-
Notifications
You must be signed in to change notification settings - Fork 0
/
ap_spec_SM.tex
1186 lines (1159 loc) · 41.6 KB
/
ap_spec_SM.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Special Topic: The Standard Model}\label{ap:spec_SM}
For this appendix we will roughly write the Lagrangian for the Standard Model in the
$R_\xi$ gauge and write down some of the corresponding Feynman rules. We will
make some general considerations involving two particle decays. Next we
specialize to the Feynman gauge and calculate decay rates for some of
the most important decay channels of the Higgs.
%Finally we will compare our
%results to some known values to see how we did.
\section{The SM Lagrangian}
This section is based heavily off of Bardin and
Passarino~\cite{bardin_standard_1999}. Unlike
them, however, we will use the metric with signature $(+\ -\ -\ -)$ and we will
\index{gauge!fixing}
define the gauge-fixing term slightly differently when we come to it.
Ultimately our Feynman rules should agree with Peskin and
Schroeder~\cite{peskin_introduction_1995}.
We begin with the electroweak sector. The fields include a triplet of vector
bosons $B_{\mu}^{a}$ and a vector singlet $B_{\mu}^{0}$; a complex scalar
\index{Faddeev-Popov ghost}
doublet $K$; Faddeev-Popov (FP) ghost fields $X^{\pm}$, $Y^Z$, $Y^A$; and
fermions. The physical fields $Z$ and $A$ are given by
\begin{equation}
\left(\begin{array}{c}
Z \\
A
\end{array}\right)
=
\left(\begin{array}{cc}
\ct & -\st \\
\st & \ct
\end{array}\right)
\left(\begin{array}{c}
B^3 \\
B^0
\end{array}\right),
\end{equation}
where $\st\coloneqq\sin\big(\theta_{W}\big)$,
$\ct\coloneqq\cos\big(\theta_{W}\big)$, and $\theta_W$ is the weak
mixing angle. The scalar field for the minimal Higgs model is
\begin{equation}
\label{eq:Hsf}
K=\frac{1}{\sqrt{2}}
\left(\begin{array}{c}
H+2M_{W}/g+i\phi^0 \\
\sqrt{2}i\phi^-
\end{array}\right),
\end{equation}
where $H$ is the physical Higgs field, $M_W$ is the bare $W$-boson mass, and
$g$ is the bare $SU(2)$ coupling. The first part of the Lagrangian is
\begin{equation}
\Lagr_{gauge}=\Lagr_{YM}+\Lagr_{H},
\end{equation}
where
% what is \epsilon?
\begin{equation}
\begin{aligned}
\Lagr_{YM}&=-\frac{1}{4}F_{\mu\nu}^{a}F^{\mu\nu,a}
-\frac{1}{4}F_{\mu\nu}^{0}F^{\mu\nu,0} \\
\Lagr_{H}&=-\big(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)
-\mu^2 K^{\dagger}K
-\frac{\lambda}{2}\big(K^{\dagger}K\big)^2 \\
F_{\mu\nu}^{a}&=\partial_{\mu}B_{\nu}^{a}-\partial_{\nu}B_{\mu}^{a}
+g\epsilon^{abc}B_{\mu}^{b}B_{\nu}^{c} \\
F_{\mu\nu}^{0}&=\partial_{\mu}B_{\nu}^{0}-\partial_{\nu}B_{\mu}^{0}
\end{aligned}
\end{equation}
and we need $\lambda>0$ (to have a ground state) and $\mu^2<0$ (for spontaneous
symmetry breaking). The $SU(2)\times U(1)$ gauge covariant derivative is
\begin{equation}
\label{eq:SU2U1cd}
D_{\mu}=\partial_{\mu}-\frac{i}{2}gB_{\mu}^{a}\sigma^{a}
-\frac{i}{2}gg'B_{\mu}^{0},
\end{equation}
where $\sigma^{a}$ are the Pauli matrices, and $g'=-\st/\ct$.
Also \eqref{eq:Hsf} can be rewritten as
\begin{equation}
\label{eq:Hsf2}
K=\frac{1}{\sqrt{2}}\Big(H+\frac{2M_W}{g}+i\phi^{a}\sigma^{a}\Big)
\left(\begin{array}{c}
1 \\
0
\end{array}\right).
\end{equation}
Next let us write
\begin{equation}
\Lagr_{gauge}=\Lagr_{YM}-\big(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)
+\Lagr_{int}.
