forked from notnil/chess
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathposition.go
340 lines (312 loc) · 8.7 KB
/
position.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
package chess
import (
"bytes"
"crypto/md5"
"encoding/binary"
"errors"
"fmt"
"strings"
)
// Side represents a side of the board.
type Side int
const (
// KingSide is the right side of the board from white's perspective.
KingSide Side = iota + 1
// QueenSide is the left side of the board from white's perspective.
QueenSide
)
// CastleRights holds the state of both sides castling abilities.
type CastleRights string
// CanCastle returns true if the given color and side combination
// can castle, otherwise returns false.
func (cr CastleRights) CanCastle(c Color, side Side) bool {
char := "k"
if side == QueenSide {
char = "q"
}
if c == White {
char = strings.ToUpper(char)
}
return strings.Contains(string(cr), char)
}
// String implements the fmt.Stringer interface and returns
// a FEN compatible string. Ex. KQq
func (cr CastleRights) String() string {
return string(cr)
}
// Position represents the state of the game without reguard
// to its outcome. Position is translatable to FEN notation.
type Position struct {
board *Board
turn Color
castleRights CastleRights
enPassantSquare Square
halfMoveClock int
moveCount int
inCheck bool
validMoves []*Move
}
const (
startFEN = "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"
)
// StartingPosition returns the starting position
// rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1
func StartingPosition() *Position {
pos, _ := decodeFEN(startFEN)
return pos
}
// Update returns a new position resulting from the given move.
// The move itself isn't validated, if validation is needed use
// Game's Move method. This method is more performant for bots that
// rely on the ValidMoves because it skips redundant validation.
func (pos *Position) Update(m *Move) *Position {
moveCount := pos.moveCount
if pos.turn == Black {
moveCount++
}
ncr := pos.updateCastleRights(m)
p := pos.board.Piece(m.s1)
halfMove := pos.halfMoveClock
if p.Type() == Pawn || m.HasTag(Capture) {
halfMove = 0
} else {
halfMove++
}
b := pos.board.copy()
b.update(m)
return &Position{
board: b,
turn: pos.turn.Other(),
castleRights: ncr,
enPassantSquare: pos.updateEnPassantSquare(m),
halfMoveClock: halfMove,
moveCount: moveCount,
inCheck: m.HasTag(Check),
}
}
// ValidMoves returns a list of valid moves for the position.
func (pos *Position) ValidMoves() []*Move {
if pos.validMoves != nil {
return append([]*Move(nil), pos.validMoves...)
}
pos.validMoves = engine{}.CalcMoves(pos, false)
return append([]*Move(nil), pos.validMoves...)
}
// Status returns the position's status as one of the outcome methods.
// Possible returns values include Checkmate, Stalemate, and NoMethod.
func (pos *Position) Status() Method {
return engine{}.Status(pos)
}
// Board returns the position's board.
func (pos *Position) Board() *Board {
return pos.board
}
// Turn returns the color to move next.
func (pos *Position) Turn() Color {
return pos.turn
}
// HalfMoveClock returns the half-move clock (50-rule).
func (pos *Position) HalfMoveClock() int {
return pos.halfMoveClock
}
// EnPassantSquare returns the en-passant square.
func (pos *Position) EnPassantSquare() Square {
return pos.enPassantSquare
}
// CastleRights returns the castling rights of the position.
func (pos *Position) CastleRights() CastleRights {
return pos.castleRights
}
// String implements the fmt.Stringer interface and returns a
// string with the FEN format: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1
func (pos *Position) String() string {
b := pos.board.String()
t := pos.turn.String()
c := pos.castleRights.String()
sq := "-"
if pos.enPassantSquare != NoSquare {
sq = pos.enPassantSquare.String()
}
return fmt.Sprintf("%s %s %s %s %d %d", b, t, c, sq, pos.halfMoveClock, pos.moveCount)
}
// Hash returns a unique hash of the position
func (pos *Position) Hash() [16]byte {
b, _ := pos.MarshalBinary()
return md5.Sum(b)
}
// MarshalText implements the encoding.TextMarshaler interface and
// encodes the position's FEN.
func (pos *Position) MarshalText() (text []byte, err error) {
return []byte(pos.String()), nil
}
// UnmarshalText implements the encoding.TextUnarshaler interface and
// assumes the data is in the FEN format.
