3brs35p16aRuXbLUrcv+rVmX\nTurWJUvduuzfmnXppG5dstStq9+/6/N63MEWnIzvAQJClhrkqEOWOmSpQY46ZKlDlhrkqEOWOmSp\nQY46ZKlDlhrkqEOWOmSpQY46ZKlDltzBZqFdNfaFLHVC+4SNL3RShyx12L816KQOWeqwf2vQSR2y\n1GH/1qCTOmSpw/6tQSd1yFKH/VuDTuqQpQ53sAEAAAAAAAAAAACpxAU2AAAAAAAAAAAAIAtcYAMA\nAAAAAAAAAACywAU2AAAAAAAAAAAAIAtcYAtO7HuAgMS+BwhE7HuAgMS+BwhI7HuAQMS+BwhI7HuA\ngMS+BwhE7HuAgMS+BwhI7HuAQMS+BwhI7HuAgMS+BwhE7HuAgMS+BwhI7HuAQMS+BwhI7HuAgMS+\nB/Aucs4530P4EkWRmZkpI6h4TTNfsUae1iZL7bq6LMmRTmrWJUvduuzfmnXppG5dstSty/6tWZdO\n6tYlS9267N+ademkbl2y1K3L/q1Zl07q1iVL3brs35p16aRuXbLUravfv+vzetzBFpyM7wECQpYa\n5KhDljpkqUGOOmSpQ5Ya5KhDljpkqUGOOmSpQ5Ya5KhDljpkqUGOOmSpQ5bcwWahXTX2hSx1QvuE\njS90Uocsddi/NeikDlnqsH9r0EkdstRh/9agkzpkqcP+rUEndchSh/1bg07qkKUOd7ABAAAAAAAA\nAAAAqcQFNgAAAAAAAAAAACALXGADAAAAAAAAAAAAssAFNgAAAAAAAAAAACALXGALTux7gIDEvgcI\nROx7gIDEvgcISOx7gEDEvgcISOx7gIDEvgcIROx7gIDEvgcISOx7gEDEvgcISOx7gIDEvgcIROx7\ngIDEvgcISOx7gEDEvgcISOx7gIDEvgfwLnLOOd9D+BJFkZmZKSOoeE0zX7FGntYmS+26uizJkU5q\n1iVL3brs35p16aRuXbLUrcv+rVmXTurWJUvduuzfmnXppG5dstSty/6tWZdO6tYlS9267N+ademk\nbl2y1K2r37/r83o538G2fv16mzhxonXo0MEaN25s3bp1s8svv9zKysoO+ussXrzYRo0aZUVFRda0\naVP7xje+YT//+c+tvLw8181KsUG+BwgIWWqQow5Z6pClBjnqkKUOWWqQow5Z6pClBjnqkKUOWWqQ\now5Z6pClBjnqkKUOWeZ0B1tpaakNGDDANm7caKNHj7bevXvbkiW99wV+AAAgAElEQVRLbP78+dar\nVy9btGiRFRUVHZTXmTVrlp199tnWtGlTGzdunBUVFdmf/vQnW7FihY0dO9b+8Ic/HHjjuYNNvC5Z\n6tblEzaademkbl2y1K3L/q1Zl07q1iVL3brs35p16aRuXbLUrcv+rVmXTurWJUvduuzfmnXppG5d\nstSty/6tWZdO6tYlS926ybiDLacLbCNHjrTnnnvOfvnLX9qkSZMqv37FFVfYbbfdZpdeeqn96le/\nkr/Op59+asXFxbZlyxZbtGiRHXvssWZmtnPnThs6dKi98MIL9vDDD9u4ceNqXZcLbOp1yVK3Lv8A\n0KxLJ3XrkqVuXfZvzbp0UrcuWerWZf/WrEsndeuSpW5d9m/NunRSty5Z6tZl/9asSyd165Klbl32\nb826dFK3Llnq1k35BbbS0lLr0aOHdevWzUpLS/d7bOvWrda+fXuLosg2bNhgTZs2lb7OfffdZxdf\nfLGNHz/e7r///v3+zvz5823YsGF2yimn2IIFC2rdBi6wqdclS926/ANAsy6d1K1Llrp12b8169JJ\n3bpkqVuX/VuzLp3UrUuWunXZvzXr0kndumSpW5f9W7MundStS5a6ddm/NevSSd26ZKlbNxkX2Or9\nO9jmz59vZmYjRoyo8ljz5s1t4MCBtm3bNnvxxRflrzNv3jwzMzvttNOq/J1TTjnFmjRpYi+88ILt\n3r277hsEAAAAAAAAAAAA1EG9L7CtWLHCzMx69uxZ7eM9evQwM7NVq1bJX6e2v9OoUSPr1q2b7dmz\nx1avXl3r2gAAAAAAAAAAAEC26n2BbfPmzWZm1rJly2ofr/h6WVmZ/HU2b95sURTV+neccwdcGwAA\nAAAAAAAAAMhWoe8BkuDzn1UqfdWD8JrJX5sshSvLsyRH4asehNdM/tpkKVyZ/VuzMp3UrUyWupXZ\nvzUr00ndymSpW5n9W7MyndStTJa6ldm/NSvTSd3KZKlbmf1bszKd1K1MlrqVD0qW2an3HWwVd49V\n3IH2RRVfb9Wqlfx1Ku5Qy3Vt5S8UBAAAAAAAAAAAQLpkMpl6/b1638HWu3dvM/v896F9UcXvTKvp\nd6vl8jq9evWypUuX2ooVK6xv3777PX/Pnj22Zs0aO+SQQ6x79+4H3A4usgEAAAAAAAAAACAb9b6D\nbciQIWZm9txzz1W5SLVlyxZbtGiRNWvWzE488UT56wwbNszMzObMmVPl9f73f//XduzYYQMGDLBD\nDjkk+w0DAAAAAAAAAAAAalHvC2zdu3e3ESNG2Jo1a+zOO+/c77FMJmPbt2+373znO9akSRMz23dn\n2ZtvvmmrV6/O6XXMzMaOHWtt27a1//qv/7KlS5dWfv2zzz6zH/7wh2Zm9q//+q/13TQAAAAAAAAA\nAACgRpHL4Wckrl692gYMGGAffvihnXnmmda7d29bsmSJLViwwHr16mWLFy+21q1bm5nZ2rVrrXv3\n7talSxdbs2ZNvV+nwqxZs2zs2LHWuHFjO++886x169b2pz/9yVauXGnnnHOO/fd//3d9NwsAAAAA\nAAAAAACoUU4X2MzM1q9fb9OmTbM5c+bYpk2brEOHDjZmzBjLZDLWsmXLyudVXGDr2rVrlbvYsnmd\n/2vx4sV244032gsvvGCfffaZ9ejRwyZOnGg/+MEPLIqiXDYLAAAAAAAAAAAAqFbOF9gAAAAAAAAA\nAACAfFLv38EGAAAAAAAAAAAA5CMusAEAAAAAAAAAAABZKPQ9AJB0mzZtsm3btlnnzp19j4I8tXz5\ncnv99detRYsWNmjQIGvatKnvkZDHysvLbfny5bZ9+3br1q2btWvXzvdIyBOLFi2yE044wQ455BDf\nowBV7Nixw5YsWWIrV660Tz75xAoKCuzwww+3fv362VFHHeV7PKBanOcgCTjXQZJwrgMfOM9B0nGu\nUzt+B1vKOOds4cKFNm/ePFu1apWVlZWZmVmrVq2sZ8+eNnToUBs0aJDnKcNy0UUX2YMPPmh79+71\nPUribNq0yaZPn24LFy60wsJCO+200+zqq6+2li1bVnnu9OnT7T/+4z/IsQaPPPKITZ061d5//30b\nNGiQ/fa3v7UOHTrYJZdcYvfee2/l89q0aWMPPvignX766R6nTbe+ffva2WefbT/84Q99j5JYK1eu\ntDZt2libNm32+/o999xj119/vW3atMmcc1ZQUGDDhw+3e++914488khP06bTpk2b7J577rGXXnrJ\nduzYYd26dbPzzjvPTj75ZN+jJVZBQYG1bdvWLrzwQrvkkkusZ8+evkdKtXfeecc++ugjO+qoo+yw\nww4zM7O9e/faQw89ZMuWLbNDDz3Uhg0bZqeddprnSZPt008/tR/96Ed233332bZt26p9zjHHHGM3\n33yzjRw5soGnSx/OdRoW5zm141xHh3OdhsF5Tt1wrnPwca6THc5z9DjX0eBcp44cUmPJkiXua1/7\nmouiqNY/Rx99tPvrX//qe9xgjB8/3kVR5HuMxNmyZYvr1atXlf517tzZvfTSS1Wen8lkyLEGr776\nqissLHRRFLlWrVq5KIrcoEGD3D333OOiKHLHHHOM+/d//3d3zjnnuMLCQte0aVO3evVq32OnVhRF\n7rvf/a7vMRItiiI3ffr0/b525513Vu7nHTt2dH369HGNGzd2URS54uJit3XrVk/TJtutt97qvvnN\nb7o9e/ZUfu2ll15y7dq1q3L8LCgocFdeeaXHaZPti1kNHjzYPfzww27Xrl2+R0uV8vJy993vfne/\n/fnll192n332mRs4cGCVnM8++2xXXl7ue+xE2rJlizvmmGNcFEWuqKjI9e3b1xUVFbkoitw3vvEN\nN2nSJHfyySe7goICV1BQ4G677TbfIyca5zoNj/OcmnGuo8O5TsPhPKduONfR4VxHg/McHc51dDjX\nqTt+RGRKvPnmmzZ06FDbvn27nXzyyXb66adbcXFx5afnNm/ebKtWrbJnnnnGnn/+eRs6dKi99NJL\n1rt3b8+ThyGKIt8jJM5Pf/pTW7lypZWUlNh1111nhYWFdt9999ndd99tw4YNszlz5thJJ53ke8xU\nuO2228zM7Nlnn7Xhw4fb888/b8OHD7e1a9faiBEj7Mknn6z8UQFPPfWUnXHGGXb77bfbz3/+c59j\nJ9J3vvOdWvdX9/9v2l6wYIFdeOGFlV9/8MEHD/psabZlyxa79tpr7Utf+pLNnDnTSkpKzGzfe8+E\nCRNs1qxZ9otf/MKuvfZaz5MmzyOPPGLNmze3Ro0amZnZ7t27bezYsfbRRx/ZWWedZWPGjLFWrVrZ\nG2+8Ybfddpv97Gc/s+OPP97GjRvnefJkmjhxorVr185mzJhhCxcutIULF1rbtm1t/Pjxdskll1iP\nHj18j5h4jzzyiN177712+OGH2wknnGB//etf7Vvf+pZNmDDBFi9ebKNHj7bBgwfbxo0b7e6777bH\nHnvMfvOb39ill17qe/TEufHGG+3111+3m266ya6++morKCiw8vJyu+WWW+zaa6+1n/zkJ3bHHXdY\naWmpXXDBBXbllVfagAED7IQTTvA9euJwruMP5znV41xHh3MdDc5zDh7OdeqPcx0dznM0ONfR4Vwn\nC76v8KFuzj33XHfIIYe4WbNmHfC5TzzxhCssLHTnnntuA0yWPkceeaTr1KlTnf80a9bMFRQU+B47\ncb7+9a+74uLiKp+omTVrlmvWrJlr2bKlW7JkSeXX+VRnzXr16uVGjRq139dGjx7toihyixcvrvL8\nE0880R199NENNV6qHOhT7zX9wf6++KnOJ554wkVR5G699dYqz92yZYtr376969+/f0OOmBpt27Z1\nkydPrvzvp556ykVR5K6++uoqz33nnXdc69at3cknn9yQI6bG/+3lrl273B//+Ec3YsSI/T6BOGTI\nED7teQBDhgxxbdq0cR988IFzzrkNGza4tm3buhYtWrgpU6bs99x169a55s2bu4EDB/oYNfGKi4vd\nkCFDqn1s6NChbsCAAZX//dFHH7nWrVvz7/MacK6jwXmODuc6OpzraHCeo8O5jg7nOhqc5+hwrqPD\nuU7dcQdbSixYsMDOOeccO+OMMw743DPPPNPOOeccmzt3bgNMlj7vvvtu1n+HT3ZWVVpaahMnTqzy\nS1jPOOMMe/bZZ+3000+30047zZ577jk77rjjPE2ZDuvXr7czzzxzv69V/Mztr3/961We36dPH/v9\n73/fILOlTZMmTaxRo0Z244032jHHHFP5Sc7/a+jQoTZq1Ci76qqrqn0cVa1atcrMzMaMGVPlsebN\nm9upp55qTz75ZEOPlQpbt27d73e1LF++3MzMJk2aVOW5Rx55pI0ePdoeffTRBpsvrQ455BA7++yz\n7eyzz7a1a9faPffcY/fff78tWLDAFixYwKc9a7Fy5UobM2aMHXHEEWZmdvjhh9vo0aPtt7/9rU2e\nPHm/53bq1MnOOussmzVrlo9RE++dd96p9rhoZnbsscfaXXfdVfnfbdq0qfw3EqriXEeD8xwdznV0\nONfR4Dzn4OFcp/4419HjPCc3nOvocK5TdwW+B0DdfPrpp9a5c+c6P79z5862efPmgzhReh1++OHW\np08fKy8vr9OfCy+8kH+cVqOwsNCaN29e7WMDBgywOXPm2J49e2zkyJH26quvNvB06dKoUSMrLy/f\n72tNmjQxM6s241atWtnOnTsbZLa0eeWVV+yrX/2qXXXVVbZo0SI75ZRTbPDgwfv9MTPr0KGDDRo0\naL+voWZ79+41M7OOHTtW+3jHjh1r/IW3+a59+/a2Zs2ayv+u+PEp//dE9P/60pe+ZLt3726Q2ULR\ntWtXu/HGG23dunX26KOP2siRI23Tpk1266238uPjqvHxxx9bu3bt9vta27Ztzczsy1/+cpXnt2/f\nnv27Bs2aNbP169dX+9h7771Xub9X6Nixo23atKkhRksdznU0OM/R4VxHh3MdDc5zDh7OdeqPc52D\ni/Oc7HGuo8O5Tt1xgS0lOnfubPPmzavTc51zNm/evKxOUvNJ3759bfny5bZnz546/x0+2VlVp06d\nKj+dVJ2TTjrJZs+ebTt27LBTTz3V/v73vzfgdOnSrl07++CDD/b72tFHH13jzyV/9913rU2bNg0x\nWur07NnTFi1aZNddd53FcWwnnXSSvfnmm77HSqWysjJbt26drVu3rvIE6cMPP6z2uR9++KG1atWq\nIcdLjeHDh9tTTz1Vmd03v/lNMzObM2dOlefu3bvX5s2bZ8XFxQ06YygKCwttzJgx9swzz9jq1avt\n+uuvr/YkKt+1b9/eSktL9/taxf8Yqe54uWLFCisqKmqQ2dKmf//+9thjj9nLL7+839eXLl1qjz76\nqPXt23e/r2/cuJFjZQ0419HgPEeHcx0dznU0OM/R4lxHg3OdhsF5Tt1xrqPDuU7dcYEtJc477zx7\n6aWXbNy4cfb222/X+Ly1a9fauHHj7OWXX7bzzz+/ASdMjz59+tiuXbuyOgnik51V9e/f3+bPn287\nduyo8Tknn3yyPfnkk7Z161Z79NFHOYGvwdFHH23Lli3b72tjx461hx9+uNrnr1y5kn+U1qKwsNCm\nTZtmixcvtk8//dSOPfZYu+WWW9iPs3T77bdb165drWvXrva9733PzMxefPHFap+7atUq69SpU0OO\nlxrXXHON7dy500aNGmUrVqywE044wcaOHWuTJ0+2P/zhD5Wf0F69erWdd9559ve//32/X0yP+unS\npYvdcMMNtf6bKV8dd9xx9qc//cn+8pe/mJnZokWLbNasWVZcXGzXXnutffbZZ5XPfe655+ypp57K\nz19UXQdXXXWV7dq1ywYOHGjjxo2za6+91saNG2cDBgywXbt22b/927/t9/zFixfb0Ucf7WnaZONc\nR4PzHB3OdXQ419HhPEeHcx0NznUaHuc5teNcR4dznbrjd7ClxNSpU23u3Ln2yCOP2B//+Efr2bOn\n9ezZs/KTNps3b7aVK1faihUrzGzfj62YOnWqz5ETa8yYMbWeKH3R1KlTbcKECQdvoJT6p3/6J7v/\n/vvtgQcesMsuu6zG5w0dOtSeeOIJO/PMM/lRHzU444wz7Pe//73t3LnTDjvssFqfu3r1anvppZfs\nuuuua6Dp0uv444+3ZcuW2dSpU+2aa66xxx9/3O6//37fY6VCTSc9W7ZsqfK19evX2+LFi+3iiy8+\n2GOlUnFxsc2cOdO+9a1v2de+9jX7xje+YV26dLGysjI777zzrKCgwBo3bmw7duww55yNGDGiyj9U\n8bls/wfSF39sBcymTJlijz76qA0ePNhatGhhmzdvtuHDh9tFF11kF1xwgfXs2dP69+9vGzdutOef\nf97Ky8vt+9//vu+xE2nIkCF211132eWXX26PPPJI5dcLCwvthhtusLPOOqvya1u2bLHTTjvNhg4d\n6mPUxONcR4PzHB3OdXQ419HjPCc3nOvocK6jw3mOBuc6Opzr1F3k+KhLauzcudN+9rOf2a9//Wt7\n5513qn1O586d7bLLLrMpU6bYoYce2sATIp/s2bPH3nrrLWvRooV16NDhgM9fsWKFvf/++/wc+Bx9\n/PHHtm7dOuvatWve3npdH3PnzrUJEybYxx9/bDt27LCLL77YfvOb3/geKwgbNmywf/zjH1ZcXGxH\nHnmk73ES64033rDrrrvOZs+eXe3JU/fu3W3y5Mn2/e9/n5OlGqxdu9Zat25d4+90QN397ne/s2nT\nptnGjRtt+PDhdvfdd9sRRxxhV199td16662VHW3cuLH9+Mc/5n+EHMD7779vzzzzjH3wwQfWrl07\nGzlyJD++sB4410GScK7jB+c62eM85+DiXKduONfJDec5WpzraHGuc2BcYEsh55yVlpbaihUrKn+5\nd8uWLa137972la98xfN0AJBMZWVlNmXKFFu2bJmdffbZ9qMf/cj3SMhDn376qS1dutQ+/PBDKy8v\nt9atW1uvXr2sW7duvkcDzMystLTUXnnlFTvssMNs4MCB/E4CNDjOdQAgO5znICk410HSca6Dg4EL\nbAAAAAAAAAAAAEAWCnwPAPjy9ttvWxzHNmjQIPvyl79sTZo0sSZNmtiXv/xlGzRokE2fPt3WrVvn\ne8zEI0cdskTS0EkkEb1E0tBJpNWiRYvswQcf9D1GEMhShyyRNHQSSUMnkUT53EvuYEuZt99+2+6/\n/36bP3++rVy50srKyszMrFWrVtazZ08bOnSoXXTRRfws1AO488477corrzzgL6Ju3Lix3XLLLfa9\n732vgSZLF3LUIUstjpW5o5NadFKDXurQSQ066ceiRYustLTULrzwQt+jpNqECRPsd7/7ne3du9f3\nKKlHljpkqcFxUodO6tBLDTqpQyd18rqXDqlxxx13uMaNG7soimr906RJE3fnnXf6HjexnnrqKRdF\nkWvTpo2bNm2ae+GFF9zGjRvdrl273K5du9zGjRvd4sWL3Y9+9CNXVFTkCgoK3OzZs32PnTjkqEOW\nWhwrc0cnteikBr3UoZMadNKf8ePHu4KCAt9jpN748eNdFEW+xwgCWeqQpQbHSR06qUMvNeikDp3U\nyedecgdbSsyePdv++Z//2YqKimzSpEl2+umnW3FxsbVs2dLMzDZv3myrVq2yZ555xu68804rKyuz\nJ5980kaNGuV58uQZMmSIvf7667Z06VLr0qVLrc9du3atHX/88fb1r3/d5s+f30ATpgM56pClDsdK\nDTqpQyd16KUGndShk/5MmDDBHnzwQSsvL/c9SqKsXr26zs91ztk111xjjz/+eH5+0vgAyFKHLP3g\nOFkzOukPvawenfSHTtaMXtYdF9hSghN4nVatWtm3v/1tu+OOO+r0/EmTJtlDDz1kmzdvPsiTpQs5\n6pClDsdKDTqpQyd16KUGndShkzqcwGsUFBRYFEWWzSl+FEXkWA2y1CFLDY6TOnRSh15q0EkdOqlD\nL+uu0PcAqJtXXnnFvv3tbx/wf4SYmXXt2tXGjRtnDz30UANMlj579+61ww47rM7PP/TQQ/Py4HAg\n5KhDljocKzXopA6d1KGXGnRSh07qFBcX1+sEHlW1bNnSjjnmmDo9980337SNGzce5InSiyx1yDJ3\nHCe16KQGvdShkxp0Uote1g0X2FKCE3idr371q/bHP/7Rpk2bVvnjkGpSVlZmjz76qB111FENNF16\nkKMOWepwrNSgkzp0UodeatBJHTqpxQl87rp3725RFNmCBQvq9PyKH4uEqshShyx1OE5q0Ektepk7\nOqlFJzXoZRYa7te9IRf9+vVznTt3dmVlZQd87ieffOI6derk+vXr1wCTpc+MGTNcFEWuR48ebsaM\nGe6DDz6o8pz333/f3X///a64uNhFUeRmzJjhYdJkI0cdstThWKlBJ3XopA691KCTOnRS5ytf+Yor\nLi6u8/Pz+Zeo12bs2LGuUaNGbsuWLXV6/vjx411BQcFBniqdyFKHLDU4TurQSR16qUEndeikDr2s\nuwLfF/hQN5MmTbJ33nnH+vXrZw888IBt2LChynM++OADmzFjhvXr18/Wr19vkyZN8jBp8o0fP96m\nTJlib731ll100UXWoUMHa9mypXXu3Nk6d+5sLVu2tI4dO9rEiROttLTUpkyZYuPHj/c9duKQow5Z\n6nCs1KCTOnRSh15q0EkdOqnTt29fW7NmjW3durXOf4cf51NVnz59rLy83F599dU6/x3Hr2SvFlnq\nkKUGx0kdOqlDLzXopA6d1KGXWfB5dQ/ZueKKK1wURS6KIldQUOBatGjhOnXq5Dp16uRatGjhCgoK\nKh+/4oorfI+beIsWLXLf+c53XMeOHStzq/jTsWNHd+GFF7rFixf7HjPxyFGHLDU4VurQSQ06qUUv\nc0cntehk7v7zP//TRVHknn/++To9n08bV++dd95xjz/+uFu/fr3vUVKPLHXIUoPjpA6d1KGXGnRS\nh07q0Mu6i5zL10uL6bR48WL79a9/bfPmzbP33ntvv8c6dOhgw4YNs8suu8xOOukkTxOm07Zt22zz\n5s1mtu9n9TZr1szzROlEjjpkmRuOlXp0Mjd08uCgl/VHJw8OOlk/69evt5dfftn69etnHTt29D0O\nACQOx0kkEb1E0tBJ+MAFthTjBN6fWbNm2axZs+y+++7zPUqqkaMOWdaMY6UfdLJmdNIfelk9OukP\nnUTS0EkdstQhSyQNnUTS0EkkUb70kt/BlmLNmjWzDh06WIcOHer0P0JmzZplEydObIDJwvfKK6/Y\nAw884HuM1CNHHbKsGcdKP+hkzeikP/SyenTSHzqpQy816KQOWeqQpQbHSR06qUMvNeikDp3UyZde\ncoEtj+RLqRsKN39qkKMOWWpwrNShkxp0Uote5o5OatFJDXqpQyd1yFKHLHPHcVKLTmrQSx06qUEn\ntfKhl1xgyzP5UGoAyBXHSiQNnUTS0EkkEb0EgNpxnEQS0UskDZ1ENrjABgAAAAAAAAAAAGSBC2wA\nAAAAAAAAAABAFrjABgAAAAAAAAAAAGSBC2wAAAAAAAAAAABAFrjABgAAAAAAAAAAAGSBC2wAAAAA\nAAAAAABAFrjABtRD165dbdCgQb7HSD1y1CFLJA2dRBLRSyQNnUTS0EkdstQhSyQNnUTS0EkkUb70\nMnLOOd9DoGHMmDHDHnjgAZs/f77vURJj+/bt9tFHH9kRRxxhhx12WJXHd+7caRs2bLB27dpZkyZN\nPEyYDuSoQ5b+cazcH530j05WRS/9opNV0Un/6OX+6KQOWeqQpV8cJ6uik/7Ry/3RSf/oZFX0snbc\nwZZC27dvt3Xr1tnOnTurfXznzp22bt0627Fjx35fnzBhAgeHL7jhhhusV69etm3btmof37p1q/Xq\n1ctuuummBp4sXchRhyx1OFZq0EkdOqlDLzXopA6d1KGXGnRShyx1yFKD46QOndShlxp0UodO6tDL\n2nGBLYUotc4zzzxjw4YNs6Kiomofb9OmjZ166qk2e/bsBp4sXchRhyx1OFZq0EkdOqlDLzXopA6d\n1KGXGnRShyx1yFKD46QOndShlxp0UodO6tDL2nGBLYUotc7atWutV69etT6nR48etnbt2oYZKKXI\nUYcsdThWatBJHTqpQy816KQOndShlxp0UocsdchSg+OkDp3UoZcadFKHTurQy9pxgS2FKLXO7t27\nraCg9t0giqIqtwtjf+SoQ5Y6HCs16KQOndShlxp0UodO6tBLDTqpQ5Y6ZKnBcVKHTurQSw06qUMn\ndehl7bjAlkKUWqdbt262cOHCWp+zcOFC69KlSwNNlE7kqEOWOhwrNeikDp3UoZcadFKHTurQSw06\nqUOWOmSpwXFSh07q0EsNOqlDJ3XoZe24wJZClFrnzDPPtJdfftluvvnmKo855+wnP/mJLV261EaP\nHu1huvQgRx2y1OFYqUEndeikDr3UoJM6dFKHXmrQSR2y1CFLDY6TOnRSh15q0EkdOqlDLw/AIXWu\nu+46F0WR+8lPflLlsfLycvfjH//YRVHkrrnmGg/TpcumTZtcly5dXBRF7thjj3XXXnutu+OOO9zU\nqVNd3759XRRFrkuXLm7Tpk2+R000ctQhSx2OlRp0UodO6tBLDTqpQyd16KUGndQhSx2y1OA4qUMn\ndeilBp3UoZM69LJ2kXPO+b7Ih+x8/PHHduyxx9q6deusb9++NnLkSOvYsaOtX7/e/vznP9vf/vY3\n69y5sy1btqzGX+SIz61Zs8YuuOACe/HFF6s8NmDAAHvooYesa9euDT9YypCjDllqcKzUoZMadFKL\nXuaOTmrRSQ16qUMndchShyxzx3FSi05q0EsdOqlBJ7XoZc24wJZSlFpv6dKl9uKLL1pZWZm1atXK\nTjrpJDv22GN9j5U65KhDlrnjWKlFJ3NHJ/XoZW7opB6dzB291KKTOmSpQ5a54TipRydzRy+16GTu\n6KQevayKC2wpR6kB4MA4ViJp6CSShk4iieglANSO4ySSiLMLRlMAAAxESURBVF4iaegkDiYusAEA\nAAAAAAAAAABZKPQ9ANCQpk+fblEU2eTJk62oqKjyv+ti2rRpB3m69CBHHbJE0tBJJBG9RNLQSSQN\nndQhSx2yRNLQSSQNnUQS0cvscAdbClBqnYKCAjMze/PNN61nz56V/10X5eXlB2us1CFHHbLU4Vip\nQSd16KQOvdSgkzp0UodeatBJHbLUIUsNjpM6dFKHXmrQSR06qUMvs8MFthSg1DoLFiwwM7P+/ftb\nkyZNKv+7LgYPHnxQZkojctQhSx2OlRp0UodO6tBLDTqpQyd16KUGndQhSx2y1OA4qUMndeilBp3U\noZM69DI7XGBLAUoNAAfGsRJJQyeRNHQSSUQvAaB2HCeRRPQSSUMn4QsX2AAAAAAAAAAAAIAsFPoe\nAEiCNWvW2O9+9zv729/+Zps3b7aWLVta37597dvf/rZ169bN93ipQY46ZImkoZNIInqJpKGTSBo6\nqUOWOmSJpKGTSBo6iSSil9XjDrYUo9Qat9xyi11//fW2e/fuKo8dcsghdtNNN9kVV1zhYbJ0IUcd\nstTiWJk7OqlFJzXopQ6d1KCTWvQyd3RShyx1yFKH46QGndSil7mjk1p0UoNe1sIhlX7605+6Qw89\n1EVRVOXPoYce6m655RbfI6bCzJkzXRRFrqioyMVx7BYsWOD+8Y9/uPnz57tMJuNat27tCgoK3MMP\nP+x71EQjRx2y1OJYmTs6qUUnNeilDp3UoJNa9DJ3dFKHLHXIUofjpAad1KKXuaOTWnRSg17Wjgts\nKUSpdY477jjXunVrt2bNmmofX716tWvVqpU77rjjGnawlCFHHbLU4VipQSd16KQOvdSgkzp0Uode\natBJHbLUIUsNjpM6dFKHXmrQSR06qUMva8cFthSi1DpNmjRxl156aa3PueSSS1yTJk0aaKJ0Ikcd\nstThWKlBJ3XopA691KCTOnRSh15q0EkdstQhSw2Okzp0UodeatBJHTqpQy9rV+D7R1Qie8uXL7dz\nzz3XunbtWu3j3bp1s3PPPdeWL1/esIOlUPPmza1169a1PqdVq1b2pS99qYEmSidy1CFLHY6VGnRS\nh07q0EsNOqlDJ3XopQad1CFLHbLU4DipQyd16KUGndShkzr0snZcYEshSq0zcuRI+/Of/1zj4845\ne+6552zEiBENOFX6kKMOWepwrNSgkzp0UodeatBJHTqpQy816KQOWeqQpQbHSR06qUMvNeikDp3U\noZe14wJbClFqnZtvvtk++eQTO++88+ztt9/e77G3337bzj//fPvkk0/spz/9qacJ04EcdchSh2Ol\nBp3UoZM69FKDTurQSR16qUEndchShyw1OE7q0EkdeqlBJ3XopA69rF3knHO+h0B23nvvPRs4cKD1\n79/fbr75ZuvSpUvlY2+//bZdc801tmTJEnvhhResffv2HidNviFDhtgnn3xir732mhUWFlrnzp3t\niCOOsA0bNti6detsz549dswxx1hRUVGVvztv3jwPEycTOeqQpQ7HSg06qUMndeilBp3UoZM69FKD\nTuqQpQ5ZanCc1KGTOvRSg07q0Ekdelk7LrClEKXWKSio/02c5eXlwknSjRx1yFKHY6UGndShkzr0\nUoNO6tBJHXqpQSd1yFKHLDU4TurQSR16qUEndeikDr2sHRfYUohSA8CBcaxE0tBJJA2dRBLRSwCo\nHcdJJBG9RNLQSTQULrABAAAAAAAAAAAAWaj/pVwAAAAAAAAAAAAgD3GBDTCzhx9+2IYNG2Zt2rSx\nwsJCKyoqsuHDh9vDDz/se7RUIUcdskTS0EkkEb1E0tBJJA2d1CFLHbJE0tBJJA2dRBLRyxo4pNbM\nmTPd0KFDXVFRkWvUqJFr3bq1GzZsmJs5c6bv0VKjvLzcXXDBBS6KIhdFkWvUqJE74ogjXKNGjSq/\ndv755/seM/HIUYcs9ThW5oZO6tHJ3NFLLTqZOzqpRy9zQyd1yFKHLLU4TuaOTurRy9zQST06mTt6\nWTsusKUQpdb51a9+5aIocscff7ybO3eu2717t3POud