forked from jacobkrantz/VLN-CE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
77 lines (61 loc) · 1.94 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
import argparse
import random
import numpy as np
import torch
from habitat import logger
from habitat_baselines.common.baseline_registry import baseline_registry
import habitat_extensions
import vlnce_baselines
from vlnce_baselines.config.default import get_config
from vlnce_baselines.nonlearning_agents import evaluate_agent
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--run-type",
choices=["train", "eval"],
required=True,
help="run type of the experiment (train, eval)",
)
parser.add_argument(
"--exp-config",
type=str,
required=True,
help="path to config yaml containing info about experiment",
)
parser.add_argument(
"opts",
default=None,
nargs=argparse.REMAINDER,
help="Modify config options from command line",
)
args = parser.parse_args()
run_exp(**vars(args))
def run_exp(exp_config: str, run_type: str, opts=None) -> None:
r"""Runs experiment given mode and config
Args:
exp_config: path to config file.
run_type: "train" or "eval.
opts: list of strings of additional config options.
Returns:
None.
"""
config = get_config(exp_config, opts)
logger.info(f"config: {config}")
logger.add_filehandler(config.LOG_FILE)
random.seed(config.TASK_CONFIG.SEED)
np.random.seed(config.TASK_CONFIG.SEED)
torch.manual_seed(config.TASK_CONFIG.SEED)
torch.backends.cudnn.benchmark = True
if run_type == "eval" and config.EVAL.EVAL_NONLEARNING:
evaluate_agent(config)
return
trainer_init = baseline_registry.get_trainer(config.TRAINER_NAME)
assert trainer_init is not None, f"{config.TRAINER_NAME} is not supported"
trainer = trainer_init(config)
if run_type == "train":
trainer.train()
elif run_type == "eval":
trainer.eval()
if __name__ == "__main__":
main()