forked from fcouderc/egm_tnp_analysis
-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtnpEGM_commissioning.py
364 lines (273 loc) · 11.8 KB
/
tnpEGM_commissioning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os,sys,copy
#import numpy as np
from root_numpy import tree2array, array2tree
sys.path.append("..")
import etc.inputs.tnpSampleDef as tnpSamples
import libPython.tnpClassUtils as tnpClasses
import libPython.CMS_lumi as CMS_lumi
import libPython.tdrstyle as tdrstyle
import ROOT as rt
from ROOT import gStyle
from ROOT import gROOT
#################################################################################################
########## settings
#################################################################################################
treename = 'tnpEleIDs/fitter_tree'
tdrstyle.setTDRStyle()
CMS_lumi.extraText = "Preliminary"
CMS_lumi.lumi_sqrtS = "35.9 fb^{-1} (13 TeV)"
iPos = 11
iPeriod = 0
##### define data samples
dataSamples = {
# 'runBCD' : tnpSamples.Moriond17_80X['data_Run2016B'].clone(),
'runH' : tnpSamples.Legacy2016_v1_80X['data_Run2016H'].clone(),
}
#dataSamples['runBCD'].add_sample(tnpSamples.Moriond17_80X['data_Run2016C'])
#dataSamples['runBCD'].add_sample(tnpSamples.Moriond17_80X['data_Run2016D'])
##### define mc samples
mcSamples = {
# 'runBCD' : tnpSamples.Remini17_80X['DY_madgraph' ].clone(),
'runH' : tnpSamples.Legacy2016_v1_80X['DY_madgraph_Winter17' ].clone(),
}
#mcSamples['runBCD'].set_puTree('root://eoscms.cern.ch//eos/cms/store/group/phys_egamma/tnp/80X/pu/DY_madgraph_MCWinter17_rec_rec.pu.puTree.root')
#mcSamples['runBCD'].set_weight('weights_2016_runBCD.totWeight')
weightName = 'totWeight'
#mcSamples['runBCD'].set_weight(weightName)
mcSamples['runH'].set_weight(weightName)
#### the different epochs to run over
epochs = [ 'runH' ]
### the output directory
outputdir = 'plots/commissioning/'
### the list of variables to plot (cuts are defined in the loopTree function)
cutEB = 'EB'
cutEE = 'EE'
varList = [
tnpClasses.tnpVar('event_nPV', title = "# PV", xmin = -0.5, xmax = 50.5, nbins = 51,),
tnpClasses.tnpVar('rho' , title = "#rho", nbins = 50, xmin = -0.5, xmax = 50.5),
tnpClasses.tnpVar('el_sc_eta', title = 'SC #eta',nbins=100,xmin = -2.5,xmax = 2.5),
tnpClasses.tnpVar('pair_mass', title = 'EB - M_{ee} [GeV]', nbins=120,xmin=60, xmax=120, cut = cutEB ),
tnpClasses.tnpVar('pair_mass', title = 'EE - M_{ee} [GeV]', nbins=120,xmin=60, xmax=120, cut = cutEE ),
tnpClasses.tnpVar('el_et' , title = 'EB - E_{T} [GeV]',nbins=100,xmin=0, xmax=100, cut = cutEB),
tnpClasses.tnpVar('el_et' , title = 'EE - E_{T} [GeV]',nbins=100,xmin=0, xmax=100, cut = cutEE),
tnpClasses.tnpVar('el_chIso' , title = 'EB - Charged Hadron Isolation [GeV]',nbins=100,xmin=0, xmax=5, cut = cutEB),
tnpClasses.tnpVar('el_chIso' , title = 'EE - Charged Hadron Isolation [GeV]',nbins=100,xmin=0, xmax=5, cut = cutEE),
tnpClasses.tnpVar('el_neuIso', title = 'EB - Neutral Hadron Isolation [GeV]',nbins=100,xmin=0, xmax=5, cut = cutEB),
tnpClasses.tnpVar('el_neuIso', title = 'EE - Neutral Hadron Isolation [GeV]',nbins=100,xmin=0, xmax=5, cut = cutEE),
tnpClasses.tnpVar('el_phoIso', title = 'EB - photon Isolation [GeV]',nbins=100,xmin=0, xmax=5, cut = cutEB),
tnpClasses.tnpVar('el_phoIso', title = 'EE - photon Isolation [GeV]',nbins=100,xmin=0, xmax=5, cut = cutEE),
tnpClasses.tnpVar('el_sieie' , title = 'EB - #sigma_{i#etai#eta}', nbins=100,xmin=0.005,xmax=0.015, cut = cutEB),
tnpClasses.tnpVar('el_sieie' , title = 'EE - #sigma_{i#etai#eta}', nbins=100,xmin=0.015,xmax=0.035, cut = cutEE),
