forked from pressel/pycles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScalarDiffusion.pyx
210 lines (177 loc) · 9.06 KB
/
ScalarDiffusion.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport ReferenceState
cimport PrognosticVariables
cimport DiagnosticVariables
cimport ParallelMPI
from NetCDFIO cimport NetCDFIO_Stats
import numpy as np
cimport numpy as np
from Thermodynamics cimport LatentHeat
from FluxDivergence cimport scalar_flux_divergence
import cython
cdef extern from "scalar_diffusion.h":
void compute_diffusive_flux(Grid.DimStruct *dims, double *alpha0, double *alpha0_half, double *diffusivity,
double *scalar, double *flux, double dx, size_t d, Py_ssize_t scheme, double factor)
void compute_qt_diffusion_s_source(Grid.DimStruct *dims, double *p0_half, double *alpha0, double *alpha0_half,
double *flux, double *qt, double *qv, double *T, double *tendency, double (*lam_fp)(double),
double (*L_fp)(double, double), double dx, Py_ssize_t d )
cdef class ScalarDiffusion:
def __init__(self, namelist, LatentHeat LH, DiagnosticVariables.DiagnosticVariables DV,ParallelMPI.ParallelMPI Pa):
DV.add_variables('diffusivity','--','sym',Pa)
self.L_fp = LH.L_fp
self.Lambda_fp = LH.Lambda_fp
try:
self.qt_entropy_source = namelist['diffusion']['qt_entropy_source']
except:
self.qt_entropy_source = False
Pa.root_print('By default not including entropy source resulting from diffusion of qt!')
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
'''
Initialization method for the scalar diffusion class. Initializes the flux array to zero and adds output profiles
to the Statistics output profile.
:param Gr: Grid class
:param PV: PrognosticVariables class
:param DV: DiagnosticVariables class
:param NS: NetCDFIO_Stats class
:param Pa: ParallelMPI class
:return:
'''
self.flux = np.zeros((PV.nv_scalars*Gr.dims.npg*Gr.dims.dims,),dtype=np.double,order='c')
#Initialize output fields
for i in xrange(PV.nv):
if PV.var_type[i] == 1:
NS.add_profile(PV.index_name[i] + '_sgs_flux_z',Gr,Pa)
if self.qt_entropy_source:
NS.add_profile('sgs_qt_s_source_mean',Gr,Pa)
NS.add_profile('sgs_qt_s_source_min',Gr,Pa)
NS.add_profile('sgs_qt_s_source_max',Gr,Pa)
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV):
'''
Update method for scalar diffusion class, based on a second order finite difference scheme. The method should
only be called following a call to update method for the SGS class.
:param Gr: Grid class
:param RS: ReferenceState class
:param PV: PrognosticVariables class
:param DV: DiagnosticVariables class
:return:
'''
cdef:
Py_ssize_t diff_shift = DV.get_varshift(Gr,'diffusivity')
Py_ssize_t s_shift
Py_ssize_t qt_shift
Py_ssize_t t_shift
Py_ssize_t qv_shift
Py_ssize_t n_qt = -9999
Py_ssize_t n_e
Py_ssize_t d, i ,scalar_shift, scalar_count = 0, flux_shift
Py_ssize_t diff_shift_n = DV.get_varshift(Gr,'diffusivity')
double flux_factor = 1.0
if 'qt' in PV.name_index:
n_qt = PV.name_index['qt']
s_shift = PV.get_varshift(Gr,'s')
qt_shift = PV.get_varshift(Gr,'qt')
t_shift = DV.get_varshift(Gr,'temperature')
qv_shift = DV.get_varshift(Gr,'qv')
if 'e' in PV.name_index:
n_e = PV.name_index['e']
for i in xrange(PV.nv):
#Only compute fluxes for prognostic variables here
if PV.var_type[i] == 1:
scalar_shift = i * Gr.dims.npg
if i == n_e:
diff_shift_n = DV.get_varshift(Gr,'viscosity')
flux_factor = 2.0
else:
diff_shift_n = DV.get_varshift(Gr,'viscosity')
flux_factor = 1.0
for d in xrange(Gr.dims.dims):
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + d* Gr.dims.npg
compute_diffusive_flux(&Gr.dims,&RS.rho0[0],&RS.rho0_half[0],
&DV.values[diff_shift],&PV.values[scalar_shift],
&self.flux[flux_shift],Gr.dims.dx[d],d,2, flux_factor)
scalar_flux_divergence(&Gr.dims,&RS.alpha0[0],&RS.alpha0_half[0],
&self.flux[flux_shift],&PV.tendencies[scalar_shift],Gr.dims.dx[d],d)
if i == n_qt and self.qt_entropy_source:
compute_qt_diffusion_s_source(&Gr.dims, &RS.p0_half[0], &RS.alpha0[0],&RS.alpha0_half[0],
&self.flux[flux_shift],&PV.values[qt_shift], &DV.values[qv_shift],
&DV.values[t_shift],&PV.tendencies[s_shift],self.Lambda_fp,
self.L_fp,Gr.dims.dx[d],d)
scalar_count += 1
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS,PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
'''
Statistical output for ScalarDiffusion class.
