-
Notifications
You must be signed in to change notification settings - Fork 9
/
aes-min.c
651 lines (556 loc) · 23.5 KB
/
aes-min.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*****************************************************************************
* aes-min.c
*
* Minimal byte-oriented AES-128 encryption/decryption implementation suitable
* for small microprocessors.
****************************************************************************/
/*****************************************************************************
* Includes
****************************************************************************/
#include "aes-min.h"
#include <string.h>
/*****************************************************************************
* Defines
****************************************************************************/
#define AES_KEY_SCHEDULE_FIRST_RCON 1u
#define AES128_KEY_SCHEDULE_LAST_RCON 54u
#define AES_REDUCE_BYTE 0x1Bu
#define AES_2_INVERSE 141u
#define AES_INV_CHAIN_LEN 11u
/*****************************************************************************
* Look-up tables
****************************************************************************/
#ifndef ENABLE_SBOX_SMALL
static const uint8_t aes_sbox_table[256u] =
{
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
static const uint8_t aes_sbox_inv_table[256u] =
{
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
#endif
/*****************************************************************************
* Local function prototypes
****************************************************************************/
static void aes128_key_schedule_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon);
static void aes128_key_schedule_inv_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon);
static uint8_t aes_mul(uint8_t a, uint8_t b);
static uint8_t aes_inv(uint8_t a);
static uint8_t aes_sbox(uint8_t a);
static uint8_t aes_sbox_inv(uint8_t a);
static void aes_sbox_apply_block(uint8_t p_block[AES_BLOCK_SIZE]);
static void aes_sbox_inv_apply_block(uint8_t p_block[AES_BLOCK_SIZE]);
static void aes_shift_rows(uint8_t p_block[AES_BLOCK_SIZE]);
static void aes_shift_rows_inv(uint8_t p_block[AES_BLOCK_SIZE]);
static void aes_mix_columns(uint8_t p_block[AES_BLOCK_SIZE]);
static void aes_mix_columns_inv(uint8_t p_block[AES_BLOCK_SIZE]);
/*****************************************************************************
* Inline functions
****************************************************************************/
#if 0
/* This is probably the most straight-forward expression of the algorithm.
* This seems more likely to have variable timing, although inspection
* of compiled code would be needed to confirm it.
* It is more likely to have variable timing when no optimisations are
* enabled. */
static inline uint8_t aes_mul2(uint8_t a)
{
uint8_t result;
result = a << 1u;
if (a & 0x80u)
result ^= AES_REDUCE_BYTE;
return result;
}
static inline uint8_t aes_div2(uint8_t a)
{
uint8_t result;
result = a >> 1u;
if (a & 1u)
result ^= AES_2_INVERSE;
return result;
}
#elif 0
/* This hopefully has fixed timing, although inspection
* of compiled code would be needed to confirm it. */
static inline uint8_t aes_mul2(uint8_t a)
{
static const uint8_t reduce[2] = { 0, AES_REDUCE_BYTE };
return (a << 1u) ^ reduce[a >= 0x80u];
}
static inline uint8_t aes_div2(uint8_t a)
{
static const uint8_t reduce[2] = { 0, AES_2_INVERSE };
return (a >> 1u) ^ reduce[a & 1u];
}
#else
/* This hopefully has fixed timing, although inspection
* of compiled code would be needed to confirm it. */
static inline uint8_t aes_mul2(uint8_t a)
{
return (a << 1u) ^ ((-(a >= 0x80u)) & AES_REDUCE_BYTE);
}
static inline uint8_t aes_div2(uint8_t a)
{
return (a >> 1u) ^ ((-(a & 1u)) & AES_2_INVERSE);
}
#endif
/* Hopefully the compiler reduces this to a single rotate instruction.
* However in testing with gcc on x86-64, it didn't happen. But it is target-
* and compiler-specific.
*
* Alternatively for a particular platform:
* - Use an intrinsic 8-bit rotate function provided by the compiler.
* - Use inline assembler.
*
* TODO: Examine code produced on the target platform.
*/
static inline uint8_t aes_rotate_left_uint8(uint8_t a, uint_fast8_t num_bits)
{
return ((a << num_bits) | (a >> (8u - num_bits)));
}
/*****************************************************************************
* Functions
****************************************************************************/
/* AES-128 encryption.