func (pos *Position) UnmarshalText(text []byte) error {
cp, err := decodeFEN(string(text))
if err != nil {
return err
}
pos.board = cp.board
pos.castleRights = cp.castleRights
pos.turn = cp.turn
pos.enPassantSquare = cp.enPassantSquare
pos.halfMoveClock = cp.halfMoveClock
pos.moveCount = cp.moveCount
pos.inCheck = isInCheck(cp)
return nil
}
const (
bitsCastleWhiteKing uint8 = 1 << iota
bitsCastleWhiteQueen
bitsCastleBlackKing
bitsCastleBlackQueen
bitsTurn
bitsHasEnPassant
)
// MarshalBinary implements the encoding.BinaryMarshaler interface
func (pos *Position) MarshalBinary() (data []byte, err error) {
boardBytes, err := pos.board.MarshalBinary()
if err != nil {
return nil, err
}
buf := bytes.NewBuffer(boardBytes)
if err := binary.Write(buf, binary.BigEndian, uint8(pos.halfMoveClock)); err != nil {
return nil, err
}
if err := binary.Write(buf, binary.BigEndian, uint16(pos.moveCount)); err != nil {
return nil, err
}
if err := binary.Write(buf, binary.BigEndian, pos.enPassantSquare); err != nil {
return nil, err
}
var b uint8
if pos.castleRights.CanCastle(White, KingSide) {
b = b | bitsCastleWhiteKing
}
if pos.castleRights.CanCastle(White, QueenSide) {
b = b | bitsCastleWhiteQueen
}
if pos.castleRights.CanCastle(Black, KingSide) {
b = b | bitsCastleBlackKing
}
if pos.castleRights.CanCastle(Black, QueenSide) {
b = b | bitsCastleBlackQueen
}
if pos.turn == Black {
b = b | bitsTurn
}
if pos.enPassantSquare != NoSquare {
b = b | bitsHasEnPassant
}
if err := binary.Write(buf, binary.BigEndian, b); err != nil {
return nil, err
}
return buf.Bytes(), err
}
// UnmarshalBinary implements the encoding.BinaryMarshaler interface
func (pos *Position) UnmarshalBinary(data []byte) error {
if len(data) != 101 {
return errors.New("chess: position binary data should consist of 101 bytes")
}
board := &Board{}
if err := board.UnmarshalBinary(data[:96]); err != nil {
return err
}
pos.board = board
buf := bytes.NewBuffer(data[96:])
halfMove := uint8(pos.halfMoveClock)
if err := binary.Read(buf, binary.BigEndian, &halfMove); err != nil {
return err
}
pos.halfMoveClock = int(halfMove)
moveCount := uint16(pos.moveCount)
if err := binary.Read(buf, binary.BigEndian, &moveCount); err != nil {
return err
}
pos.moveCount = int(moveCount)
if err := binary.Read(buf, binary.BigEndian, &pos.enPassantSquare); err != nil {
return err
}
var b uint8
if err := binary.Read(buf, binary.BigEndian, &b); err != nil {
return err
}
pos.castleRights = ""
pos.turn = White
if b&bitsCastleWhiteKing != 0 {
pos.castleRights += "K"
}
if b&bitsCastleWhiteQueen != 0 {
pos.castleRights += "Q"
}
if b&bitsCastleBlackKing != 0 {
pos.castleRights += "k"
}
if b&bitsCastleBlackQueen != 0 {
pos.castleRights += "q"
}
if pos.castleRights == "" {
pos.castleRights = "-"
}
if b&bitsTurn != 0 {
pos.turn = Black
}
if b&bitsHasEnPassant == 0 {
pos.enPassantSquare = NoSquare
}
pos.inCheck = isInCheck(pos)
return nil
}
func (pos *Position) copy() *Position {
return &Position{
board: pos.board.copy(),
turn: pos.turn,
castleRights: pos.castleRights,
enPassantSquare: pos.enPassantSquare,
halfMoveClock: pos.halfMoveClock,
moveCount: pos.moveCount,
inCheck: pos.inCheck,
}
}
func (pos *Position) updateCastleRights(m *Move) CastleRights {
cr := string(pos.castleRights)
p := pos.board.Piece(m.s1)
if p == WhiteKing || m.s1 == H1 || m.s2 == H1 {
cr = strings.Replace(cr, "K", "", -1)
}
if p == WhiteKing || m.s1 == A1 || m.s2 == A1 {
cr = strings.Replace(cr, "Q", "", -1)
}
if p == BlackKing || m.s1 == H8 || m.s2 == H8 {
cr = strings.Replace(cr, "k", "", -1)
}
if p == BlackKing || m.s1 == A8 || m.s2 == A8 {
cr = strings.Replace(cr, "q", "", -1)
}
if cr == "" {
cr = "-"
}
return CastleRights(cr)
}
func (pos *Position) updateEnPassantSquare(m *Move) Square {
p := pos.board.Piece(m.s1)
if p.Type() != Pawn {
return NoSquare
}
if pos.turn == White &&
(bbForSquare(m.s1)&bbRank2) != 0 &&
(bbForSquare(m.s2)&bbRank4) != 0 {
return Square(m.s2 - 8)
} else if pos.turn == Black &&
(bbForSquare(m.s1)&bbRank7) != 0 &&
(bbForSquare(m.s2)&bbRank5) != 0 {
return Square(m.s2 + 8)
}
return NoSquare
}
func (pos *Position) samePosition(pos2 *Position) bool {
return pos.board.String() == pos2.board.String() &&
pos.turn == pos2.turn &&
pos.castleRights.String() == pos2.castleRights.String() &&
pos.enPassantSquare == pos2.enPassantSquare
}