:param Gr: Grid class
:param RS: ReferenceState class
:param PV: PrognosticVariables class
:param DV: DiagnosticVariables class
:param NS: NetCDFIO_Stats class
:param Pa: ParallelMPI class
:return:
'''
cdef:
Py_ssize_t d
Py_ssize_t i
Py_ssize_t k
double[:] data = np.zeros((Gr.dims.npg,), dtype=np.double, order='c')
double[:] tmp
double [:] tmp_interp = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
Py_ssize_t s_shift
Py_ssize_t qt_shift
Py_ssize_t t_shift
Py_ssize_t qv_shift
Py_ssize_t scalar_count = 0
if 'qt' in PV.name_index:
s_shift = PV.get_varshift(Gr,'s')
qt_shift = PV.get_varshift(Gr,'qt')
t_shift = DV.get_varshift(Gr,'temperature')
qv_shift = DV.get_varshift(Gr,'qv')
#Output vertical component of SGS scalar fluxes
d = 2
for i in xrange(PV.nv):
if PV.var_type[i] == 1:
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + d* Gr.dims.npg
tmp = Pa.HorizontalMean(Gr, &self.flux[flux_shift])
for k in xrange(Gr.dims.gw,Gr.dims.nlg[2]-Gr.dims.gw):
tmp_interp[k] = 0.5*(tmp[k-1]+tmp[k])
NS.write_profile(PV.index_name[i] + '_sgs_flux_z', tmp_interp[Gr.dims.gw:-Gr.dims.gw], Pa)
scalar_count += 1
if self.qt_entropy_source:
#Ouput entropy source term from qt diffusion
scalar_count = 0
if 'qt' in PV.name_index:
for i in xrange(PV.nv):
if PV.var_type[i] == 1:
if PV.index_name[i] == 'qt':
break
scalar_count += 1
for d in xrange(Gr.dims.dims):
flux_shift = scalar_count * (Gr.dims.dims * Gr.dims.npg) + d* Gr.dims.npg
compute_qt_diffusion_s_source(&Gr.dims, &RS.p0_half[0], &RS.alpha0[0],&RS.alpha0_half[0],
&self.flux[flux_shift],&PV.values[qt_shift], &DV.values[qv_shift],
&DV.values[t_shift],&data[0],self.Lambda_fp,
self.L_fp,Gr.dims.dx[d],d)
tmp = Pa.HorizontalMean(Gr, &data[0])
NS.write_profile('sgs_qt_s_source_mean', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMaximum(Gr, &data[0])
NS.write_profile('sgs_qt_s_source_max', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMinimum(Gr, &data[0])
NS.write_profile('sgs_qt_s_source_min', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
else:
tmp = Pa.HorizontalMean(Gr, &data[0])
NS.write_profile('sgs_qt_s_source_mean', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMaximum(Gr, &data[0])
NS.write_profile('sgs_qt_s_source_max', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMinimum(Gr, &data[0])
NS.write_profile('sgs_qt_s_source_min', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
return