*
* p_block points to a 16-byte buffer of plain data to encrypt. Encryption
* is done in-place in that buffer.
* p_key_schedule points to a pre-calculated key schedule, which can be
* calculated by aes128_key_schedule().
*/
void aes128_encrypt(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE])
{
uint_fast8_t round;
aes_block_xor(p_block, p_key_schedule);
for (round = 1; round < AES128_NUM_ROUNDS; ++round)
{
aes_sbox_apply_block(p_block);
aes_shift_rows(p_block);
aes_mix_columns(p_block);
aes_block_xor(p_block, &p_key_schedule[round * AES_BLOCK_SIZE]);
}
aes_sbox_apply_block(p_block);
aes_shift_rows(p_block);
aes_block_xor(p_block, &p_key_schedule[AES128_NUM_ROUNDS * AES_BLOCK_SIZE]);
}
/* AES-128 decryption.
*
* p_block points to a 16-byte buffer of encrypted data to decrypt. Decryption
* is done in-place in that buffer.
* p_key_schedule points to a pre-calculated key schedule, which can be
* calculated by aes128_key_schedule().
*/
void aes128_decrypt(uint8_t p_block[AES_BLOCK_SIZE], const uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE])
{
uint_fast8_t round;
aes_block_xor(p_block, &p_key_schedule[AES128_NUM_ROUNDS * AES_BLOCK_SIZE]);
aes_shift_rows_inv(p_block);
aes_sbox_inv_apply_block(p_block);
for (round = AES128_NUM_ROUNDS - 1u; round >= 1; --round)
{
aes_block_xor(p_block, &p_key_schedule[round * AES_BLOCK_SIZE]);
aes_mix_columns_inv(p_block);
aes_shift_rows_inv(p_block);
aes_sbox_inv_apply_block(p_block);
}
aes_block_xor(p_block, p_key_schedule);
}
void aes128_key_schedule(uint8_t p_key_schedule[AES128_KEY_SCHEDULE_SIZE], const uint8_t p_key[AES128_KEY_SIZE])
{
uint_fast8_t round;
uint8_t * p_key_0 = p_key_schedule + AES128_KEY_SIZE;
uint8_t temp_byte;
uint8_t rcon = AES_KEY_SCHEDULE_FIRST_RCON;
/* Initial part of key schedule is simply the AES-128 key copied verbatim. */
memcpy(p_key_schedule, p_key, AES128_KEY_SIZE);
for (round = 0; round < (AES128_KEY_SCHEDULE_SIZE - AES128_KEY_SIZE) / AES_KEY_SCHEDULE_WORD_SIZE; ++round)
{
memcpy(p_key_0, p_key_0 - AES_KEY_SCHEDULE_WORD_SIZE, AES_KEY_SCHEDULE_WORD_SIZE);
if ((round % (AES128_KEY_SIZE / AES_KEY_SCHEDULE_WORD_SIZE)) == 0)
{
/* Rotate previous word and apply S-box. Also XOR Rcon for first byte. */
temp_byte = p_key_0[0];
p_key_0[0] = aes_sbox(p_key_0[1]) ^ rcon;
p_key_0[1] = aes_sbox(p_key_0[2]);
p_key_0[2] = aes_sbox(p_key_0[3]);
p_key_0[3] = aes_sbox(temp_byte);
/* Next rcon */
rcon = aes_mul2(rcon);
}
/* XOR in bytes from AES128_KEY_SIZE bytes ago */
p_key_0[0] ^= p_key_0[0 - (signed)AES128_KEY_SIZE];
p_key_0[1] ^= p_key_0[1 - (signed)AES128_KEY_SIZE];
p_key_0[2] ^= p_key_0[2 - (signed)AES128_KEY_SIZE];
p_key_0[3] ^= p_key_0[3 - (signed)AES128_KEY_SIZE];
p_key_0 += AES_KEY_SCHEDULE_WORD_SIZE;
}
}
/* AES-128 encryption with on-the-fly key schedule calculation.
*
* p_block points to a 16-byte buffer of plain data to encrypt. Encryption
* is done in-place in that buffer.
