-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
350 lines (291 loc) · 13.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils as utils
from math import ceil, cos, sin, atan2, pi
import numpy as np
# weight_init = [ [ 0, 0],
# [-1, 1], [-2, 2],
# [-1, 0], [-2, 0],
# [-1,-1], [-2,-2],
# [ 0,-1], [ 0,-2],
# [ 1,-1], [ 2,-2],
# [ 1, 0], [ 2, 0],
# [ 1, 1], [ 2, 2],
# [ 0, 1], [ 0, 2] ]
# weight_init = 1.0*torch.tensor(weight_init).view(-1,2,1)
seed = 1
np.random.seed(seed)
weight_init = [ [[1.5,0],[1,0]],
[[1,0],[1.5,0]],
[[2.5,0],[2,0]],
[[1,0],[1,0.5]],
[[1,0],[1,-0.5]],
[[1,1],[1,0.5]],
[[1,-1,],[1,-0.5]],
[[1,1],[0.5,1]],
[[1,-1],[0.5,-1]],
[[-0.5,1],[0,1]],
[[-0.5,-1],[0,-1]],
[[-1.5,1],[-1,1]],
[[-1.5,-1],[-1,-1]] ]
weight_init = 1.0*torch.tensor(weight_init).float().transpose(1,2)
''' ... '''
xy = [-5,-3,-1.8,-1,-0.6,-0.4,0,0.4,0.6,1,1.8,3,5]
xy = [-3,-1.8,-1,-0.6,-0.4,0,0.4,0.6,1,1.8,3]
xy = [-2,-.8,0,.8,2]
xy = [-2.5,-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5,2.0,2.5] # uniform
xy = [-2.0, -1, 0, 1, 2] # uniform
xy = [-5.5, -2.75, 0, 2.75, 5.5] # uniform
loc = np.array(np.meshgrid(xy, xy)).T.reshape(-1,2)
n_tht = 4
vec = np.zeros([n_tht,2,2])
for i in range(n_tht):
tht = np.pi*2*i/n_tht
vec[i,:,0] = np.sin(tht), np.cos(tht)
vec[:,:,1] = -vec[:,:,0]
vec *= 1/4
weight_init = np.zeros([len(loc)*n_tht,2,2])
for i in range(len(loc)):
weight_init[i*n_tht:(i+1)*n_tht,0,:] = loc[i][0]+vec[:,0,:]+np.random.random([4,1])
weight_init[i*n_tht:(i+1)*n_tht,1,:] = loc[i][1]+vec[:,1,:]+np.random.random([4,1])
weight_init = torch.tensor(weight_init) + torch.normal(0,.05,size=weight_init.shape)
''' random generation '''
distance_bound = 6
n_pattern = 100
len_min, len_max = 0.3, 0.9 # meter per 0.4sec
weight_init = np.empty([n_pattern,2,2])
import scipy.stats
sigma = 4
weight_init[:,:,0] = scipy.stats.truncnorm.rvs( -distance_bound/sigma, distance_bound/sigma, loc=0, scale=sigma, size=[n_pattern,2] )
# weight_init[:,:,0] = np.random.uniform(-distance_bound,distance_bound,size=[n_pattern,2])
weight_init[:,:,1] = weight_init[:,:,0]
scaler = np.empty([n_pattern,2])
np.random.seed(seed)
scaler[:,0] = np.random.uniform(len_min,len_max,size=n_pattern)
scaler[:,1] = scaler[:,0]
np.random.seed(seed)
tht = np.random.random(n_pattern)*np.pi*2
vec = np.empty(weight_init.shape)
vec[:,:,0] = np.array([np.sin(tht), np.cos(tht)]).T *scaler /2
vec[:,:,1] = -vec[:,:,0]
weight_init = torch.tensor( weight_init + vec )
''' ... '''
def get_fc_size(ag,in_size):
if ag.n_fc<0:
return [in_size,*ag.fc_width,ag.output_size]
factor = (in_size/out_size)**(1/(ag.n_fc+1))
fc_size = [in_size]
for i in range(ag.n_fc):
fc_size.append(1+int(fc_size[-1]/factor))
fc_size.append(ag.output_size)
return fc_size
class LocPredictor(nn.Module):
def __init__(self, ag):
super().__init__()
self.ag = ag
Conv_ = L2Dist1d if ag.l2d else nn.Conv1d
self.actv = torch.tanh if ag.tanh else F.leaky_relu
