-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathcost.py
92 lines (73 loc) · 3.49 KB
/
cost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2021 Faranak Shamsafar
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Requirements:
pip install --upgrade git+https://github.com/sovrasov/flops-counter.pytorch.git
pip install --upgrade git+https://github.com/Lyken17/pytorch-OpCounter.git
pip install onnx
"""
from __future__ import print_function, division
from ptflops import get_model_complexity_info
import torch.nn.parallel
import torch.utils.data
from models import __models__
from utils import *
from thop import profile
C = 3
H = 256
W = 512
# F = 40
"""
For input size: (3, 256, 512):
Feature size: (320, 64, 128)
[2D model] Feature size after channel reduction: (32, 64, 128)
[2D model] Cost size: (48, 64, 128)
[3D model] Cost size: (40, 48, 64, 128)
For this, change (1, C, H, W) to (1, F, C, H, W).
"""
def input_constructor(input_shape):
# For Flops-Counter method
# Notice the input naming
inputs = {'L': torch.ones(input_shape), 'R': torch.ones(input_shape)}
return inputs
with torch.cuda.device(0):
################# Using Flops-Counter #################
# net = __models__['MSNet2D'](192)
# macs2D, params2D = get_model_complexity_info(net, (1, C, H, W), as_strings=True,
# print_per_layer_stat=False, verbose=False,
# input_constructor=input_constructor)
#
# net = __models__['MSNet3D'](192)
# macs3D, params3D = get_model_complexity_info(net, (1, C, H, W), as_strings=True,
# print_per_layer_stat=False, verbose=False,
# input_constructor=input_constructor)
#
# print("==========================\n", '2D-MobileStereoNet', "\n==========================")
# print('{:<30} {:<8}'.format('Number of operations: ', macs2D))
# print('{:<30} {:<8}'.format('Number of parameters: ', params2D))
#
# print("==========================\n", '3D-MobileStereoNet', "\n==========================")
# print('{:<30} {:<8}'.format('Number of operations: ', macs3D))
# print('{:<30} {:<8}'.format('Number of parameters: ', params3D))
################# Using THOP (OpCounter) #################
L = torch.randn(1, C, H, W)
R = L
macs2D, params2D = profile(__models__['MSNet2D'](192), inputs=(L, R))
macs3D, params3D = profile(__models__['MSNet3D'](192), inputs=(L, R))
print("==========================\n", '2D-MobileStereoNet', "\n==========================")
print('{:<30} {:<8}'.format('Number of operations: ', np.round(macs2D / 1000000000), 5))
print('{:<30} {:<8}'.format('Number of parameters: ', np.round(params2D / 1000000, 5)))
print("==========================\n", '3D-MobileStereoNet', "\n==========================")
print('{:<30} {:<8}'.format('Number of operations: ', np.round(macs3D / 1000000000), 2))
print('{:<30} {:<8}'.format('Number of parameters: ', np.round(params3D / 1000000, 2)))