\end{equation}
If we were to calculate $\big(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)$ using
\eqref{eq:SU2U1cd} and \eqref{eq:Hsf2}, collect terms proportional to $v^2$,
where
\begin{equation}
v=\frac{2M_W}{g},
\end{equation}
and use the field definitions
\begin{equation}
W_{\mu}^{\pm}\coloneqq\frac{1}{\sqrt{2}}\big(B_{\mu}^1 \mp iB_{\mu}^2\big)
\qquad
\phi^{\pm}\coloneqq\frac{1}{\sqrt{2}}\big(\phi^1 \mp i\phi^2 \big),
\end{equation}
we would get
\begin{equation}
\begin{aligned}
\big(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)&=-\frac{g^2 v^2}{8}
\Bigg(\frac{1}{\ct^2}Z_{\mu}Z^{\mu}+2W^+_{\mu}W^{-\mu}\Bigg)+...\\
&=-\frac{1}{2}M_Z^2 Z_{\mu}Z^{\mu}-M_W^2 W_{\mu}^+ W^{-\mu}+...
\end{aligned}
\end{equation}
where
\begin{equation}
M_Z \coloneqq\frac{gv}{2\ct}=\frac{M_W}{\ct}.
\end{equation}
Hence we see that through the Higgs mechanism the $W$- and $Z$-bosons
acquired mass.
Now let us focus on terms of $(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)$ that
do not have any power of $g$ (besides kinetic terms). We get
\begin{equation}
\label{eq:zmp}
\big(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)=-M_W \Bigg(
\frac{1}{\ct}Z_{\mu}\partial^{\mu}\phi^0 +W_{\mu}^+ \partial^{\mu}\phi^-
+W_{\mu}^- \partial^{\mu}\phi^+ \Bigg).
\end{equation}
This part of the Lagrangian contains $Z$-$\phi^0$ and
$W^{\pm}$-$\phi^{\pm}$ interactions, and although they are zeroth order
in the field, they must be summed over when we develop perturbation theory.
Here the Lagrangian is badly divergent.
To fix this problem, we follow the usual prescription of introducing a
gauge-fixing term, then introducing FP ghost fields to maintain gauge invariance. We
\index{gauge!fixing}
work in the generalized $R_{\xi}$ gauge. (The Feynman gauge corresponds to
$\xi=1$, the Lorenz to $\xi=0$, and the unitary to $\xi\to\infty$.) In this
gauge, the gauge-fixing piece is
\begin{equation}
\Lagr_{gf}=-\frac{1}{2}C^a C^a -\frac{1}{2}\big(C^0\big)^2
=-C^+ C^- -\frac{1}{2}\Big(\big(C^3\big)^2\big(C^0\big)^2\Big),
\end{equation}
where the gauge-fixing function is
\begin{equation}
C^a =\frac{1}{\sqrt{\xi}}\big(\partial_{\mu}B^{a\mu}
-\xi M_W \phi^a \big)
\end{equation}
and
\begin{equation}
\label{eq:cdefs}
C^{\pm}=\frac{1}{\sqrt{\xi}}\big(\partial_{\mu}W^{\pm\mu}
-\xi M_W \phi^{\pm}\big) \qquad
C^{0}=\frac{1}{\sqrt{\xi}}\big(\partial_{\mu}B^{0\mu}
-\xi\frac{\st}{\ct}M_W \phi^{0}\big).
\end{equation}
Then we write
\begin{equation}
-\frac{1}{2}\Big(\big(C^3\big)^2 +\big(C^0\big)^2\Big)
=-\frac{1}{2}C_Z^2 -\frac{1}{2}C_A^2
\end{equation}
so that in the so-called $Z$-$A$ basis
\begin{equation}
\label{eq:zadefs}
C_A=\frac{1}{\sqrt{\xi}}\partial_{\mu}A^{\mu} \qquad
C_Z=\frac{1}{\sqrt{\xi}}\partial_{\mu}Z^{\mu}-\xi\frac{M_W}{\ct}\phi^0.
\end{equation}
The Lagrangian including gauge-fixing terms is thus
\begin{equation}
\Lagr_{YM}=-\big(D_{\mu}K\big)^{\dagger}\big(D^{\mu}K\big)-C^+ C^-
-\frac{1}{2}C_Z^2-\frac{1}{2}C_Z^2
=\Lagr_{prop}+\Lagr_{int}^{bos}
\end{equation}
and contains no divergent terms such as those in \eqref{eq:zmp}. $\Lagr_{prop}$
contains the terms that give rise to gauge EW propagators as well as mass
terms. Let us examine some terms relevant to Higgs processes. We have
\begin{equation}
\begin{aligned}
\Lagr_{prop}=&-\partial_{\mu}W_{\nu}^+ \partial^{\mu}W^{-\nu}
+\Bigg(1-\frac{1}{\xi}\Bigg)\partial_{\mu}W^{+\mu}\partial_{\nu}W^{-\nu}
-M_W^2 W_{\mu}^+ W^{-\mu} \\
&-\frac{1}{2}\partial_{\mu}Z_{\nu}\partial^{\mu}Z^{\nu}
+\frac{1}{2}\Bigg(1-\frac{1}{\xi}\Bigg)\big(\partial_{\mu}Z^{\mu}\big)^2
-\frac{1}{2}M_Z^2 Z_{\mu}Z^{\mu} \\
&-\partial_{\mu}\phi^+ \partial^{\mu}\phi^- -\xi M_W^2\phi^+ \phi^-
+...