* p_key must initially point to a starting key state for encryption, which is
* simply the 16 bytes of the AES-128 key. Key schedule is calculated on-the-
* fly in that buffer, so the buffer must re-initialised for subsequent
* encryption operations.
*/
void aes128_otfks_encrypt(uint8_t p_block[AES_BLOCK_SIZE], uint8_t p_key[AES128_KEY_SIZE])
{
uint_fast8_t round;
uint8_t rcon = AES_KEY_SCHEDULE_FIRST_RCON;
aes_block_xor(p_block, p_key);
for (round = 1; round < AES128_NUM_ROUNDS; ++round)
{
aes128_key_schedule_round(p_key, rcon);
aes_sbox_apply_block(p_block);
aes_shift_rows(p_block);
aes_mix_columns(p_block);
aes_block_xor(p_block, p_key);
/* Next rcon */
rcon = aes_mul2(rcon);
}
aes128_key_schedule_round(p_key, rcon);
aes_sbox_apply_block(p_block);
aes_shift_rows(p_block);
aes_block_xor(p_block, p_key);
}
/* Calculate the starting key state needed for decryption with on-the-fly key
* schedule calculation. The starting decryption key state is the last 16 bytes
* of the AES-128 key schedule.
* The decryption start key calculation is done in-place in the buffer p_key[].
* So p_key points to a 16-byte buffer containing the AES-128 key. On exit, it
* contains the decryption start key state suitable for aes128_otfks_decrypt().
*/
void aes128_otfks_decrypt_start_key(uint8_t p_key[AES128_KEY_SIZE])
{
uint_fast8_t round;
uint8_t rcon = AES_KEY_SCHEDULE_FIRST_RCON;
for (round = 0; round < AES128_NUM_ROUNDS; ++round)
{
aes128_key_schedule_round(p_key, rcon);
/* Next rcon */
rcon = aes_mul2(rcon);
}
}
/* AES-128 decryption with on-the-fly key schedule calculation.
*
* p_block points to a 16-byte buffer of encrypted data to decrypt. Decryption
* is done in-place in that buffer.
* p_key must initially point to a starting key state for decryption, which is
* the last 16 bytes of the AES-128 key schedule. It can be calculated from the
* AES-128 16-byte key by aes128_otfks_decrypt_start_key(). Key schedule is
* calculated on-the-fly in that buffer, so the buffer must re-initialised for
* subsequent decryption operations.
*/
void aes128_otfks_decrypt(uint8_t p_block[AES_BLOCK_SIZE], uint8_t p_key[AES128_KEY_SIZE])
{
uint_fast8_t round;
uint8_t rcon = AES128_KEY_SCHEDULE_LAST_RCON;
aes_block_xor(p_block, p_key);
aes_shift_rows_inv(p_block);
aes_sbox_inv_apply_block(p_block);
for (round = AES128_NUM_ROUNDS - 1u; round >= 1; --round)
{
aes128_key_schedule_inv_round(p_key, rcon);
aes_block_xor(p_block, p_key);
aes_mix_columns_inv(p_block);
aes_shift_rows_inv(p_block);
aes_sbox_inv_apply_block(p_block);
/* Previous rcon */
rcon = aes_div2(rcon);
}
aes128_key_schedule_inv_round(p_key, rcon);
aes_block_xor(p_block, p_key);
}
uint8_t _aes_inv_for_test(uint8_t a)
{
return aes_inv(a);
}
void _aes_sbox_apply_block_for_test(uint8_t p_block[AES_BLOCK_SIZE])
{
aes_sbox_apply_block(p_block);
}
/*****************************************************************************
* Local functions
****************************************************************************/
/* This is used for aes128_otfks_encrypt(), on-the-fly key schedule encryption.
* It is also used by aes128_otfks_decrypt_start_key() to calculate the
* starting key state for decryption with on-the-fly key schedule calculation.
* rcon for the round must be provided, out of the sequence:
* 1, 2, 4, 8, 16, 32, 64, 128, 27, 54
* Subsequent values can be calculated with aes_mul2().
