forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTreeOfCoprimes.cpp
123 lines (111 loc) · 4.37 KB
/
TreeOfCoprimes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// Source : https://leetcode.com/problems/tree-of-coprimes/
// Author : Hao Chen
// Date : 2021-04-01
/*****************************************************************************************************
*
* There is a tree (i.e., a connected, undirected graph that has no cycles) consisting of n nodes
* numbered from 0 to n - 1 and exactly n - 1 edges. Each node has a value associated with it, and the
* root of the tree is node 0.
*
* To represent this tree, you are given an integer array nums and a 2D array edges. Each nums[i]
* represents the i^th node's value, and each edges[j] = [uj, vj] represents an edge between nodes uj
* and vj in the tree.
*
* Two values x and y are coprime if gcd(x, y) == 1 where gcd(x, y) is the greatest common divisor of
* x and y.
*
* An ancestor of a node i is any other node on the shortest path from node i to the root. A node is
* not considered an ancestor of itself.
*
* Return an array ans of size n, where ans[i] is the closest ancestor to node i such that nums[i] and
* nums[ans[i]] are coprime, or -1 if there is no such ancestor.
*
* Example 1:
*
* Input: nums = [2,3,3,2], edges = [[0,1],[1,2],[1,3]]
* Output: [-1,0,0,1]
* Explanation: In the above figure, each node's value is in parentheses.
* - Node 0 has no coprime ancestors.
* - Node 1 has only one ancestor, node 0. Their values are coprime (gcd(2,3) == 1).
* - Node 2 has two ancestors, nodes 1 and 0. Node 1's value is not coprime (gcd(3,3) == 3), but node
* 0's
* value is (gcd(2,3) == 1), so node 0 is the closest valid ancestor.
* - Node 3 has two ancestors, nodes 1 and 0. It is coprime with node 1 (gcd(3,2) == 1), so node 1 is
* its
* closest valid ancestor.
*
* Example 2:
*
* Input: nums = [5,6,10,2,3,6,15], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]
* Output: [-1,0,-1,0,0,0,-1]
*
* Constraints:
*
* nums.length == n
* 1 <= nums[i] <= 50
* 1 <= n <= 10^5
* edges.length == n - 1
* edges[j].length == 2
* 0 <= uj, vj < n
* uj != vj
******************************************************************************************************/
class Solution {
private:
// Euclidean algorithm
// https://en.wikipedia.org/wiki/Euclidean_algorithm
int gcd(int a, int b) {
while (a != b ) {
if (a > b ) a -= b;
else b -= a;
}
return a;
}
void print(vector<int>& v, int len, vector<int>& nums){
cout << "[";
for(int i=0; i< len; i++) {
cout << v[i] <<"("<< nums[v[i]]<<"), ";
}
cout << v[len] <<"("<<nums[v[len]]<<")]"<< endl;
}
public:
vector<int> getCoprimes(vector<int>& nums, vector<vector<int>>& edges) {
unordered_map<int, vector<int>> graph;
for(auto& edge : edges) {
graph[edge[0]].push_back(edge[1]);
graph[edge[1]].push_back(edge[0]);
}
int n = nums.size();
vector<int> result(n, -1);
vector<int> path(n, -1);
path[0] = 0;
// primePos[num] = {position, level};
vector<vector<pair<int, int>>> primePos(51, vector<pair<int, int>>());
getCoprimesDFS(-1, 0, nums, graph, path, 0, primePos, result);
return result;
}
void getCoprimesDFS(int parent, int root,
vector<int>& nums,
unordered_map<int, vector<int>>& graph,
vector<int>& path, int pathLen,
vector<vector<pair<int, int>>>& primePos,
vector<int>& result) {
int max_level = -1;
// find the previous closest prime
for(int n = 0; n < primePos.size(); n++) {
auto& pos = primePos[n];
// no position || not co-prime
if ( pos.size() <=0 || gcd(nums[root], n) != 1) continue;
if (pos.back().second > max_level && pos.back().first != root) {
max_level = pos.back().second;
result[root] = pos.back().first;
}
}
primePos[nums[root]].push_back({root, pathLen});
for (auto& child : graph[root]) {
if (child == parent) continue; // don't go back
path[pathLen+1] = child; // for debug
getCoprimesDFS(root, child, nums, graph, path, pathLen + 1, primePos, result);
}
primePos[nums[root]].pop_back();
}
};