\end{aligned}
\end{equation}
First of all we see that the Goldstone boson mass is proportional $\sqrt{\xi}$,
which means it's unphysical. (We would find the same for $\phi^0$.) Furthermore
the first line, second line, and third line yield respectively the Feynman
rules
\begin{equation*}
\frac{-ig^{\mu\nu}}{k^2-M_W^2+i\epsilon}~~\F1~~~~~~~~
\frac{-ig^{\mu\nu}}{k^2-M_Z^2+i\epsilon}~~\F2~~~~~~~~
\frac{i}{p^2-\xi M_W^2+i\epsilon}~~\F3
\end{equation*}
\begin{figure}
\centering
\begin{fmffile}{fr123}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(70,60)
\fmfleft{i}
\fmfright{o}
\fmflabel{$\mu$}{i}
\fmflabel{$\nu$}{o}
\fmf{photon,label=$W^\pm$}{i,o}
\end{fmfgraph*}
\caption*{\F1}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(70,60)
\fmfleft{i}
\fmfright{o}
\fmflabel{$\mu$}{i}
\fmflabel{$\nu$}{o}
\fmf{photon,label=$Z$}{i,o}
\end{fmfgraph*}
\caption*{\F2}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(70,60)
\fmfleft{i}
\fmfright{o}
\fmf{dashes,label=$\phi^\pm$}{i,o}
\end{fmfgraph*}
\caption*{\F3}
\end{subfigure}
\end{fmffile}
\caption{Electroweak gauge boson propagators (except photon) and Goldstone
boson propagator.}
\end{figure}
Meanwhile $\Lagr_{int}^{bos}$ contains the interaction terms of the vector
bosons with each other and the Higgs. We will focus on the terms
\begin{equation}
\begin{aligned}
\Lagr_{int}^{bos}=&-ig\ct\Big\{\partial_\nu Z_\mu W^{[+\mu}W^{-\nu ]}
-Z_\nu W_\mu^{[+}\partial^\nu W^{-\mu ]}
+Z_\mu W_\nu^{[+}\partial^\nu W^{-\mu ]}\Big\}\\
&-ie\Big\{\partial_\nu A_\mu W^{[+\mu}W^{-\nu]}
-A_\nu W_\mu^{[+}\partial^\nu W^{-\mu ]}
+A_\mu W_\nu^{[+}\partial^\nu W^{-\mu ]}\Big\}\\
&+e^2 \Big\{A_\mu A_\nu W^{+\mu}W^{-\nu}
+A_\mu A^\mu W^+_\nu W^{-\nu}\Big\}\\
&+eg\ct\Big\{A_\mu Z_\nu W^{[+\mu}W^{-\nu ]}
-2A_\mu Z^\mu W^+_\nu W^{-\nu}\Big\}\\
&+ig\frac{\ct^2-\st^2}{\ct}Z_\mu
\Big\{\phi^+ \partial^\mu \phi^-
-\phi^- \partial^\mu \phi^+ \Big\}\\
&+\frac{1}{2}g
\Big\{W_\mu^+\big(H\partial^\mu\phi^-
-\phi^-\partial^\mu H\big)
-W_\mu^-\big(H\partial^\mu\phi^+
-\phi^+\partial^\mu H\big)\Big\}\\
&+ieM_W A_\mu W^{[+\mu}\phi^{-]}
-igM_Z \st^2 Z_\mu W^{[+\mu}\phi^{-]}
-gM_W H W_\mu^+ W_\nu^- \\
&-e^2 A_\mu A^\mu \phi^+ \phi^-
+\frac{i}{2}egA_\mu HW^{[+\mu}\phi^{-]}
-eg\frac{\ct^2-\st^2}{\ct}Z_\mu A^\mu \phi^+ \phi^- \\
&+ieA_\mu \big(\phi^+\partial^\mu\phi^-
-\phi^-\partial^\mu\phi^+\big)
+...