self.p = self.ag.drop_rate
t_conv, c_conv = [], []
if ag.cont_ker_num[0]<0: ag.cont_ker_num[0] = len(weight_init)
t_n_ch, c_n_ch = [ag.n_ch, *ag.targ_ker_num], [ag.n_ch, *ag.cont_ker_num]
targ_len, cont_len = ag.hist_len, ag.hist_len
for i in range(len(t_n_ch)-1):
Conv = Conv_ if i==0 else nn.Conv1d
t_conv.append( Conv(t_n_ch[i],t_n_ch[i+1],ag.targ_ker_size[i]) )
targ_len = ceil((targ_len-ag.targ_ker_size[i]+1)/ag.targ_pool_size[i])
for i in range(len(c_n_ch)-1):
Conv = Conv_ if i==0 else nn.Conv1d
c_conv.append( Conv(c_n_ch[i],c_n_ch[i+1],ag.cont_ker_size[i]) )
cont_len = ceil((cont_len-ag.cont_ker_size[i]+1)/ag.cont_pool_size[i])
if self.ag.neighbor:
self.mlp_inp_size = int( targ_len*t_n_ch[-1] + cont_len*c_n_ch[-1] )
else:
self.mlp_inp_size = int( targ_len*t_n_ch[-1])
fc = []
fc_size = get_fc_size(ag, self.mlp_inp_size)
for i in range(len(fc_size)-1):
fc.append(nn.Linear(fc_size[i],fc_size[i+1]))
self.t_conv, self.c_conv = nn.ModuleList(t_conv), nn.ModuleList(c_conv)
self.fc = nn.ModuleList(fc)
if self.ag.lock_l2d:
self.lock_weights()
print(self)
def encodeTraj(self, th, ch):
for i in range(len(self.t_conv)):
th = F.max_pool1d( self.actv(self.t_conv[i](th)) , self.ag.targ_pool_size[i] ,ceil_mode=True)
th = th.view(len(th), -1)
for i in range(len(self.c_conv)):
ch = F.max_pool1d( self.actv(self.c_conv[i](ch)) , self.ag.cont_pool_size[i] ,ceil_mode=True).float()
ch = ch.view(len(ch), -1)
ch = F.softmax(ch) # softmax enforces probablity distribution property
return (th,ch)
def forward(self, th, ch, ei): # th, ch, ei : targ_hist, cont_hist,
th,ch = self.encodeTraj(th, ch)
x = []
if self.ag.neighbor:
for i in range(len(th)):
if self.ag.use_max or len(ch[ei[i]:ei[i+1]])==0:
x.append( torch.cat([th[i],ch[ei[i]:ei[i+1]].sum(0)]) )
else:
x.append( torch.cat([th[i],ch[ei[i]:ei[i+1]].max(0).values]) )
x = torch.stack(x)
else:
x = th
for i in range(len(self.fc)-1):
x = F.dropout(F.leaky_relu(self.fc[i](x)),p=self.p)
x = self.fc[-1](x)
return x
def predictTraj(self,hist,ei=None):
if ei is None: ei = [0,len(hist)]
n_traj, n_scene, hist_len, fut_len = len(hist), len(ei)-1, self.ag.hist_len, self.ag.fut_len
# fut_len = 1
_d = hist.device
Bias, Rot = torch.Tensor(n_traj,2).to(_d), torch.Tensor(n_traj,2,2).to(_d)
pred = torch.Tensor(n_traj,2,fut_len).to(_d)
for t in range(fut_len):
targ_hist, cont_hist, cont_len, i_traj = [], [], [], -1
for i in range(n_scene):
data_scene = hist[ei[i]:ei[i+1]]
n_ped = len(data_scene)
cont_len = np.append(cont_len,[n_ped-1]*n_ped)
_idx = np.arange(n_ped)
for j in range(n_ped):
i_traj+=1
Bias[i_traj] = data_scene[j,:,-1]
dt = data_scene - Bias[i_traj].view(-1,1)
tht = pi/2+atan2(*dt[j,:,-2])
Rot[i_traj] = torch.tensor([[cos(tht),-sin(tht)],[sin(tht),cos(tht)]])
dt = (Rot[i_traj]@dt.transpose(0,1).reshape(2,-1)).view(2,-1,hist_len).transpose(0,1)
targ_hist.append(dt[j,:,:])
cont_hist.append(dt[_idx!=j,:,:])
end_idx = np.append(0,np.cumsum(cont_len).astype("int"))
