forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4Sum.cpp
130 lines (112 loc) · 3.56 KB
/
4Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Source : https://oj.leetcode.com/problems/4sum/
// Author : Hao Chen
// Date : 2014-07-03
/**********************************************************************************
*
* Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target?
* Find all unique quadruplets in the array which gives the sum of target.
*
* Note:
*
* Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
* The solution set must not contain duplicate quadruplets.
*
* For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
*
* A solution set is:
* (-1, 0, 0, 1)
* (-2, -1, 1, 2)
* (-2, 0, 0, 2)
*
*
**********************************************************************************/
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<vector<int> > threeSum(vector<int> num, int target);
/*
* 1) Sort the array,
* 2) traverse the array, and solve the problem by using "3Sum" soultion.
*/
vector<vector<int> > fourSum(vector<int> &num, int target) {
vector< vector<int> > result;
if (num.size() < 4) return result;
sort( num.begin(), num.end() );
for(int i = 0; i < num.size() - 3; i++) {
//skip the duplication
if (i > 0 && num[i - 1] == num[i]) continue;
vector<int> n(num.begin()+i+1, num.end());
vector<vector<int> > ret = threeSum(n, target-num[i]);
for(int j = 0; j < ret.size(); j++) {
ret[j].insert(ret[j].begin(), num[i]);
result.push_back(ret[j]);
}
}
return result;
}
vector<vector<int> > threeSum(vector<int> num, int target) {
vector< vector<int> > result;
//sort the array (if the qrray is sorted already, it won't waste any time)
sort(num.begin(), num.end());
int n = num.size();
for (int i = 0; i < n - 2; i++) {
//skip the duplication
if (i > 0 && num[i - 1] == num[i]) continue;
int a = num[i];
int low = i + 1;
int high = n - 1;
while (low < high) {
int b = num[low];
int c = num[high];
if (a + b + c == target) {
//got the soultion
vector<int> v;
v.push_back(a);
v.push_back(b);
v.push_back(c);
result.push_back(v);
// Continue search for all triplet combinations summing to zero.
//skip the duplication
while(low < n && num[low] == num[low + 1]) low++;
while(high > 0 && num[high] == num[high - 1]) high--;
low++;
high--;
} else if (a + b + c > target) {
//skip the duplication
while(high > 0 && num[high] == num[high - 1]) high--;
high--;
} else {
//skip the duplication
while(low < n && num[low] == num[low + 1]) low++;
low++;
}
}
}
return result;
}
int printMatrix(vector< vector<int> > &vv)
{
for(int i = 0; i < vv.size(); i++) {
cout << "[";
for(int j = 0; j < vv[i].size(); j++) {
cout << " " << vv[i][j];
}
cout << "]" << endl;;
}
}
int main()
{
int a[] = { 1, 0, -1, 0, -2, 2 };
vector<int> n(a, a+6);
int t = 0;
vector< vector<int> > v = fourSum(n, t);
printMatrix(v);
n.clear();
int b[] = { -1, -5, -5, -3, 2, 5, 0, 4 };
n.insert(n.begin(), b, b+8);
t = -7;
v = fourSum(n, t);
printMatrix(v);
return 0;
}