\end{aligned}
\end{equation}
where $e=g\st$ and $A^{[+}B^{-]}=A^+ B^- -B^- A^+$. The corresponding Feynman
rules are
\begin{gather*}
ig\ct\big(g^{\alpha\beta}(p-k)^\mu+g^{\beta\mu}(k-q)^\mu
+g^{\mu\alpha}(q-p)^\beta\big)~~\F4 \\
-ie\big(g^{\alpha\beta}(p-k)^\mu+g^{\beta\mu}(k-q)^\mu
+g^{\mu\alpha}(q-p)^\beta\big)~~\F5 \\
-ie^2\big(2g^{\alpha\beta}g^{\mu\nu}-g^{\alpha\mu}g^{\beta\nu}
-g^{\alpha\nu}g^{\beta\mu}\big)~~\F6 \\
ieg\ct\big(2g^{\alpha\beta}g^{\mu\nu}-g^{\alpha\mu}g^{\beta\nu}
-g^{\alpha\nu}g^{\beta\mu}\big)~~\F7 \\
ig\frac{\cos(2\theta_W)}{2\ct}(p_+-p_-)^\mu~~\F8~~~~~~~~
\mp\frac{ig}{2}(k-p)^\mu~~\F9~~~~~~~~
-ieM_Wg^{\mu\nu}~~\F{10} \\
-igM_Z \st^2 g^{\mu\nu}~~\F{11}~~~~~~~~
igM_Wg^{\mu\nu}~~\F{12}~~~~~~~~
2ie^2g^{\mu\nu}~~\F{13} \\
-\frac{i}{2}egg^{\mu\nu}~~\F{14}~~~~~~~~
-ieg\frac{\cos(2\theta_W)}{\ct}g^{\mu\nu}~~\F{15}~~~~~~~~
-ie(p_+-p_-)^\mu~~\F{16}
\end{gather*}
\begin{figure}
\centering
\begin{fmffile}{fr4to17}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{photon,label=$k$}{i1,v}
\fmf{photon,label=$p$}{i2,v}
\fmf{photon,label=$q$}{v,o}
\fmflabel{$W_\beta^+$}{i1}
\fmflabel{$W_\alpha^-$}{i2}
\fmflabel{$Z_\mu$}{o}
\end{fmfgraph*}
\caption*{\F4}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{photon,label=$k$}{i1,v}
\fmf{photon,label=$p$}{i2,v}
\fmf{photon,label=$q$}{v,o}
\fmflabel{$W_\beta^+$}{i1}
\fmflabel{$W_\alpha^-$}{i2}
\fmflabel{$A_\mu$}{o}
\end{fmfgraph*}
\caption*{\F5}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{photon}{i1,v}
\fmf{photon}{i2,v}
\fmf{photon}{v,o1}
\fmf{photon}{v,o2}
\fmflabel{$W_\alpha^+$}{i2}
\fmflabel{$A_\mu$}{i1}
\fmflabel{$W_\beta^-$}{o2}
\fmflabel{$A_\nu$}{o1}
\end{fmfgraph*}
\caption*{\F6}
\end{subfigure} \\
\vspace{12mm}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{photon}{i1,v}
\fmf{photon}{i2,v}
\fmf{photon}{v,o1}
\fmf{photon}{v,o2}
\fmflabel{$W_\alpha^+$}{i2}
\fmflabel{$A_\mu$}{i1}
\fmflabel{$W_\beta^-$}{o2}
\fmflabel{$Z_\nu$}{o1}
\end{fmfgraph*}
\caption*{\F7}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dashes,label=$p_-$}{i1,v}
\fmf{dashes,label=$p_+$}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$\phi^-$}{i1}
\fmflabel{$\phi^+$}{i2}
\fmflabel{$Z_\mu$}{o}
\end{fmfgraph*}
\caption*{\F8}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dashes,label=$p$}{i1,v}
\fmf{dashes,label=$k$}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$\phi^\mp$}{i1}
\fmflabel{$H$}{i2}
\fmflabel{$W^\pm_\mu$}{o}
\end{fmfgraph*}
\caption*{\F9}
\end{subfigure} \\
\vspace{12mm}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{photon}{i1,v}
\fmf{dashes}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$W_\nu^\pm$}{i1}
\fmflabel{$\phi^\mp$}{i2}
\fmflabel{$A_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{10}}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{photon}{i1,v}
\fmf{dashes}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$W_\nu^\pm$}{i1}
\fmflabel{$\phi^\mp$}{i2}
\fmflabel{$Z_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{11}}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{photon}{i1,v}
\fmf{dashes}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$W_\nu^\mp$}{i1}
\fmflabel{$H$}{i2}
\fmflabel{$W_\mu^\pm$}{o}
\end{fmfgraph*}
\caption*{\F{12}}
\end{subfigure} \\
\vspace{12mm}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{dashes}{i1,v}