tnpClasses.tnpVar('el_dEtaIn', title = 'EB - #delta#eta_{in}', nbins=50,xmin=-0.04,xmax=0.04, cut = cutEB),
tnpClasses.tnpVar('el_dEtaIn', title = 'EE - #delta#eta_{in}', nbins=50,xmin=-0.04,xmax=0.04, cut = cutEE),
tnpClasses.tnpVar('el_dPhiIn', title = 'EB - #delta#phi_{in}', nbins=50,xmin=-0.2,xmax=0.2, cut = cutEB),
tnpClasses.tnpVar('el_dPhiIn', title = 'EE - #delta#phi_{in}', nbins=50,xmin=-0.2,xmax=0.2, cut = cutEE),
#el_neuIso
#el_phoIso
]
#################################################################################################
########## loop over events and fill histograms
#################################################################################################
def loopTree(sample, isMC):
tree = rt.TChain(treename)
for p in sample.path:
print ' adding rootfile: ', p
tree.Add(p)
friendTreeName=''
if not sample.puTree is None:
print ' - Adding weight tree: %s from file %s ' % (sample.weight.split('.')[0], sample.puTree)
friendTreeName = sample.weight.split('.')[0]
tree.AddFriend(sample.weight.split('.')[0],sample.puTree)
print "friendTreeName is ", friendTreeName
if(isMC):
friendTree = tree.GetFriend(friendTreeName)
treeVars = ['tag_Ele_pt','tag_sc_abseta','passingLoose80X','el_pt','el_sc_abseta',
'el_neuIso','el_phoIso','el_chIso',
'tag_Ele_q','el_q']
histList = []
for var in varList:
if not var.varName() in treeVars: treeVars.append(var.varName())
histList.append( copy.deepcopy(var) )
if isMC: treeVars.append('totWeight')
print 'Getting vars: '
print treeVars
# tree.Print('toponly')
events = tree2array( tree, branches = treeVars )
nentries = 100000
nentries = len(events)
print 'Nentries: ', nentries
for ev in range(nentries):
if ev % 100000 == 0 : print ' Nevts: ', ev
# combinedProbeIso = (el_neuIso+el_phoIso+el_chIso)/el_pt
# print "tag pt : mass : combinedIso ", tag_Ele_pt, " ",pair_mass, " ", combinedTagIso
evt = events[ev]
if evt['tag_Ele_pt'] < 35 : continue
if evt['el_pt'] < 20 : continue
if evt['el_q'] * evt['tag_Ele_q'] > 0 : continue
# if int(evt['passingLoose80X']) == 0 : continue
weight = 1
if isMC : weight = evt['totWeight']
for hist in histList:
if hist.cut is None:
hist.get_hist().Fill( evt[hist.var], weight )
elif hist.cut == 'EB' and evt['el_sc_abseta'] < 1.479 :
hist.get_hist().Fill( evt[hist.var], weight )
elif hist.cut == 'EE' and evt['el_sc_abseta'] > 1.479 :
hist.get_hist().Fill( evt[hist.var], weight )
return histList
######For drawing purpose
def setCanvas():
W = 800
H = 600
H_ref = 600
W_ref = 800
T = 0.08*H_ref
B = 0.12*H_ref
L = 0.12*W_ref
R = 0.04*W_ref
c = rt.TCanvas('c','c',50,50,W,H)
c.SetLeftMargin( L/W )
c.SetRightMargin( R/W )
c.SetTopMargin( T/H )
c.SetBottomMargin( B/H )
pad1 = rt.TPad("pad1", "The pad 80% of the height",0.0,0.2,1.0,1.0,21)
pad2 = rt.TPad("pad2", "The pad 20% of the height",0.0,0.001,1.0,0.25,22)
pad1.SetFillColor(0)
pad2.SetFillColor(0)
pad2.SetTopMargin(0.02619172);
pad2.SetBottomMargin(0.3102846);
pad1.Draw()
pad2.Draw()
return c,pad1,pad2
def setLegend():
leg = rt.TLegend(0.72,0.75,0.9194975,0.9154704)
leg.SetBorderSize(0)
leg.SetTextFont(62)
leg.SetLineColor(1)
leg.SetLineStyle(1)
leg.SetLineWidth(1)
leg.SetFillColor(0)
leg.SetFillStyle(1001)
return leg
def getRatioPlot(histData,histMC ):
hratio = histData.Clone()
hratio.Divide(histData,histMC)
hratio.GetXaxis().SetTitle(histData.GetXaxis().GetTitle())
hratio.GetXaxis().SetLabelSize(0.11)
hratio.GetYaxis().SetLabelSize(0.11)
hratio.GetYaxis().SetTitleSize(0.09)
hratio.GetXaxis().SetLabelFont(42)