*/
static void aes128_key_schedule_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon)
{
uint_fast8_t round;
uint8_t * p_key_0 = p_key;
uint8_t * p_key_m1 = p_key + AES128_KEY_SIZE - AES_KEY_SCHEDULE_WORD_SIZE;
/* Rotate previous word and apply S-box. Also XOR Rcon for first byte. */
p_key_0[0] ^= aes_sbox(p_key_m1[1]) ^ rcon;
p_key_0[1] ^= aes_sbox(p_key_m1[2]);
p_key_0[2] ^= aes_sbox(p_key_m1[3]);
p_key_0[3] ^= aes_sbox(p_key_m1[0]);
for (round = 1; round < AES128_KEY_SIZE / AES_KEY_SCHEDULE_WORD_SIZE; ++round)
{
p_key_m1 = p_key_0;
p_key_0 += AES_KEY_SCHEDULE_WORD_SIZE;
/* XOR in previous word */
p_key_0[0] ^= p_key_m1[0];
p_key_0[1] ^= p_key_m1[1];
p_key_0[2] ^= p_key_m1[2];
p_key_0[3] ^= p_key_m1[3];
}
}
/* This is used for aes128_otfks_decrypt(), on-the-fly key schedule decryption.
* rcon for the round must be provided, out of the sequence:
* 54, 27, 128, 64, 32, 16, 8, 4, 2, 1
* Subsequent values can be calculated with aes_div2().
*/
static void aes128_key_schedule_inv_round(uint8_t p_key[AES128_KEY_SIZE], uint8_t rcon)
{
uint_fast8_t round;
uint8_t * p_key_0 = p_key + AES128_KEY_SIZE - AES_KEY_SCHEDULE_WORD_SIZE;
uint8_t * p_key_m1 = p_key_0 - AES_KEY_SCHEDULE_WORD_SIZE;
for (round = 1; round < AES128_KEY_SIZE / AES_KEY_SCHEDULE_WORD_SIZE; ++round)
{
/* XOR in previous word */
p_key_0[0] ^= p_key_m1[0];
p_key_0[1] ^= p_key_m1[1];
p_key_0[2] ^= p_key_m1[2];
p_key_0[3] ^= p_key_m1[3];
p_key_0 = p_key_m1;
p_key_m1 -= AES_KEY_SCHEDULE_WORD_SIZE;
}
/* Rotate previous word and apply S-box. Also XOR Rcon for first byte. */
p_key_m1 = p_key + AES128_KEY_SIZE - AES_KEY_SCHEDULE_WORD_SIZE;
p_key_0[0] ^= aes_sbox(p_key_m1[1]) ^ rcon;
p_key_0[1] ^= aes_sbox(p_key_m1[2]);
p_key_0[2] ^= aes_sbox(p_key_m1[3]);
p_key_0[3] ^= aes_sbox(p_key_m1[0]);
}
/* Multiply two numbers in Galois field GF(2^8) with reduction polynomial
* 0x11B.
* TODO: To prevent timing attacks, analyse the compiler-generated code
* to see if it has constant execution time regardless of input values.
*/
static uint8_t aes_mul(uint8_t a, uint8_t b)
{
uint8_t result = 0;
uint_fast8_t i;
for (i = 0; i < 8u; i++)
{
#if 0
/* This code variant is less likely to have constant execution time,
* and thus more likely to be vulnerable to timing attacks. */
if (b & 1)
{
result ^= a;
}
#else
result ^= (-(b & 1u)) & a;
#endif
a = aes_mul2(a);
b >>= 1;
}
return result;
}
/* Calculation of inverse in GF(2^8), by exponentiation to power 254.
* Use minimal addition chain to raise to the power of 254, which requires
* 11 multiplies.
* There are many addition chains of length 11 for 254. This one was picked
* because it has the most multiplies by the previous value, and least
* references to earlier history, which in theory could minimise the size of
* prev_values[]. However, in the end we do the simplest possible
* implementation of the algorithm to minimise code size (because aes_inv() is
* used to achieve smallest possible S-box implementation), so it doesn't
* really matter which addition chain we pick.