\fmf{dashes}{i2,v}
\fmf{photon}{v,o1}
\fmf{photon}{v,o2}
\fmflabel{$\phi^+$}{i2}
\fmflabel{$\phi^-$}{i1}
\fmflabel{$A_\mu$}{o2}
\fmflabel{$A_\nu$}{o1}
\end{fmfgraph*}
\caption*{\F{13}}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{dashes}{i1,v}
\fmf{dashes}{i2,v}
\fmf{photon}{v,o1}
\fmf{photon}{v,o2}
\fmflabel{$\phi^\pm$}{i2}
\fmflabel{$H$}{i1}
\fmflabel{$W_\mu^\mp$}{o2}
\fmflabel{$A_\nu$}{o1}
\end{fmfgraph*}
\caption*{\F{14}}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{dashes}{i1,v}
\fmf{dashes}{i2,v}
\fmf{photon}{v,o1}
\fmf{photon}{v,o2}
\fmflabel{$\phi^+$}{i2}
\fmflabel{$\phi^-$}{i1}
\fmflabel{$Z_\mu$}{o2}
\fmflabel{$A_\nu$}{o1}
\end{fmfgraph*}
\caption*{\F{15}}
\end{subfigure} \\
\vspace{12mm}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dashes,label=$p_-$}{i1,v}
\fmf{dashes,label=$p_+$}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$\phi^-$}{i1}
\fmflabel{$\phi^+$}{i2}
\fmflabel{$A_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{16}}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dashes,label=$p_-$}{i1,v}
\fmf{dashes,label=$p_+$}{i2,v}
\fmf{dashes}{v,o}
\fmflabel{$\phi^-$}{i1}
\fmflabel{$\phi^+$}{i2}
\fmflabel{$H$}{o}
\end{fmfgraph*}
\caption*{\F{17}}
\end{subfigure}
\end{fmffile}
\caption{Some interaction diagrams between electroweak bosons, Goldstone
bosons, and the Higgs. Momentum arrows are taken to be toward
the vertex center.}
\end{figure}
The interactions among only Higgs and Goldstone fields emerge from the Higgs
potential
\begin{equation}
\Lagr_{int}^H=-\mu^2 K^\dagger K-\frac{\lambda}{2}\big(K^\dagger K\big)^2
\end{equation}
after spontaneous symmetry breaking. The only one from this sector that we
will need is
\begin{equation}
\Lagr_{int}^H=\frac{1}{2}g\frac{M_H^2}{M_W}H\phi^+ \phi^- +...
\end{equation}
and the corresponding Feynman rule is
\begin{gather*}
-\frac{ig}{2}\frac{M_H^2}{M_W}~~\F{17}
\end{gather*}
To finish off the scalar part of the electroweak sector, we introduce the FP
Lagrangian, which we accomplish by taking gauge transformations of the $C^a$.
The gauge transformations of the bosonic fields are
\begin{gather}
B_\mu^a\to B_\mu^a+g\epsilon^{abc}\Lambda^bB^c_\mu \qquad
B^0_\mu\to B^0_\mu-\partial_\mu\Lambda^0 \\
K\to \Bigg(1-\frac{ig}{2}\Lambda^2\sigma^a-\frac{i}{2}gg'\Lambda^0\Bigg)K
\end{gather}
The $\Lambda^i,i=0,1,2,3$ are the group gauge transformation parameters. The
physical gauge transformation parameters $\Lambda^j,j=+,-,Z,A$ are
specified by
\begin{gather}
\label{eq:lparam}
\Lambda^1=\frac{1}{\sqrt{2}}\big(\Lambda^++\Lambda^-\big) \qquad
\Lambda^2=\frac{i}{\sqrt{2}}\big(\Lambda^+-\Lambda^-\big) \\
\nonumber
\Lambda^3=\ct\Lambda^Z+\st\Lambda^A \qquad
\Lambda^0=-\st\Lambda^Z+\ct\Lambda^A \\
\nonumber
\Lambda^3+g'\Lambda^0=\frac{1}{\ct}\Lambda^Z \qquad
-\Lambda^3+g'\Lambda^0=-\frac{\ct^2-\st^2}{\ct}\Lambda^Z-2\st\Lambda^A.
\end{gather}
Using \eqref{eq:lparam} we can derive the gauge transformations of the
physical fields in terms of the physical parameters. Combining this with
\eqref{eq:cdefs} and \eqref{eq:zadefs}, we get the gauge transformations of
$C^\pm,C^A,$ and $C^Z$ in terms of physical parameters. For the purposes
of this exam, the most important part is
\begin{equation}
\label{eq:cxform}
C^\pm \to C^\pm +\frac{1}{\sqrt{\xi}}\big(\Box\Lambda^\pm
+\xi M_W^2 \Lambda^\pm\big)+...