targ_hist = torch.stack(targ_hist)
cont_hist = torch.cat(cont_hist,dim=0)
pred[:,:,t] = self.forward(targ_hist, cont_hist, end_idx)[:,0:2]
pred[:,:,t] = (Rot.transpose(1,2)@pred[:,:,t].view(-1,2,1)).view(-1,2) + Bias
hist = torch.cat([hist[:,:,1:], pred[:,:,t].detach().view(-1,2,1)],dim=2)
if fut_len==1: pred=pred.view(-1,2)
return pred
def predictNextLoc(self,hist,ei=None,n_guess=None,coef=1):
if ei is None: ei = [0,len(hist)]
if n_guess is None: n_guess = 1
n_traj, n_scene, hist_len, fut_len, = len(hist), len(ei)-1, self.ag.hist_len, self.ag.fut_len
_d = hist.device
Bias, Rot = torch.Tensor(n_traj,2).to(_d), torch.Tensor(n_traj,2,2).to(_d)
targ_hist, cont_hist, cont_len, i_traj = [], [], [], -1
for i in range(n_scene):
data_scene = hist[ei[i]:ei[i+1],:,-hist_len:]
n_ped = len(data_scene)
cont_len = np.append(cont_len,[n_ped-1]*n_ped)
_idx = np.arange(n_ped)
for j in range(n_ped):
i_traj+=1
Bias[i_traj] = data_scene[j,:,-1]
dt = data_scene - Bias[i_traj].view(-1,1)
tht = pi/2+atan2(*dt[j,:,-2])
Rot[i_traj] = torch.tensor([[cos(tht),-sin(tht)],[sin(tht),cos(tht)]])
dt = (Rot[i_traj]@dt.transpose(0,1).reshape(2,-1)).view(2,-1,hist_len).transpose(0,1)
targ_hist.append(dt[j,:,:])
cont_hist.append(dt[_idx!=j,:,:])
end_idx = np.append(0,np.cumsum(cont_len).astype("int"))
targ_hist = torch.stack(targ_hist)
cont_hist = torch.cat(cont_hist,dim=0)
pred = self.forward(targ_hist, cont_hist, end_idx)
netLoc_list = []
for guess_i in range(n_guess):
netLoc_list.append(utils.infLoc(pred,1,coef)[0])
netLoc_list = torch.stack(netLoc_list)
output = []
for netLoc in netLoc_list:
netLoc = (Rot.transpose(1,2)@netLoc.view(-1,2,1)).view(-1,2) + Bias
output.append( torch.cat([hist, netLoc.detach().view(-1,2,1)],dim=2) )
return torch.stack(output)
def predictTrajSample(self,hist,ei=None):
if ei is None: ei = [0,len(hist)]
n_traj, n_scene, hist_len, fut_len, n_guess, n_sample = len(hist), len(ei)-1, self.ag.hist_len, self.ag.fut_len, self.ag.n_guess, self.ag.n_sample
Hist = torch.stack([hist])
coef = 1
for t in range(fut_len):
if len(Hist)>n_sample/n_guess:
_idx = np.random.choice(len(Hist), int(n_sample/n_guess), replace=False)
Hist = Hist[_idx]
candidate_seq = []
for i in range(len(Hist)):
# print('Timestep ', t, ', sample', i, end='\r')
_n_guess = n_sample if t==0 else n_guess
coef *= self.ag.coef
candidate_seq.append( self.predictNextLoc(Hist[i],ei,_n_guess,coef) )
Hist = torch.stack(candidate_seq).view(-1,n_traj,2,hist_len+t+1)
return Hist[:,:,:,-fut_len:]
def lock_weights(self,lock=True):
for layer_list in [self.t_conv, self.c_conv]:
for layer in layer_list:
layer.lock_weights(lock)
class L2Dist1d(nn.Module): # learning kerel seprately for x and y could save weights
def __init__(self,n_ch, n_ker, ker_size):
super(L2Dist1d, self).__init__()
self.n_ch, self.n_ker, self.ker_size = n_ch, n_ker, ker_size
self.weight = nn.Parameter(torch.Tensor(self.n_ker,self.n_ch,self.ker_size))
