-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathestimate_model_size.py
103 lines (89 loc) · 5.48 KB
/
estimate_model_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import warnings
import torch
import time
from transformers import AutoConfig, AutoModelForSequenceClassification
from modeling.hi_transformer import HiTransformerForSequenceClassification, HiTransformerConfig
warnings.filterwarnings("ignore")
def test_memory_usage(model, steps=100, batch_size=2, seq_length=1024):
torch.cuda.reset_peak_memory_stats()
model.to('cuda')
input_ids = torch.randint(1, 30000, (batch_size, seq_length), dtype=torch.long).to('cuda')
input_ids[:, :: 128] = 100
labels = input_ids.clone()
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.int).to('cuda')
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, steps)
start = time.time()
for _ in range(steps):
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
end = time.time()
total_time = (end - start) / steps
return torch.cuda.max_memory_allocated() / 1e9, total_time
def estimate_model_size():
for CONFIG in ['tiny', 'small', 'base', 'large', 'xlarge']:
roberta_config = AutoConfig.from_pretrained(f'data/PLMs/lex-lm/lex-lm-{CONFIG}')
print('-' * 150)
print(F'NUM LAYERS: {roberta_config.num_hidden_layers}\t'
F'NUM HIDDEN: {roberta_config.hidden_size}\t'
F'ATTENTION HEADS: {roberta_config.num_attention_heads}')
print('-' * 150)
# load dummy roberta model
roberta_model = AutoModelForSequenceClassification.from_config(roberta_config)
model_total_params = sum(p.numel() for p in roberta_model.roberta.parameters() if p.requires_grad)
model_total_params = model_total_params / 1e6
print(f'RoBERTa model has {model_total_params:.1f}M number of parameters.')
# load dummy gpt model
gpt_config = AutoConfig.from_pretrained(f'data/PLMs/lex-gpt/lex-gpt-{CONFIG}')
gpt_model = AutoModelForSequenceClassification.from_config(gpt_config)
model_total_params = sum(p.numel() for p in gpt_model.transformer.parameters() if p.requires_grad)
model_total_params = model_total_params / 1e6
print(f'GPT model has {model_total_params:.1f}M number of parameters.')
# load dummy longformer model
lf_config = AutoConfig.from_pretrained(f'data/PLMs/lex-longformer/lex-longformer-{CONFIG}')
htf_model = AutoModelForSequenceClassification.from_config(lf_config)
model_total_params = sum(p.numel() for p in htf_model.longformer.parameters() if p.requires_grad)
model_total_params = model_total_params / 1e6
print(f'Longformer model has {model_total_params:.1f}M number of parameters.')
# load dummy hi-transformer model
htf_config = HiTransformerConfig.from_pretrained(f'data/PLMs/lex-hi-transformer/lex-hi-transformer-{CONFIG}')
htf_model = HiTransformerForSequenceClassification.from_config(htf_config)
model_total_params = sum(p.numel() for p in htf_model.hi_transformer.parameters() if p.requires_grad)
model_total_params = model_total_params / 1e6
print(f'Hi-transformer model has {model_total_params:.1f}M number of parameters.')
if __name__ == '__main__':
estimate_model_size()
'''
------------------------------------------------------------------------------------------------------------------------------------------------------
NUM LAYERS: 4 NUM HIDDEN: 256 ATTENTION HEADS: 4
------------------------------------------------------------------------------------------------------------------------------------------------------
RoBERTa model has 15.0M number of parameters.
GPT model has 16.2M number of parameters.
Longformer model has 16.7M number of parameters.
Hi-transformer model has 16.0M number of parameters.
------------------------------------------------------------------------------------------------------------------------------------------------------
NUM LAYERS: 8 NUM HIDDEN: 384 ATTENTION HEADS: 6
------------------------------------------------------------------------------------------------------------------------------------------------------
RoBERTa model has 28.9M number of parameters.
GPT model has 33.8M number of parameters.
Longformer model has 33.8M number of parameters.
Hi-transformer model has 33.5M number of parameters.
------------------------------------------------------------------------------------------------------------------------------------------------------
NUM LAYERS: 12 NUM HIDDEN: 768 ATTENTION HEADS: 12
------------------------------------------------------------------------------------------------------------------------------------------------------
RoBERTa model has 123.9M number of parameters.
GPT model has 124.2M number of parameters.
Longformer model has 129.0M number of parameters.
Hi-transformer model has 151.9M number of parameters.
------------------------------------------------------------------------------------------------------------------------------------------------------
NUM LAYERS: 24 NUM HIDDEN: 1024 ATTENTION HEADS: 16
------------------------------------------------------------------------------------------------------------------------------------------------------
RoBERTa model has 354.0M number of parameters.
GPT model has 354.6M number of parameters.
Longformer model has 433.3M number of parameters.
Hi-transformer model has 429.3M number of parameters.
'''