*/
static uint8_t aes_inv(uint8_t a)
{
static const uint8_t addition_chain_idx[AES_INV_CHAIN_LEN] = { 0, 1, 1, 3, 4, 3, 6, 7, 3, 9, 1 };
uint_fast8_t i;
uint8_t prev_values[AES_INV_CHAIN_LEN];
for (i = 0; i < AES_INV_CHAIN_LEN; i++)
{
prev_values[i] = a;
a = aes_mul(a, prev_values[addition_chain_idx[i]]);
}
return a;
}
#ifdef ENABLE_SBOX_SMALL
static uint8_t aes_sbox(uint8_t a)
{
uint8_t x;
a = aes_inv(a);
x = aes_rotate_left_uint8(a, 1u);
x ^= aes_rotate_left_uint8(x, 1u);
x ^= aes_rotate_left_uint8(x, 2u);
return a ^ x ^ 0x63u;
}
static uint8_t aes_sbox_inv(uint8_t a)
{
uint8_t x;
x = aes_rotate_left_uint8(a, 1u);
a = aes_rotate_left_uint8(x, 2u);
x ^= a;
a = aes_rotate_left_uint8(a, 3u);
return aes_inv(a ^ x ^ 0x05u);
}
#else /* ENABLE_SBOX_SMALL */
static uint8_t aes_sbox(uint8_t a)
{
return aes_sbox_table[a];
}
static uint8_t aes_sbox_inv(uint8_t a)
{
return aes_sbox_inv_table[a];
}
#endif /* ENABLE_SBOX_SMALL */
static void aes_sbox_apply_block(uint8_t p_block[AES_BLOCK_SIZE])
{
uint_fast8_t i;
for (i = 0; i < AES_BLOCK_SIZE; ++i)
{
p_block[i] = aes_sbox(p_block[i]);
}
}
static void aes_sbox_inv_apply_block(uint8_t p_block[AES_BLOCK_SIZE])
{
uint_fast8_t i;
for (i = 0; i < AES_BLOCK_SIZE; ++i)
{
p_block[i] = aes_sbox_inv(p_block[i]);
}
}
static void aes_shift_rows(uint8_t p_block[AES_BLOCK_SIZE])
{
uint8_t temp_byte;
/* First row doesn't shift */
/* Shift the second row */
temp_byte = p_block[0 * AES_COLUMN_SIZE + 1u];
p_block[0 * AES_COLUMN_SIZE + 1u] = p_block[1u * AES_COLUMN_SIZE + 1u];
p_block[1u * AES_COLUMN_SIZE + 1u] = p_block[2u * AES_COLUMN_SIZE + 1u];
p_block[2u * AES_COLUMN_SIZE + 1u] = p_block[3u * AES_COLUMN_SIZE + 1u];
p_block[3u * AES_COLUMN_SIZE + 1u] = temp_byte;
/* Shift the third row */
temp_byte = p_block[0 * AES_COLUMN_SIZE + 2u];
p_block[0 * AES_COLUMN_SIZE + 2u] = p_block[2u * AES_COLUMN_SIZE + 2u];
p_block[2u * AES_COLUMN_SIZE + 2u] = temp_byte;
temp_byte = p_block[1u * AES_COLUMN_SIZE + 2u];
p_block[1u * AES_COLUMN_SIZE + 2u] = p_block[3u * AES_COLUMN_SIZE + 2u];
p_block[3u * AES_COLUMN_SIZE + 2u] = temp_byte;
/* Shift the fourth row */
temp_byte = p_block[3u * AES_COLUMN_SIZE + 3u];
p_block[3u * AES_COLUMN_SIZE + 3u] = p_block[2u * AES_COLUMN_SIZE + 3u];
p_block[2u * AES_COLUMN_SIZE + 3u] = p_block[1u * AES_COLUMN_SIZE + 3u];
p_block[1u * AES_COLUMN_SIZE + 3u] = p_block[0 * AES_COLUMN_SIZE + 3u];
p_block[0 * AES_COLUMN_SIZE + 3u] = temp_byte;
}
static void aes_shift_rows_inv(uint8_t p_block[AES_BLOCK_SIZE])
{
uint8_t temp_byte;
/* First row doesn't shift */
/* Shift the second row */
temp_byte = p_block[3u * AES_COLUMN_SIZE + 1u];
p_block[3u * AES_COLUMN_SIZE + 1u] = p_block[2u * AES_COLUMN_SIZE + 1u];