self.bias = nn.Parameter(torch.zeros(self.n_ker))
self.scaler = nn.Parameter(torch.ones(self.n_ker))
self.weight_init() # self.weight.data.uniform_(-10, 10) #
self.copier = nn.Parameter( torch.ones(1,self.n_ker).float() )
self.copier.requires_grad = False
def forward(self, x):
shape = x.shape
if len(shape)!=3 or shape[1]!=self.n_ch:
print("Invalid input tensor",len(shape),shape[1],self.n_ch)
batch_size, _, in_seq_len = shape
out_seq_len = in_seq_len+1-self.ker_size
if batch_size==0:
return torch.zeros([0,self.weight.shape[0],out_seq_len])
x = torch.nn.functional.unfold(x.view(-1,self.n_ch,in_seq_len,1),(self.ker_size,1)).transpose(1,2)
x = x.view(batch_size,out_seq_len,-1,1).matmul(self.copier) - self.weight.view(self.n_ker,-1).t()
# x = torch.log( x.pow(2).sum(2).sqrt().transpose(1,2) )
x = torch.log( x.pow(2).view(batch_size,out_seq_len,self.n_ch,self.ker_size,self.n_ker).sum(2).sqrt().sum(2).transpose(1,2) )
x = -x * torch.exp(self.scaler.view(-1,1)) + self.bias.view(-1,1)
return x
def weight_init(self):
# if self.n_ch==2 and self.ker_size==1 and self.n_ker==7:
# self.weight.data = weight_init[:7] + torch.normal(0,.05,size=self.weight.shape)
# print("target conv[0] init.",self.weight.data.shape,self.weight.data.view(-1,2))
# elif self.n_ch==2 and self.ker_size==1 and self.n_ker==17:
# self.weight.data = weight_init[:] + torch.normal(0,.05,size=self.weight.shape)
# print("context conv[0] init.",self.weight.data.shape,self.weight.data.view(-1,2))
# if self.n_ch==2 and self.ker_size==2 and self.n_ker==13:
if self.n_ch==2 and self.ker_size==2 and self.n_ker==len(weight_init):
self.weight.data = weight_init[:]
print("context conv[0] init.",self.weight.data.shape)
else:
self.weight.data.uniform_(-1, 1)
def lock_weights(self,lock=True):
if self.weight.requires_grad == lock:
print("requires_grad",(not lock))
self.weight.requires_grad = not lock
# self.bias.requires_grad = not lock
# self.scaler.requires_grad = not lock
# def l2d_check(self, x):
# batch_size, _, in_seq_len = x.shape
# out_seq_len = in_seq_len+1-self.ker_size
# out = torch.zeros(batch_size,self.n_ker,out_seq_len).to(x.device)
# for i in range(batch_size):
# for j in range(self.n_ker):
# for k in range(out_seq_len):
# sum = 0
# for l in range(self.n_ch):
# sum += (x[i,l,k:k+self.ker_size]-self.weight[j,l]).norm()**2
# out[i,j,k] = torch.sqrt(sum)
# return out+self.bias.view(-1,1)
# def conv(self,x):
# # out = torch.nn.functional.conv2d(x, self.weight)
# shape = x.shape
# if len(shape)!=3 or shape[1]!=self.n_ch:
# print("Invalid input tensor")
# batch_size, _, in_seq_len = shape
# out_seq_len = in_seq_len+1-self.ker_size
# x_unf = torch.nn.functional.unfold(x.view(-1, self.n_ch, in_seq_len,1),(self.ker_size,1)).transpose(1,2)
# out = x_unf.matmul(self.weight.view(self.n_ker,-1).t()).transpose(1,2).view(-1, self.n_ker, out_seq_len)
# out = out+self.bias.view(-1,1)
# return out