diff --git a/prtpy/partitioning/integer_programming_avg.py b/prtpy/partitioning/integer_programming_avg.py new file mode 100644 index 0000000..7aa542b --- /dev/null +++ b/prtpy/partitioning/integer_programming_avg.py @@ -0,0 +1,148 @@ +""" +Produce an optimal partition by solving an integer linear program (ILP). + +Programmer: Erel Segal-Halevi, Eitan Lichtman +Since: 2022-02 + +Credit: Rob Pratt, https://or.stackexchange.com/a/6115/2576 +""" + +from typing import List, Callable, Any +from numbers import Number + +from prtpy import objectives as obj, outputtypes as out, Binner, printbins +from math import inf +import mip + +def optimal( + binner: Binner, numbins: int, items: List[any], relative_values: List[any] = None, + copies=1, + time_limit=inf, + verbose=0, + solver_name = mip.GRB, # passed to MIP. See https://docs.python-mip.com/en/latest/quickstart.html#creating-models +): + """ + Produce a partition that minimizes the sum of the positive differences from the avg, by solving an integer linear program (ILP). + + :param numbins: number of bins. + :param items: list of items. + :param valueof: a function that maps an item from the list `items` to a number representing its value. + :param copies: how many copies there are of each item. Default: 1. + :param time_limit: stop the computation after this number of seconds have passed. + + >>> from prtpy import BinnerKeepingContents, BinnerKeepingSums + >>> optimal(BinnerKeepingSums(), 2, [11.1,11,11,11,22],[0.1,0.9]) + array([11. , 55.1]) + >>> optimal(BinnerKeepingSums(), 2, [11.1,11,11,11,22],[0.9,0.1]) + array([55.1, 11. ]) + >>> optimal(BinnerKeepingSums(), 2, [11,11,11,11,22]) + array([33., 33.]) + + >>> optimal(BinnerKeepingSums(), 5, [2,2,5,5,5,5,9]) + array([5., 5., 7., 7., 9.]) + >>> optimal(BinnerKeepingSums(), 3, [1,1,1,1]) + array([1., 1., 2.]) + >>> optimal(BinnerKeepingSums(), 3, [1,1,1,1,1]) + array([1., 2., 2.]) + + The following examples are based on: + Walter (2013), 'Comparing the minimum completion times of two longest-first scheduling-heuristics'. + >>> walter_numbers = [46, 39, 27, 26, 16, 13, 10] + >>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers)) + Bin #0: [39, 16], sum=55.0 + Bin #1: [46, 13], sum=59.0 + Bin #2: [27, 26, 10], sum=63.0 + + >>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers, [0.2, 0.5, 0.3])) + Bin #0: [26, 10], sum=36.0 + Bin #1: [46, 27, 16], sum=89.0 + Bin #2: [39, 13], sum=52.0 + + >>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers, [0.9, 0, 0.1])) + Bin #0: [46, 39, 27, 26, 13, 10], sum=161.0 + Bin #1: [], sum=0.0 + Bin #2: [16], sum=16.0 + + >>> optimal(BinnerKeepingSums(), 3, walter_numbers) + array([55., 59., 63.]) + + >>> from prtpy import partition + >>> partition(algorithm=optimal, numbins=3, items=[1, 2, 3], copies=[2, 1, 4]) + [[2, 3], [1, 1, 3], [3, 3]] + + """ + ibins = range(numbins) + items = list(items) + iitems = range(len(items)) + if isinstance(copies, Number): + copies = {iitem: copies for iitem in iitems} + model = mip.Model(name = '', solver_name=solver_name) + counts: dict = { + iitem: [model.add_var(var_type=mip.INTEGER) for ibin in ibins] + for iitem in iitems + } # counts[i][j] is a variable that represents how many times item i appears in bin j. + + bin_sums = [ + sum([counts[iitem][ibin] * binner.valueof(items[iitem]) for iitem in iitems]) + for ibin in ibins + ] + + sum_items = 0 + if not copies: + sum_items = sum(items) + else: + for i in range (len(items)): + sum_items = sum_items + items[i] * copies[i] + + if relative_values: + z_js = [ + bin_sums[ibin] - sum_items * relative_values[ibin] + for ibin in ibins + ] + else: + z_js = [ + bin_sums[ibin] - sum_items / len(ibins) + for ibin in ibins + ] + + t_js = [ + model.add_var(var_type=mip.INTEGER) for ibin in ibins + ] + + + model.objective = mip.minimize( + 0.5 * sum(t_js) + ) + + # Construct the list of constraints: + t_js_greater_than_z_js = [t_js[ibin] >= z_js[ibin] for ibin in ibins] + t_js_greater_than_minus_z_js = [t_js[ibin] >= -z_js[ibin] for ibin in ibins] + counts_are_non_negative = [counts[iitem][ibin] >= 0 for ibin in ibins for iitem in iitems] + each_item_in_one_bin = [ + sum([counts[iitem][ibin] for ibin in ibins]) == copies[iitem] for iitem in iitems + ] + constraints = each_item_in_one_bin + t_js_greater_than_z_js + t_js_greater_than_minus_z_js + counts_are_non_negative + for constraint in constraints: model += constraint + + # Solve the ILP: + model.lp_method = verbose + status = model.optimize(max_seconds=time_limit) + if status != mip.OptimizationStatus.OPTIMAL: + raise ValueError(f"Problem status is not optimal - it is {status}.") + + # Construct the output: + output = binner.new_bins(numbins) + for ibin in ibins: + for iitem in iitems: + count_item_in_bin = int(counts[iitem][ibin].x) + for _ in range(count_item_in_bin): + binner.add_item_to_bin(output, items[iitem], ibin) + if not relative_values: + binner.sort_by_ascending_sum(output) + return output + + +if __name__ == "__main__": + import doctest, logging + (failures, tests) = doctest.testmod(report=True, optionflags=doctest.FAIL_FAST) + print("{} failures, {} tests".format(failures, tests))