\end{equation}
where $\Box$ is the D'Alembertian operator. Just as in the case of gauge
fields, we associate with each physical gauge parameter
$\Lambda^\pm,\Lambda^Z,\Lambda^A$ a ghost field $X^\pm,Y^Z,Y^A$ by
\begin{gather}
X^1=\frac{1}{\sqrt{2}}\big(X^++X^-\big), \qquad
X^2=\frac{1}{\sqrt{2}}\big(X^+-X^-\big), \\
X^3=\ct Y^Z+\st Y^A, \qquad
X^0=-\st Y^Z +\ct Y^A. \nonumber
\end{gather}
The gauge
invariance $C^\pm\to C^\pm$ is restored if we identify the first term in
\eqref{eq:cxform} as the ghost propagator
\begin{gather*}
\frac{i}{k^2-\xi M_W^2+i\epsilon}~~\F{18}
\end{gather*}
and identify ghost field interactions of the form
\begin{equation}
g\overline{X}^i L^{ij} X^j, \qquad i,j=+,-,Z,A.
\end{equation}
The interaction Lagrangian for the electroweak ghosts then becomes (again
we're only looking at some of the terms)
\begin{gather}
\Lagr_{int}^{gf}=ie\frac{1}{\sqrt{\xi}}A_\mu
\big(\partial^\mu \overline{X}^+X^+
-\partial^\mu \overline{X}^-X^-\big)
+ig\ct\frac{1}{\sqrt{\xi}}Z_\mu
\big(\partial^\mu \overline{X}^+X^+
-\partial^\mu \overline{X}^-X^-\big)\\
-\frac{1}{2}g\sqrt{\xi}M_W H
\big(\overline{X}^+X^+ -\overline{X}^-X^-\big)+...\nonumber
\end{gather}
with Feynman rules
\begin{gather*}
\mp iep^\mu~~\F{19}~~~~~~~~
\pm ig\ct p^\mu~~\F{20}~~~~~~~~
-\frac{ig}{2}\sqrt{\xi}M_W~~\F{21}
\end{gather*}
\begin{figure}
\begin{fmffile}{fr18to21}
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i}
\fmfright{o}
\fmf{dots,label=$X^\pm$}{i,o}
\end{fmfgraph*}
\caption*{\F{18}}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dots}{i1,v}
\fmf{dots,label=$p$}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$X^\pm$}{i1}
\fmflabel{$X^\pm$}{i2}
\fmflabel{$A_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{19}}
\end{subfigure} \\
\vspace{12mm}
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dots}{i1,v}
\fmf{dots,label=$p$}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$X^\pm$}{i1}
\fmflabel{$X^\pm$}{i2}
\fmflabel{$Z_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{20}}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{dots}{i1,v}
\fmf{dots}{i2,v}
\fmf{photon}{v,o}
\fmflabel{$X^\pm$}{i1}
\fmflabel{$X^\pm$}{i2}
\fmflabel{$H$}{o}
\end{fmfgraph*}
\caption*{\F{21}}
\end{subfigure}
\end{fmffile}
\caption{The ghost propagator and some ghost-electroweak boson interaction
terms.}
\end{figure}
\noindent
It's worth noting that the ghost field mass terms are proportional to
$\sqrt{\xi}$, which makes them not physical.
Next we move to fermions. We start with
\begin{gather}
\label{eq:ferms}
\Psi=
\left(\begin{array}{c}
u \\
d
\end{array}\right) \qquad
\Psi_{L,R}=\frac{1}{2}(1\pm\gamma_5)\Psi \\
\nonumber
D_\mu\Psi_L=\big(\partial_\mu+gB_\mu^iT^i\big)\Psi_L \qquad
T^a=-\frac{i}{2}\sigma^a \qquad
T^0=-\frac{i}{2}g_2I \\
\nonumber
D_\mu\Psi_R=\big(\partial_\mu+gB_\mu^it^i\big)\Psi_R \qquad
t^a=0 \qquad
t^0=-\frac{1}{2}
\left(\begin{array}{cc}
g_3 & 0 \\
0 & g_4
\end{array}\right),
\end{gather}
where $i=0,1,2,3$.
The part of the Lagrangian corresponding to interactions between fermions
and weak vector bosons is
\begin{equation}
\Lagr_{int}^{vfer}=-\overline{\Psi}_L \slashed{D}\Psi_L
-\overline{\Psi}_R \slashed{D}\Psi_R, \qquad
g_i=-\frac{\st}{\ct}\lambda_i.
\end{equation}
The parameters $\lambda_i$ are fixed by the requirement that the EM current
take the form $iQ_f e \bar{f}\gamma_\mu f$. We get
\begin{equation}
\lambda_2=1-2Q_u=1-2Q_d, \qquad \lambda_3=-2Q_u,
\qquad \text{and} \qquad \lambda_4=-2Q_d,
\end{equation}
and we define $I_f^{(3)}$ by
\begin{equation}
Q_f=2I_f^{(3)}|Q_f|.