27d7u5c+e6fv36uSiK3F133eV50mQjRx2y\n1OFYqUEndeikDr3UoJM6dFKHXmrQSR2y1CFLDY6TOnRSh15q0EkdOqlDL2vHBbYUotQ6/fr1c127\ndnXbtm2r9vFt27a5bt26ueOPP76BJ0sXctQhSx2OlRp0UodO6tBLDTqpQyd16KUGndQhSx2y1OA4\nqUMndeilBp3UoZM69LJ2XGBLIUqt06xZMzdlypRan3P55Ze7Zs2aNdBE6USOOmSpw7FSg07q0Ekd\neqlBJ3XopA691KCTOmSpQ5YaHCd16KQOvdSgkzp0Uode1q7A9++AQ/aWL19uZ511ljVt2rTax5s2\nbWqjR4+2f/zjHw08WfpEUWTOuVqf4/ZdiG6gidKJHHXIUodjpQad1KGTOvRSg07q0EkdeqlBJ3XI\nUocsNThO6tBJHXqpQSd16KQOvawdF9hSiFLr9O7d2x577DHbvn17tY/v2LHDZs2aZUcddVQDT5Yu\n5KhDljocKzXopA6d1KGXGnRSh07q0EsNOqlDljpkqcFxUodO6tBLDTqpQyd16GXtuMCWQpRa51/+\n5V9s3bp1dsopp9j//M//2J49e8zMbO/evTZv3jwbPHiwrV271iZOnOh50mQjRx2y1OFYqUEndeik\nDr3UoJM6dFKHXmrQSR2y1CFLDY6TOnRSh15q0EkdOqlDLw9A85Mm0ZAqfknjcccd55577rnKX9K4\nZ88eN3fuXHfCCSfwSxrraO/eve5b3/qWi6LIRVHkCgsL3eGHH+4KCwsrvzZu3DhXXl7ue9REI0cd\nstThWKlBJ3XopA691KCTOnRSh15q0EkdstQhSw2Okzp0UodeatBJHTqpQy9rxwW2FKLUejNnznTD\nhw93RUVFrlGjRq6oqMgNHz7czZw50/doqUKOOmSZO46VWnQyd3RSj17mhk7q0cnc0UstOqlDljpk\nmRuOk3p0Mnf0UotO5o5O6tHL6nGBLcUode5mzJjhXn311Vqf89prr7kHHniggSZKJ3LUIUs9jpW5\noZN6dDJ39FKLTuaOTurRy9zQSR2y1CFLLY6TuaOTevQyN3RSj07mjl7WjgtsKUSpdaIoctOnT6/1\nOTfccIMrKChooInSiRx1yFKHY6UGndShkzr0UoNO6tBJHXqpQSd1yFKHLDU4TurQSR16qUEndeik\nDr2sXYHv3wGH7F100UX2xBNP1PqcWbNm2UUXXdRAE4Vt7969vkcIAjnqkGXdcKxsOHSybuhkw6KX\nB0YnGxadrBt62XDopA5Z6pDl/2vnjnESjaIwDB90ShtWoNENUNoZalbhCnQFxK0YN0DcAssgMbgQ\nw1RjJiojN/nk/gzPU1lQ3Jy8nuYEvmdP7pcmd6PL/dHkbjS5X8fcpQPbf+qYo05brVY1Ho97P+Pg\nmWOOWebYlRmazNFkji4zNJmjyRxdZmgyxyxzzDLDnszRZI4uMzSZo8mcY+7yV+8H8DOOOerv3N7e\n1mg0qs1mU1VVi8Wi1uv1p8+9vb3V6+trLZfLms1me37l8Jljjln2Y1d+TZP9aHI7Xfahye002Y8u\nv6bJHLPMMcs+7MntNNmPLr+myX40uZ0udzfa/JkSg/Z31I+PjzWZTGoymXz63Meon5+fO7x22E5O\n2r64eX19XU9PT3V1dfVDLzpM5phjljl2ZYYmczSZo8sMTeZoMkeXGZrMMcscs8ywJ3M0maPLDE3m\naDJHl7tzYDsQos5Zr9fvy/by8rLu7u7q/v6+Pv4rnJ6e1ng8rrOzs04vHTZzzDHLHLsyQ5M5mszR\nZYYmczSZo8sMTeaYZY5ZZtiTOZrM0WWGJnM0maPL3fmJyAPx8vIi6pCLi4v3v+fzeU2n0zo/P+/3\noANljjlmmWNXZmgyR5M5uszQZI4mc3SZockcs8wxywx7MkeTObrM0GSOJnN0uTvfYDtADw8PNZ1O\n6+bmpvdTAAbLrmRoNMnQaJIh0iXAv9mTDJEuGRpNsi8ObAAAAAAAANCg7YdJAQAAAAAA4Mg5sAEA\nAAAAAEADBzYAAAAAAABo4MAGAAAAAAAADRzYAAAAAAAAoIEDGwAAAAAAADRwYAMAAAAAAIAGDmwA\nAAAAAADQwIENAAAAAAAAGjiwAQAAAAAAQAMHNgAAAAAAAGjgwAYAAAAAAAANfgME0Vswf55ojQAA\nAABJRU5ErkJggg==\n", + "png": "iVBORw0KGgoAAAANSUhEUgAABtoAAASdCAYAAADOuohfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3V1o32fdx/HP303t05a2VizptjbRtkGGbKCjpE7oA+k8\nkDYFdzKLo6gFx4QyUIbSZCLi2GQrpRSreDA9UBi2FGV1YbQOUxucImVqS0jSYXxou0JKH0QozX1w\nm2rWx3zTu1nvvl6Qk9/1z7Xrt4OLwjvX/2qMjo6OBgAAAAAAAJiQ90z1AgAAAAAAAOBWJLQBAAAA\nAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAA\nABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABA\nwaRC28svv5wnn3wyDz/8cO6+++685z3vyYYNG0pzDQ8PZ+PGjWlubs60adPS0tKSzZs3Z2RkZDJL\nBAAAAAAAgP8Td07ml7/1rW/l0KFDueuuu3LPPffk8OHDaTQaE55nYGAg7e3tOXHiRNatW5e2trb0\n9fVl69at2bt3b3p7ezN37tzJLBUAAAAAAABuqEmdaHvxxRfT39+fU6dOZceOHeV5vvzlL+fEiRPZ\ntm1bfvazn+Xb3/52XnvttWzevDlHjhzJ17/+9cksEwAAAAAAAG64xujo6OiNmGj//v1ZuXJlPve5\nz+Wll1667t8bGBjI4sWL09LSkoGBgXFjZ86cyfz589NoNHLs2LHMmDHjRiwVAAAAAAAAJm1SJ9pu\nhH379iVJOjo6LhmbNWtWli9fnrNnz+bgwYM3e2kAAAAAAABwRVMe2o4cOZIkWbJkyWXHFy9enCTp\n7++/aWsCAAAAAACAa5ny0Hbq1KkkSVNT02XHx56PjIzctDUBAAAAAADAtUx5aAMAAAAAAIBb0Z1T\nvYCxE2tjJ9veaez57Nmzr2u+RqNxYxYGAAAAAADALWV0dPSm/vem/ERbW1tbkv/c1fZOY3ezXekO\nt/8msgEAAAAAANy+bnYrmvITbStWrEiS9PT0ZHR0dNz/gNOnT6e3tzczZ87MsmXLrnvOm10rAW5l\njUbDvgkwQfZOgImzdwJMnL0TYGKm4kDWTTvRdv78+Rw+fDiDg4Pjnre2tqajoyNDQ0PZvn37uLGu\nrq6cO3cuGzZsyPTp02/WUgEAAAAAAOCaGqOT+JOI3bt3Z/fu3UmSf/zjH3n11VfT2tqaT37yk0mS\nD37wg3nuueeSJEePHk1ra2sWLlyYoaGhcfMMDg6mvb09x48fz9q1a9PW1pa+vr7s378/S5cuzYED\nBzJnzpxrv8y/S6W/8gC4fv46DmDi7J0AE2fvBJg4eyfAxExFJ5pUaHvmmWfyzDPPXHIUb2zKRYsW\nXTzBNhba/vvZfxseHs6WLVuyd+/enDx5Ms3Nzens7ExXV1eampqu72WENoAJ8492gImzdwJMnL0T\nYOLsnQATc8uFtncboQ1g4vyjHWDi7J0AE2fvBJg4eyfAxExFJ7ppd7QBAAAAAADA/ydCGwAAAAAA\nABQIbQC3ua6urqleAsAtx94JMHH2ToCJs3cCvPu5ow0AAAAAAIBbnjvaAAAAAAAA4BYhtAEAAAAA\nAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAA\nFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB\n0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAht\nAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYA\nAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAA\nAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAA\nAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAA\nUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAF\nQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0\nAQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsA\nAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAA\nAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAA\nAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAA\nQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAU\nCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQ\nBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0A\nAAAAAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAA\nAAAAAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAA\nAABQILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAA\nAAVCGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQ\nILQBAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVC\nGwAAAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQB\nAAAAAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAA\nAAAAABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAA\nAABAgdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAA\nABQIbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABA\ngdAGAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQI\nbQAAAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAG\nAAAAAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAA\nAAAAAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAA\nAAAABUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAA\nAFAgtAEAAAAAAECB0AYAAAAAAAAFQhsAAAAAAAAUCG0AAAAAAABQILQBAAAAAABAgdAGAAAAAAAA\nBUIbAAAAAAAAFAhtAAAAAAAAUCC0AQAAAAAAQIHQBgAAAAAAAAVCGwAAAAAAABQIbQAAAAAAAFBw\nQ0Lb8PBwNm7cmObm5kybNi0tLS3ZvHlzRkZGrnuO0dHR/PSnP82KFSuyYMGCzJgxIx/+8Ifz6KOP\n5uDBgzdimQAAAAAAAHDDNEZHR0cnM8HAwEDa29tz4sSJrFu3Lm1tbenr68u+ffuydOnS9Pb2Zu7c\nudec5wtf+EJ++MMfZt68eVm3bl3mzZuX/v7+7NmzJ+fPn89LL72Uxx577Oov02gk+d9oBwAAAAAA\nwO1jKjrRpEPbmjVr0tPTk23btuWJJ564+Pypp57KCy+8kE2bNmXHjh1XneOtt95KS0tL5s+fn0OH\nDmXevHkXx/bv35+VK1empaUlAwMDV38ZoQ0AAAAAAOC2dMuFtoGBgSxevPiyEezMmTOZP39+Go1G\njh07lhkzZlxxnjfeeCMPPfRQ1q5dm127dl0yfvfdd6fRaOTUqVNXXY/QBgAAAAAAcHuaik40qTva\n9u3blyTp6Oi4ZGzWrFlZvnx5zp49e8071u6///7Mnz8/fX19OXny5Lix119/PWfOnMnq1asns1QA\nAAAAAAC4oSYV2o4cOZIkWbJkyWXHFy9enCTp7++/6jzTpk3L7t27M2vWrHz0ox/Nl770pTz99NN5\n9NFHs2bNmnR0dOR73/veZJYKAAAAAAAAN9Sdk/nlsa9ybGpquuz42PORkZFrzvWxj30sjz/+eJ59\n9tn84Ac/uPj8Ix/5SD7/+c+Pu7cNAAAAAAAAptqkTrTdKOfPn8+qVavyjW98I1/84hczODiYc+fO\n5Xe/+11aW1vz2GOP5Wtf+9pULxMAAAAAAAAumlRoGzuxNnay7Z3Gns+ePfuq8/z4xz/Ob37zm6xf\nvz7PP/98Fi1alGnTpuXBBx/Mrl27smDBgnz3u9/N0NDQda2r0Whc8ae7u/v6XxAAAAAAAIB3je7u\n7is2oKkwqdDW1taW5D93tb3T2N1sV7rDbcwbb7yRJFmxYsUlY9OnT88nPvGJXLhwIX/4wx+ua12j\no6NX/BHaAAAAAAAAbk3d3d1XbEBTYVKhbSyM9fT0XPICp0+fTm9vb2bOnJlly5ZddZ73ve99SZLj\nx49fdvzEiRPjPgcAAAAAAABTbVKhrbW1NR0dHRkaGsr27dvHjXV1deXcuXPZsGFDpk+fnuR/72I7\nfPhwBgcHx3129erVSZKdO3fmb3/727ixV155Jb29vZk+fXra29sns1wAAAAAAAC4YRqjkzxLNzg4\nmPb29hw/fjxr165NW1tb+vr6sn///ixdujQHDhzInDlzkiRHjx5Na2trFi5ceMl9a+vXr8/u3btz\n1113pbOzMx/60Ify5z//OT//+c/TaDTy4osv5sknn7z6y/z7+zen6nggAAAAAAAAU2MqOtGkQ1uS\nDA8PZ8uWLdm7d29OnjyZ5ubmdHZ2pqurK01NTRc/NxbaFi1adMmptgsXLmTnzp350Y9+lDfffDPn\nzp3LBz7wgTz00EP5yle+cvHU21VfRmgDAAAAAAC4Ld2yoe3dQmgDAAAAAAC4PU1FJ5rUHW0AAAAA\nAABwuxLaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAA\nAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAA\nKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIAC\noQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDa\nAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0A\nAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAA\nAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAA\nAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAA\noEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAK\nhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBo\nAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYA\nAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAA\nAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAA\nAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAA\ngAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAo\nENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKh\nDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoA\nAAAAAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAA\nAAAAAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAA\nAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAA\nAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACg\nQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqE\nNgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgD\nAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAA\nAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAA\nAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAA\nACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACA\nAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ\n2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqEN\nAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAA\nAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAA\nAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqENgAAAAAAACgQ2gAAAAAA\nAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACgQGgDAAAAAACAAqENAAAAAAAA\nCoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAomHdqGh4ezcePGNDc3Z9q0aWlp\nacnmzZszMjIy4blee+21dHZ2Zv78+Zk2bVoWLFiQRx55JK+88spklwkAAAAAAAA3VGN0dHS0+ssD\nAwNpb2/PiRMnsm7durS1taWvry/79u3L0qVL09vbm7lz517XXF/96lfz/PPP5957782nP/3pzJs3\nL8ePH8/vf//7rF69Ot/5zneu/TKNRpJkEq8EAAAAAADALWgqOtGkQtuaNWvS09OTbdu25Yknnrj4\n/KmnnsoLL7yQTZs2ZceOHdec5/vf/342bdqUxx9/PDt37sydd945bvz8+fOXPLscoQ0AAAAAAOD2\ndEuFtoGBgSxevDgtLS0ZGBgYN3bmzJnMnz8/jUYjx44dy4wZM644z7/+9a/ce++9mTlzZvr7+68r\nqF2J0AYAAAAAAHB7mopOVL6jbd++fUmSjo6OS8ZmzZqV5cuX5+zZszl48OBV5+np6cnbb7+d9evX\np9Fo5Be/+EWeffbZbN269Zq/CwAAAAAAAFOlfHzsyJEjSZIlS5Zcdnzx4sXp6elJf39/Vq5cecV5\nfvvb3yZJ3v/+9+eBBx7IH//4x3Hjn/rUp/Lyyy9n3rx51aUCAAAAAADADVc+0Xbq1KkkSVNT02XH\nx56PjIxcdZ7jx48nSZ577rnccccd+fWvf50zZ87k0KFD6ejoyOuvv57Pfvaz1WUCAAAAAADA/4ly\naLtRLly4kCR573vfmz179qS9vT0zZszI/fffn127duWee+7Jr371K18jCQAAAAAAwLtKObSNnVgb\nO9n2TmPPZ8+efdV5xsYffPDB3HfffePGpk+fnjVr1iT5z1dMXo9Go3HFn+7u7uueBwAAAAAAgHeP\n7u7uKzagqVC+o62trS3Jf+5qe6f+/v4kV77D7Z3zXCnIjT3/5z//ed1rGx0dve7PAgAAAAAAcGvo\n7u6+4qGqqYht5RNtK1asSJL09PRcErZOnz6d3t7ezJw5M8uWLbvqPKtWrUqj0cif/vSnywayN998\nM0nS0tJSXSoAAAAAAADccOXQ1tramo6OjgwNDWX79u3jxrq6unLu3Lls2LAh06dPT5KcP38+hw8f\nzuDg4LjP3nffffnMZz6Tt956K1u3bh039uqrr+aXv/xl5syZk0ceeaS6VAAAAAAAALjhGqOT+J7F\nwcHBtLe35/jx41m7dm3a2trS19eX/fv3Z+nSpTlw4EDmzJmTJDl69GhaW1uzcOHCDA0NjZvnr3/9\na9rb2/OXv/wlq1atygMPPJChoaHs3r07d9xxR37yk5+ks7Pz2i/z7yOBvjoSAAAAAADg9jIVnWhS\noS1JhoeHs2XLluzduzcnT55Mc3NzOjs709XVlaampoufGwttixYtuuRUW5K8/fbb+eY3v5k9e/bk\n73//e5qamvLwww/n6aefzsc//vHrexmhDQAAAAAA4LZ0S4a2dxOhDQAAAAAA4PY0FZ2ofEcbAAAA\nAAAA3M6ENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAA\nAACgQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAA\nAAqENgAAAAAAACgQ2gAAAAAAAKBAaAMAAAAAAIACoQ0AAAAAAAAKhDYAAAAAAAAoENoAAAAAAACg\nQGgDAAAAAACAAqENAAAAAAAACoQ2AAAAAAAAKBDaAAAAAAAAoEBoAwAAAAAAgAKhDQAAAAAAAAqE\nNgAAAAAAACgQ2gD4H/buJUTL8v/j+HdMSifJAwXlIptBnaloEUTFmJCLpsBFVmszjUg8hFMEipCj\nkdLGPGQFnajcFS5DGoZxM+GAYZsOouMIukiFGPGwGpr/IsYfpqZ+Rpv6+3rBw8B9P/f3vp71m2su\nAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAA\nAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAA\nICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgI\nbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsA\nAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAA\nAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAA\nQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ\n2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYA\nAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAA\nAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAA\ngIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAg\ntAEAAABmXyOiAAAgAElEQVQAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAE\nhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaEN\nAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAA\nAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAA\nACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAI\nCG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIb\nAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAA\nAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAA\nAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQ\nENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2\nAAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAA\nAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAA\nAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAg\nILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAht\nAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAA\nAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAA\nAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABA\nQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDa\nAAAAAAAAICC0AQAAAAAAQGDUoe3YsWO1ZMmSmj59ek2YMKGampqqo6OjBgcH45k7d+6scePG1bhx\n4+rTTz8d7RIBAAAAAADguhs/mof7+/urra2tTp48WQsWLKjW1tbq6+urrVu31u7du6u3t7emTZt2\nTTOPHj1aK1asqEmTJtWZM2eqoaFhNEsEAAAAAACAG2JUO9qWLVtWJ0+erO3bt9euXbtq48aN1d3d\nXR0dHXXgwIFau3btNc0bHh6uxYsX11133VVLly4dzdIAAAAAAADghopDW39/f3V1dVVTU1MtX778\ngnvr16+vxsbG2rlzZ507d+6qZ27btq16enrq888/r8bGxnRpAAAAAAAAcMPFoa2np6eqqtrb2y+6\nN2nSpJozZ06dPXu29u7de1Xzfvnll1q9enWtWrWqnnjiiXRZAAAAAAAA8I+IQ9uBAweqqmr27NmX\nvD9r1qyqqjp48OAVZw0NDdXChQvrvvvuq40bN6ZLAgAAAAAAgH/M+PTBU6dOVVXV5MmTL3l/5Prg\n4OAVZ23YsKF+/PHH6u3trdtuuy1dEgAAAAAAAPxj4h1t10tfX19t2rSp3nzzzXrsscfGejkAAAAA\nAABwVeLQNrJjbWRn21+NXJ8yZcplZwwNDdWLL75YLS0ttX79+kt+Z3h4+JrX1tDQcNlPZ2fnNc8D\nAAAAAABg7HV2dl62AY2FOLS1trZW1f/OavurkbPZLneGW1XVmTNn6uDBg/Xzzz/XhAkTaty4cec/\nGzZsqKqqV155pcaNG1cdHR1Xvbbh4eHLfoQ2AAAAAACA/6bOzs7LNqCxEJ/RNm/evKqq6urqquHh\n4QtK4enTp6u3t7duv/32evzxxy87Y8KECfXyyy9fsjL+8MMPtX///po7d261tLRUW1tbulQAAAAA\nAAC47uLQ1tzcXO3t7fXdd9/Vjh07asWKFefvrVu3rs6dO1dLly6tiRMnVtWf/yby0KFDdeutt1Zz\nc3NV/RnaPv7440vO7+zsrP3799eiRYtqyZIl6TIBAAAAAADghohDW1XVBx98UG1tbfXaa69Vd3d3\ntba2Vl9fX+3Zs6daWlrqnXfeOf/dY8eO1QMPPFAzZsyogYGBUS8cAAAAAAAAxlJ8RlvVn7va9u3b\nVy+99FL19fXV5s2ba2BgoFatWlV79+6tqVOnXvTM1R5GN5YH1wEAAAAAAMCVNAyP1elwN8BImPt/\n9JMAAAAAAAC4CmPRiUa1ow0AAAAAAABuVkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAA\nAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAA\nAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAAC\nQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAG\nAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAA\nAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAA\nABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAE\nhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaEN\nAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAA\nAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAA\nACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAI\nCG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIb\nAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAA\nAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAA\nAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQ\nENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2\nAAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAA\nAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAA\nAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAg\nILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAht\nAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAA\nAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAA\nAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABA\nQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDa\nAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAA\nAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAA\nAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACA\ngNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0\nAQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAA\nAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAA\nAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAA\nAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBo\nAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAA\nAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAACB6xLajh07VkuWLKnp06fXhAkTqqmpqTo6\nOmpwcPCqnv/999/rk08+qeeee65mzpxZjY2NNWXKlJo7d2599tlnNTw8fD2WCQAAAAAAANdNw/Ao\nK1Z/f3+1tbXVyZMna8GCBdXa2lp9fX3V09NTLS0t1dvbW9OmTfvbGR999FEtW7aspk+fXvPmzat7\n7723fvvtt9q1a1edOnWqXnjhhfr666+v/GMaGqqqhDkAAAAAAICbzFh0olGHtqeffrq6urpq+/bt\ntXz58vPX33jjjXrvvffq1VdfrQ8//PBvZ/T09NS5c+dq/vz5F1w/fvx4Pfroo3X06NH65ptv6vnn\nn//bOUIbAAAAAADAzek/F9r6+/tr1qxZ1dTUVP39/RfcO3PmTN19993V0NBQx48fr8bGxugdmzZt\nqrVr19bKlStr69atf/tdoQ0AAAAAAODmNBadaFRntPX09FRVVXt7+0X3Jk2aVHPmzKmzZ8/W3r17\n43eMHz/+gr8AAAAAAADwbzCq0HbgwIGqqpo9e/Yl78+aNauqqg4ePBjNHxoaqi+//LKqqp555plo\nBgAAAAAAANwIowptp06dqqqqyZMnX/L+yPXBwcFo/urVq+unn36q+fPn11NPPZUtEgAAAAAAAG6A\nUYW2G2nbtm21efPmuv/+++urr74a6+UAAAAAAADABUYV2kZ2rI3sbPurketTpky5prnvv/9+rVq1\nqh588MHq6em55ucbGhou++ns7LymWQAAAAAAAPw7dHZ2XrYBjYXxo3m4tbW1qv53VttfjZzNdrkz\n3C5ly5Yt9frrr9dDDz1U3d3ddeedd17zuoaHh6/5GQAAAAAAAP7dOjs7L7upaixiW8PwKKrU4cOH\na+bMmdXU1FSHDh264AecPn267rnnnmpoaKgTJ07UxIkTrzjv3XffrTVr1tTDDz9cXV1dNW3atGta\nz8j7hTYAAAAAAICby1h0olH968jm5uZqb2+vgYGB2rFjxwX31q1bV+fOnauFCxeej2xDQ0P166+/\n1uHDhy+a9fbbb9eaNWvqkUceqe7u7muObAAAAAAAAPBPGtWOtqo/d7W1tbXViRMn6tlnn63W1tbq\n6+urPXv2VEtLS33//fc1derUqqo6cuRINTc314wZM2pgYOD8jC+++KIWL15ct9xyS61cubLuuOOO\ni97T1NRUixYt+vsfY0cbAAAAAADATWksOtGozmir+nNX2759++qtt96q3bt317ffflvTp0+vVatW\n1bp162ry5MkXPfPX/5F55MiRqqr6448/asuWLZd8z5NPPnnF0AYAAAAAAAD/lFHvaPs3saMNAAAA\nAADg5vSfO6MNAAAAAAAAblZCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEA\nAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAA\nAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAA\nBIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGh\nDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMA\nAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAA\nAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAA\nCAhtAAAAAAAAEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJC\nGwAAAAAAAASENgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYA\nAAAAAAABoQ0AAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAA\nAABAQGgDAAAAAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAA\nEBDaAAAAAAAAICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASE\nNgAAAAAAAAgIbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0A\nAAAAAAACQhsAAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAA\nAACAgNAGAAAAAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAAAAAAAAEBDaAAAAAAAA\nICC0AQAAAAAAQEBoAwAAAAAAgIDQBgAAAAAAAAGhDQAAAAAAAAJCGwAAAAAAAASENgAAAAAAAAgI\nbQAAAAAAABAQ2gAAAAAAACAgtAEAAAAAAEBAaAMAAAAAAICA0AYAAAAAAAABoQ0AAAAAAAACQhsA\nAAAAAAAEhDYAAAAAAAAICG0AAAAAAAAQENoAAAAAAAAgILQBAAAAAABAQGgDAAAAAACAgNAGAAAA\nAAAAAaENAAAAAAAAAkIbAAAAAAAABIQ2AAAAAAAACAhtAADA/7V3/7Fa1vUfx1/XgfCAyA+HyY/4\ncU4gVNpg/bKjrAg60BpDaPqPEUFZrUYTmiWrBdGWMa2kdBaBM/OPWhbM2SzJDrowmVrOleLwcGhQ\nQ1AH80i1iOv7RzsqYut7Lu5zn/vg47Gdf+7rPh8+1z9vbu4n13UBAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABUIbQAAAAAAAFCB0AYAAAAAAAAVCG0AAAAAAABQgdAGAAAAAAAAFQhtAAAAAAAAUIHQBgAA\nAAAAABWcdmg7cOBAVqxYkfHjx6e5uTktLS1ZtWpVjhw50i/rAAAAAAAAQD2cVmjr7OzMO97xjtx2\n2225+OKLs3r16rS2tmbjxo1573vfm+eff76u6wDQe+vWrevvLQAMOGYnQO+ZnQC9Z3YCNL6iLMuy\n6i/Pnz8/27dvz/e+97187nOfe+n1L3zhC/nOd76TT3/607nlllvqtk5RFEmS0zglgNedoijMTYBe\nMjsBes/sBOg9sxOgd/qjE1UObZ2dnZk2bVpaWlrS2dl50rHu7u6MHTs2RVHkmWeeybBhw/p8nURo\nA6jCh3aA3jM7AXrP7AToPbMToHf6oxNVvnVkR0dHkqS9vf2UY8OHD88ll1ySF198MQ899FBd1gEA\nAAAAAIB6qhzannrqqSTJBRdc8JrHp02bliTZs2dPXdYBAAAAAACAeqoc2o4ePZokGTly5Gse73n9\nyJEjdVkHAAAAAAAA6qlyaAMAAAAAAIDXs8FVf7HnSrOeK9Jeref1UaNG1WWdV+p52B0A/z/mJkDv\nmZ0AvWd2AvSe2QnQ2Cpf0TZjxowkLz9j7dV6nqn23569Vut1kqQsy//5HgAAAAAAAM5M73vf++r6\n5xVlxTq1d+/eTJ06NS0tLXn66adP+p8VL7zwQsaNG5eiKHLo0KEMHTq0z9cBAAAAAACAeqp8RVtr\na2va29vT1dWVm2+++aRja9euzbFjx7J06dKX4tjx48eze/fu7N2797TWAQAAAAAAgEZQ+Yq25D9X\no7W1teXQoUNZtGhRZsyYkV27dmXHjh2ZPn16HnzwwYwePTpJsm/fvrS2tmby5Mnp6uqqvA4AAAAA\nAAA0gtMKbUly4MCBfPWrX82vfvWrPPfccxk/fnwWL16ctWvXZuTIkS+9rye0TZky5ZSr2nqzDgAA\nAAAAADSC0w5tAAAAAAAA8HpU+RltAAAAAAAA8HomtAEAAAAAAEAFQhsAAAAAAABU0NCh7cCBA1mx\nYkXGjx+f5ubmtLS0ZNWqVTly5Ei/rAMwEJzuzHv++eezefPmLF68OFOnTs2wYcMyatSozJ49O7fe\nems82hM4E/XF58U77rgjTU1NaWpqypYtW2q4W4D+V8u5ed9992Xx4sUZO3ZsmpubM2HChCxYsCD3\n3HNPH+wcoP/UYnaWZZmf/vSnmTNnTiZMmJBhw4blzW9+c6644oo89NBDfbh7gPq68847s3Llysye\nPTsjRoxIU1NTli5dWmmtvm5ERdmg35h2dnamra0thw8fzmWXXZYZM2Zk165d6ejoyPTp07Nz586c\ne+65dVsHYCCoxcz7/ve/n89+9rMZP3585syZk0mTJuXgwYP5xS9+kaNHj+YjH/lIfvazn9XpjAD6\nXl98Xty/f38uuuiinDhxIt3d3dm8eXNWrFjRR2cAUF+1nJtf/OIXc8MNN2TixIn50Ic+lDFjxuTQ\noUP5wx/+kHnz5uWb3/xmH58NQH3UanZ+8pOfzK233poxY8bksssuy5gxY7Jnz57cddddOX78eG6/\n/fZceeWVdTgjgL41c+bMPP744znnnHMyYcKE7N69Ox/96Edz++2392qdujSiskG1t7eXRVGUN910\n00mvr169uiyKovzMZz5T13UABoJazLzf/va35d13333K6wcPHiwnTZpUFkVR/vznP6/ZngH6W60/\nL544caKcO3duOXXq1PKaa64pi6Iot2zZUsstA/SrWs3NTZs2lUVRlMuXLy//9a9/nXL8tV4DGKhq\nMS/sZjEAAAhpSURBVDv37dtXFkVRjhs3rjx8+PBJxzo6OsqiKMrW1taa7hugv3R0dJRPP/10WZZl\nuWPHjrIoinLp0qW9Xqcejaghr2jr7OzMtGnT0tLSks7OzpOOdXd3Z+zYsSmKIs8880yGDRvW5+sA\nDAT1mHnXXXddvvzlL2flypXZuHFjLbYN0K/6YnZu3Lgxq1evzv3335/f/OY3Wb9+vSvagDNGrebm\nP//5z0ycODFnn3129uzZk8GDB/f11gH6Ta1m5yOPPJJ3v/vdWbRoUbZu3XrK8REjRqQoihw9erTm\n5wDQn3bs2JEPfOADvb6irV6NqCGf0dbR0ZEkaW9vP+XY8OHDc8kll+TFF1/8n/cdrtU6AANBPWZe\nzxcgvggBzhS1np1PPvlkrr322lx99dW59NJLa7pXgEZQq7m5ffv2PPvss1myZEmKosgvf/nLbNiw\nIRs3bvRvdOCMU6vZeeGFF2bs2LHZtWtXnnvuuZOOPfDAA+nu7s68efNqt3GAAa5ejaghQ9tTTz2V\nJLngggte8/i0adOSJHv27KnLOgADQV/PvJ57vSfJggULKq0B0GhqOTuPHz+epUuXZsqUKfnGN75R\nu00CNJBazc2HH344SXLWWWdl5syZWbhwYdasWZNVq1alra0t73//+/Pss8/WcOcA/adWs7O5uTnb\ntm3L8OHD89a3vjWf+tSnsmbNmlxxxRWZP39+2tvb84Mf/KC2mwcYwOrViBoytPVc3jxy5MjXPN7z\n+pEjR+qyDsBA0Ncz79prr82f//znfPjDH84HP/jBapsEaDC1nJ3r16/PY489lttuuy1nnXVW7TYJ\n0EBqNTcPHTqUJLn++uszaNCg/O53v0t3d3cef/zxtLe354EHHsjll19ew50D9J9afuZ8+9vfno9/\n/OP5xz/+kc2bN2fDhg258847M3HixCxbtixjxoyp3cYBBrh6NaKGDG0ANJbvfve7+fa3v523vOUt\n+fGPf9zf2wFoOLt27cp1112Xa665Ju95z3v6ezsADe/EiRNJkje84Q2566670tbWlmHDhuXCCy/M\n1q1b86Y3vSn333+/20gCvMLx48czd+7cfOUrX8lVV12VvXv35tixY3n00UfT2tqaK6+8Ml/60pf6\ne5sArzsNGdp6KuJ/e3Bnz+ujRo2qyzoAA0FfzbybbropV199dd72trelo6PDzATOKLWYncePH8/H\nPvaxTJ8+PV/72tde8z1lWZ7mTgEaQ60+c/YcnzVrViZNmnTSsaFDh2b+/PlJXr7FJMBAVqvZeccd\nd+T3v/99lixZkhtuuCFTpkxJc3NzZs2ala1bt2bChAn51re+la6urtqeAMAAVa9G1JChbcaMGUle\nvn/mq/XcL/O/3Vez1usADAR9MfNuvPHGfP7zn89FF12Ujo6OvPGNbzz9jQI0kFrMzu7u7uzZsydP\nPPFEmpub09TU9NLP+vXrkyRXXXVVmpqasmrVqhqfAUB91frf6//tS42e1//+979X2idAI6nV7Hzk\nkUeSJHPmzDnl2NChQ/Oud70rJ06cyGOPPXY62wU4Y9SrEQ0+rd/uIz1/WWzfvj1lWaYoipeOvfDC\nC9m5c2fOPvvsXHzxxXVZB2AgqPXM27BhQ9asWZNZs2Zl+/btOffcc/tk3wD9qRazs7m5OZ/4xCdO\n+t0ejz76aP74xz9m9uzZmT59etra2mp/EgB1VKvPnHPnzk1RFHniiSdOWSdJ/vSnPyVJWlpaanwG\nAPVXq9k5ZMiQJC8/5/LVDh8+fNL7AF7v6tWIGvKKttbW1rS3t6erqys333zzScfWrl2bY8eOZenS\npRk6dGiS/9yuZ/fu3dm7d+9prQMwkNVqdibJ17/+9axZsybvfOc7c99994lswBmrFrOzubk5P/zh\nD7Np06ZTfhYuXJgkWbZsWTZt2pTLL7+8ficH0Adq9Zlz0qRJWbhwYf7yl79k48aNJx2799578+tf\n/zqjR4/OggUL+vaEAOqgVrNz3rx5SZJNmzblb3/720nH7rnnnuzcuTNDhw71n7uA153+bkRF2aAP\njNi7d2/a2tpy6NChLFq0KDNmzMiuXbuyY8eOTJ8+PQ8++GBGjx6dJNm3b19aW1szefLkU+5B3Jt1\nAAa6WszOH/3oR1m+fHkGDRqUlStXZsSIEaf8OS0tLVm2bFndzgugL9Xqc+drWbduXdavX5/Nmzdn\nxYoVfX0qAHVRq7n517/+NW1tbdm/f3/mzp2bmTNnpqurK9u2bcugQYPyk5/8JIsXL+6PUwSouVrN\nziVLlmTbtm0555xzsnjx4px//vl58sknc/fdd6coitx4441ZuXJlf5wiQE1t27Yt27ZtS5IcPHgw\n9957b1pbW3PppZcmSc4777xcf/31SRqgEZUNbP/+/eXy5cvLcePGlUOGDCmnTJlSrlq1qjxy5MhJ\n7+vq6iqLoihbWlpOax2AM8Hpzs5169aVRVGUTU1NZVEUr/kzZ86cep4SQJ+r1efOV1u3bl3Z1NRU\nbtmypS+2DdBvajU3Dx8+XK5cubKcPHlyOWTIkPK8884rlyxZUj788MP1OA2AuqrF7Pz3v/9d3nLL\nLWVbW1s5YsSIcvDgweX5559fLly4sNy+fXu9TgWgz73yO8pX/vR8P/nKGdnfjahhr2gDAAAAAACA\nRtaQz2gDAAAAAACARie0AQAAAAAAQAVCGwAAAAAAAFQgtAEAAAAAAEAFQhsAAAAAAABUILQBAAAA\nAABABUIbAAAAAAAAVCC0AQAAAAAAQAVCGwAAAAAAAFQgtAEAAAAAAEAFQhsAAAAAAABUILQBAAAA\nAABABUIbAAAAAAAAVCC0AQAAAAAAQAVCGwAAAAAAAFQgtAEAAAAAAEAFQhsAAAAAAABU8H//yHm4\nsIxwFgAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], - "prompt_number": 95 + "prompt_number": 53 }, { "cell_type": "markdown",