p_block[2u * AES_COLUMN_SIZE + 1u] = p_block[1u * AES_COLUMN_SIZE + 1u];
p_block[1u * AES_COLUMN_SIZE + 1u] = p_block[0 * AES_COLUMN_SIZE + 1u];
p_block[0 * AES_COLUMN_SIZE + 1u] = temp_byte;
/* Shift the third row */
temp_byte = p_block[0 * AES_COLUMN_SIZE + 2u];
p_block[0 * AES_COLUMN_SIZE + 2u] = p_block[2u * AES_COLUMN_SIZE + 2u];
p_block[2u * AES_COLUMN_SIZE + 2u] = temp_byte;
temp_byte = p_block[1u * AES_COLUMN_SIZE + 2u];
p_block[1u * AES_COLUMN_SIZE + 2u] = p_block[3u * AES_COLUMN_SIZE + 2u];
p_block[3u * AES_COLUMN_SIZE + 2u] = temp_byte;
/* Shift the fourth row */
temp_byte = p_block[0 * AES_COLUMN_SIZE + 3u];
p_block[0 * AES_COLUMN_SIZE + 3u] = p_block[1u * AES_COLUMN_SIZE + 3u];
p_block[1u * AES_COLUMN_SIZE + 3u] = p_block[2u * AES_COLUMN_SIZE + 3u];
p_block[2u * AES_COLUMN_SIZE + 3u] = p_block[3u * AES_COLUMN_SIZE + 3u];
p_block[3u * AES_COLUMN_SIZE + 3u] = temp_byte;
}
static void aes_mix_columns(uint8_t p_block[AES_BLOCK_SIZE])
{
uint8_t temp_column[AES_COLUMN_SIZE];
uint_fast8_t i;
uint_fast8_t j;
uint8_t byte_value;
uint8_t byte_value_2;
for (i = 0; i < AES_NUM_COLUMNS; i++)
{
memset(temp_column, 0, AES_COLUMN_SIZE);
for (j = 0; j < AES_COLUMN_SIZE; j++)
{
byte_value = p_block[i * AES_COLUMN_SIZE + j];
byte_value_2 = aes_mul2(byte_value);
temp_column[(j + 0 ) % AES_COLUMN_SIZE] ^= byte_value_2;
temp_column[(j + 1u) % AES_COLUMN_SIZE] ^= byte_value;
temp_column[(j + 2u) % AES_COLUMN_SIZE] ^= byte_value;
temp_column[(j + 3u) % AES_COLUMN_SIZE] ^= byte_value ^ byte_value_2;
}
memcpy(&p_block[i * AES_COLUMN_SIZE], temp_column, AES_COLUMN_SIZE);
}
}
/* 14 = 1110b
* 9 = 1001b
* 13 = 1101b
* 11 = 1011b
*/
static void aes_mix_columns_inv(uint8_t p_block[AES_BLOCK_SIZE])
{
uint8_t temp_column[AES_COLUMN_SIZE];
uint_fast8_t i;
uint_fast8_t j;
uint8_t byte_value;
uint8_t byte_value_2;
uint8_t byte_value_4;
uint8_t byte_value_8;
for (i = 0; i < AES_NUM_COLUMNS; i++)
{
memset(temp_column, 0, AES_COLUMN_SIZE);
for (j = 0; j < AES_COLUMN_SIZE; j++)
{
byte_value = p_block[i * AES_COLUMN_SIZE + j];
byte_value_2 = aes_mul2(byte_value);
byte_value_4 = aes_mul2(byte_value_2);
byte_value_8 = aes_mul2(byte_value_4);
temp_column[(j + 0 ) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value_4 ^ byte_value_2; // 14 = 1110b
temp_column[(j + 1u) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value; // 9 = 1001b
temp_column[(j + 2u) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value_4 ^ byte_value; // 13 = 1101b
temp_column[(j + 3u) % AES_COLUMN_SIZE] ^= byte_value_8 ^ byte_value_2 ^ byte_value; // 11 = 1011b
}
memcpy(&p_block[i * AES_COLUMN_SIZE], temp_column, AES_COLUMN_SIZE);
}
}