\end{equation}
With these definitions we can recast \eqref{eq:ferms} in a more transparent
form. The parts that interest us are
\begin{equation}
\label{eq:vfer}
\Lagr_{int}^{vfer}=\sum\limits_f\Bigg[ieQ_fA_\mu \bar{f}\gamma_\mu f
+\frac{ig}{2\ct}Z_\mu\bar{f}\gamma^\mu
\Big(I_f^{(3)}-2Q_f\st^2+I_f^{(3)}\gamma_5\Big)f\Bigg]
+...
\end{equation}
where the sum is over possible fermion types. The Feynman rules corresponding
to these two terms are
\begin{gather*}
-ieQ_f \gamma^\mu~~\F{22}~~~~~~~~
\frac{ig}{2\ct}\gamma^\mu\Big(I_f^{(3)}
-2Q_f\st^2+I_f^{(3)}\gamma_5\Big)~~\F{23}
\end{gather*}
\begin{figure}
\begin{fmffile}{fr22to25}
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{fermion}{i1,v,i2}
\fmf{photon}{v,o}
\fmflabel{$\bar{f}$}{i1}
\fmflabel{$f$}{i2}
\fmflabel{$A_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{22}}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{fermion}{i1,v,i2}
\fmf{photon}{v,o}
\fmflabel{$\bar{f}$}{i1}
\fmflabel{$f$}{i2}
\fmflabel{$Z_\mu$}{o}
\end{fmfgraph*}
\caption*{\F{23}}
\end{subfigure} \\
\vspace{12mm}
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{fermion}{i1,v,i2}
\fmf{dashes}{v,o}
\fmflabel{$\bar{f}$}{i1}
\fmflabel{$f$}{i2}
\fmflabel{$H$}{o}
\end{fmfgraph*}
\caption*{\F{24}}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i}
\fmfright{o}
\fmf{fermion,label=$f$}{i,o}
\end{fmfgraph*}
\caption*{\F{25}}
\end{subfigure}
\end{fmffile}
\caption{Some fermion-boson interactions and the fermion propagator.}
\end{figure}
For the fermionic Higgs sector let
\begin{equation}
\label{eq:ktilde}
\widetilde{K}=-\frac{1}{\sqrt{2}}
\left(\begin{array}{c}
\sqrt{2}i\phi^+ \\
H+2M_{W}/g-i\phi^0
\end{array}\right).
\end{equation}
This part of the SM Lagrangian is
\begin{equation}
\label{eq:lsferm}
\Lagr_S^{ferm}=-\alpha_f \overline{\Psi}_L Ku_R
-\beta_f \overline{\Psi}_L\widetilde{K}d_R+\text{h.c.},
\end{equation}
where $\alpha_f$ and $\beta_f$ are Yukawa couplings. Thus we see
\eqref{eq:ktilde} allows us to give masses to down type fermions. Plugging
\eqref{eq:ktilde} into \eqref{eq:lsferm} and using equations like
\begin{equation}
\bar{u}_R d_L=\frac{\bar{u}}{2}(1+\gamma_5)d, \qquad
\bar{u}_L d_R=\frac{\bar{u}}{2}(1-\gamma_5)d \qquad
\end{equation}
we obtain
\begin{equation}
\Lagr_S^{ferm}=-\frac{\alpha_f}{\sqrt{2}}\Bigg(\frac{2M_W}{g}\Bigg)\bar{u}u
-\frac{\beta_f}{\sqrt{2}}\Bigg(\frac{2M_W}{g}\Bigg)\bar{d}d
+...
\end{equation}
from which we see
\begin{equation}
\alpha_f=\frac{gm_u}{\sqrt{2}M_W}, \qquad
\alpha_f=-\frac{gm_d}{\sqrt{2}M_W}.
\end{equation}
With this identification we can write
\begin{equation}
\label{eq:sferm}
\Lagr_S^{ferm}=-\sum\limits_f
\Bigg(m_f+\frac{1}{2}gH\frac{m_f}{M_W}\Bigg)\bar{f}f+...
\end{equation}
whose second term gives the Feynman rule
\begin{gather*}
-\frac{igm_f}{2M_W}~~\F{24}
\end{gather*}
Also note that from \eqref{eq:vfer} and
\eqref{eq:sferm} we have the terms necessary to build the propagator for
any fermion
\begin{gather*}
\frac{i(\slashed{p}+m_f)}{p^2-m_f^2+i\epsilon}~~\F{25}
\end{gather*}
To complete the SM Lagrangian, at least to the extent necessary to do this
exam, we briefly cover the QCD sector. Let $a,b,c=1,...,8$; $i,j=1,2,3$.