hratio.GetXaxis().SetLabelSize(0.11)
hratio.GetXaxis().SetTitleSize(0.035)
hratio.GetXaxis().SetTitleFont(62)
hratio.GetYaxis().SetTitle("#frac{Data}{MC}")
hratio.GetYaxis().SetLabelFont(62)
hratio.GetYaxis().SetLabelSize(0.11)
hratio.GetYaxis().SetTitleSize(0.13)
hratio.GetYaxis().SetTitleOffset(0.3)
hratio.GetYaxis().SetNdivisions(205)
hratio.GetXaxis().SetTitleSize(0.08)
hratio.GetXaxis().SetLabelSize(0.13)
hratio.GetXaxis().SetTitleSize(0.13)
hratio.GetYaxis().SetLabelSize(0.12)
hratio.GetYaxis().SetTitleSize(0.13)
hratio.GetYaxis().SetTitleFont(62)
hratio.GetZaxis().SetLabelFont(62)
hratio.GetZaxis().SetLabelSize(0.035)
hratio.GetZaxis().SetTitleSize(0.035)
hratio.GetZaxis().SetTitleFont(62)
hratio.GetYaxis().SetTitleOffset(0.3)
hratio.GetYaxis().SetTitle("#frac{Data}{MC}")
hratio.SetMaximum(1.5)
hratio.SetMinimum(0.5)
return hratio
#################################################################################################
########## main
#################################################################################################
for epoch in epochs:
histListData = loopTree(dataSamples[epoch],0)
histListMC = loopTree(mcSamples[epoch] ,1)
os.system("mkdir -p "+ outputdir + '/' + epoch + '/linear/' )
os.system("mkdir -p "+ outputdir + '/' + epoch + '/log/' )
fileoutMC = rt.TFile( outputdir + "/histoMC_%s.root" %(epoch), "RECREATE")
fileoutData = rt.TFile( outputdir + "/histoData_%s.root" %(epoch), "RECREATE")
for ih in range(len(histListMC)):
histMC = histListMC[ih].get_hist()
histData = histListData[ih].get_hist()
####save the hists first in a root file which can be used later###
fileoutMC.cd()
histMC.Write()
fileoutData.cd()
histData.Write()
#####linear plots
c,pad1,pad2 = setCanvas()
histMC.SetFillColor(rt.kOrange-2)
histMC.SetLineColor(rt.kOrange-2)
histData.SetLineWidth(2)
histData.SetMarkerStyle(20)
histData.SetLineColor(1)
print "Data integral ",histData.Integral()
print "MC integral ",histMC.Integral()
if not (histMC.Integral() == 0):
scale = histData.Integral()/histMC.Integral()
if(histMC.Integral() == 0):
print "hist: ",histMC.GetName(), " MC integral is 0 so not plotting"
continue
histMC.Scale(scale)
pad1.cd()
gStyle.SetOptStat(0)
histMC.GetXaxis().SetLabelSize(0)
histMC.GetXaxis().SetTitleSize(0)
histMC.SetMinimum(0)
histMC.GetYaxis().SetTitle('Events')
histMC.DrawCopy('hist')
histData.DrawCopy('same e')
c.Update()
#iPeriod = 2
#iPos = 11
CMS_lumi.CMS_lumi(pad1, iPeriod, iPos)
leg = setLegend()
leg.AddEntry(histData,"Data","P")
leg.AddEntry(histMC, "Z#rightarrow ee (MC)","f")
leg.Draw()
pad1.Update()
tex = rt.TLatex(0.4,0.85,"Z#rightarrow ee")
tex.SetNDC()
tex.SetLineWidth(2)
# tex.Draw()
pad2.cd()
hratio = getRatioPlot(histData,histMC)
hratio.SetTitle('')
hratio.DrawCopy("E1")
xlow = histData.GetXaxis().GetXmin()
xhigh = histData.GetXaxis().GetXmax()
l = rt.TLine(xlow,1.,xhigh,1.)
l.SetLineColor(2)
l.SetLineStyle(2)
l.SetLineWidth(2)
l.Draw("sames")
c.Update()
pngname = "%s.png" % (histData.GetTitle())
print("png name is ",pngname)
c.Print( outputdir + '/' + epoch + '/linear/' + pngname )
######log plots
c,pad1,pad2 = setCanvas()
pad1.cd()
pad1.SetLogy()
histMC.SetMinimum(0.1)
histData.SetMinimum(0.1)
histMC.DrawCopy('hist')
histData.DrawCopy('same e')
CMS_lumi.CMS_lumi(pad1, iPeriod, iPos)
leg.Draw()
pad2.cd()
hratio.DrawCopy("E1")
l.Draw("sames")
c.Update()
c.Print( outputdir + '/' + epoch + '/log/' + pngname )
###### end of log plots
fileoutMC.Write()
fileoutData.Write()
fileoutMC.Close()
fileoutData.Close()
######end of the function