forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximizeScoreAfterNOperations.cpp
99 lines (89 loc) · 2.73 KB
/
MaximizeScoreAfterNOperations.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Source : https://leetcode.com/problems/maximize-score-after-n-operations/submissions/
// Author : Hao Chen
// Date : 2021-03-23
/*****************************************************************************************************
*
* You are given nums, an array of positive integers of size 2 * n. You must perform n operations on
* this array.
*
* In the i^th operation (1-indexed), you will:
*
* Choose two elements, x and y.
* Receive a score of i * gcd(x, y).
* Remove x and y from nums.
*
* Return the maximum score you can receive after performing n operations.
*
* The function gcd(x, y) is the greatest common divisor of x and y.
*
* Example 1:
*
* Input: nums = [1,2]
* Output: 1
* Explanation: The optimal choice of operations is:
* (1 * gcd(1, 2)) = 1
*
* Example 2:
*
* Input: nums = [3,4,6,8]
* Output: 11
* Explanation: The optimal choice of operations is:
* (1 * gcd(3, 6)) + (2 * gcd(4, 8)) = 3 + 8 = 11
*
* Example 3:
*
* Input: nums = [1,2,3,4,5,6]
* Output: 14
* Explanation: The optimal choice of operations is:
* (1 * gcd(1, 5)) + (2 * gcd(2, 4)) + (3 * gcd(3, 6)) = 1 + 4 + 9 = 14
*
* Constraints:
*
* 1 <= n <= 7
* nums.length == 2 * n
* 1 <= nums[i] <= 10^6
******************************************************************************************************/
class Solution {
private:
// Euclidean algorithm
// https://en.wikipedia.org/wiki/Euclidean_algorithm
int gcd(int a, int b) {
while(a != b) {
if(a > b) a = a - b;
else b = b - a;
}
return a;
}
unordered_map<int, int> cache;
public:
int maxScore(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> pair_gcd(n, vector<int>(n, 0) );
for (int i=0; i< n - 1; i++) {
for (int j=i+1; j < n; j++ ) {
pair_gcd[i][j] = gcd(nums[i], nums[j]);
}
}
// used_mark[] - remember the num has been used.
return maxScore(pair_gcd, 0, n, n/2);
}
int maxScore(vector<vector<int>>& pair_gcd, int mask, int n, int step) {
if (cache.find(mask) != cache.end()) {
return cache[mask];
}
int m = 0;
for (int i=0; i< n - 1; i++) {
if ( (1<<i) & mask ) continue;
for (int j=i+1; j < n; j++ ) {
if ((1<<j) & mask) continue;
if (step == 1) {
return pair_gcd[i][j];
}
m = max(m, step * pair_gcd[i][j] +
maxScore(pair_gcd, mask | (1<<i) | (1<<j), n, step-1));
}
}
cache[mask] = m;
return m;
}
};