Then the first two pieces of the QCD Lagrangian read
\begin{gather}
\Lagr_{gauge}^{QCD}=-\frac{1}{2}\partial_\nu G_\mu^a\partial^\nu G^{a\mu}
-g_S f^{abc}\partial_\mu G_\nu^aG^{b\mu}G^{c\nu}
-\frac{1}{4}g_S^2 f^{abc}f^{ade}G_\mu^bG_{\nu}^cG^{d\mu}G^{e\nu} \\
\Lagr_{ferm}^{QCD}=\frac{1}{2}ig_S\sum\limits_\sigma
\big(\bar{q}_i^\sigma\gamma^\mu\lambda_{ij}^aq_j^\sigma\big)G^a_\mu,
\nonumber
\end{gather}
where the sum in $\Lagr_{ferm}^{QCD}$ runs over quark types. There will also
need to be a gauge fixing term and a ghost field, but we do not need to
bother with these details for this final. From $\Lagr_{ferm}^{QCD}$ we can
read off the last needed Feynman rule
\begin{gather*}
ig_S\big(\gamma^\mu\big)_{\beta\alpha}G^a_{ij}~~\F{26}
\end{gather*}
Adding together all the mentioned pieces gives the SM Lagrangian.
\begin{figure}
\begin{fmffile}{fr26}
\centering
\begin{subfigure}{\textwidth}
\centering
\begin{fmfgraph*}(60,60)
\fmfleft{i1,i2}
\fmfright{o}
\fmf{fermion}{i1,v,i2}
\fmf{gluon}{v,o}
\fmflabel{$\alpha,j$}{i1}
\fmflabel{$\beta,i$}{i2}
\fmflabel{$\mu,a$}{o}
\end{fmfgraph*}
\caption*{\F{26}}
\end{subfigure}
\end{fmffile}
\caption{Quark-gluon vertex.}
\end{figure}
\section{Some discussion of Higgs decays}
{\it The interactions between the Higgs boson and the EW gauge bosons were
derived in the previous rules. In the case $M_{H}\approx\text{125 GeV}$, we
have $M_{H}<2M_W$ and $M_{H}<2M_Z$. But the branching ratios $\Br(H\to WW)$ and
$\Br(H\to ZZ)$ are nonzero in this range. What do they correspond to? How would
you calculate these rates?}\vspace{5mm}
If $M_H<2M_W$ or $M_H<2M_Z$ then one of the product particles must be
off-shell, which makes it virtual. Therefore this is not a decay we can
directly observe. Thankfully if the virtual particle decays into on-shell
particles, we can observe those. There are a few constraints:
\begin{enumerate}
\item Whatever the final products are in $H\to ZX$ or $H\to WX$ (where $X$ is
a currently unspecified collection of particles), they had better be
kinematically allowed. Thus $M_H\geq m_{products}$.
\item The decay of the virtual boson has to use valid Feynman rules.
\item The decay products cannot be Goldstone or ghost particles because these
are unphysical.
\end{enumerate}
Let us consider the two cases.
\underline{$H\to WW^*$}: Here $M_X\leq\text{45~GeV}$. Kinematically, $\gamma$,
$g$, and all fermions except $t$ are allowed. We have to eliminate $\gamma$
because there is no coupling to $W^*$ that does not involve another $W$ or $Z$.
$W^*$ does not couple to $g$, so it is also eliminated. Therefore at tree level,
the only contributing diagrams are the ones in Figure 6a, where
$|Q_{f_1}-Q_{f_2}|=1$, $f_1$ and $f_2$ have different flavors and the same
lepton number. By \F{12}, \F{27}, and \F1, the value of this diagram is
\begin{equation}
i\ME_{f_1,f_2}=i\frac{g}{\sqrt{2}}\gamma^\mu
\Bigg(\frac{1-\gamma_5}{2}\Bigg)\Bigg(\frac{-ig_{\mu\nu}}{k^2-M_W^2}\Bigg)
\big(igM_Z\st^2\big)\bar{u}_{s_2}(\vec{p}_2)v_{s_1}(\vec{p}_1)
g^{\nu\rho}\epsilon^*_\rho(p_W).
\end{equation}
Hence,
\begin{equation}
i\ME=i\sum\limits_{f_1,f_2}\ME_{f_1,f_2},
\end{equation}
where the sum runs over all $f_1$ and $f_2$ subject to the above restrictions.
\underline{$H\to ZZ^*$}: The $Z$-boson is not much heavier than $W$, and it
cannot
decay directly into $g$ or $\gamma$ for the same reasons as before. At tree
level, the only relevant Feynman diagrams are the ones in Figure 6b because
the $Z$-boson changes neither color nor flavor. Therefore
\begin{equation}
i\ME=\sum\limits_f\left(\frac{ig}{2\ct}\gamma^\mu\big(I_f^{(3)}
-2Q_f\st^2+I_f^{(3)}\gamma_5\big)\frac{-ig_{\mu\nu}}
{k^2-M_Z^2}\Bigg(\frac{ig}{\ct}M_Zg^{\nu\rho}\Bigg)
\epsilon^*_\rho(p_Z)\bar{u}_{s_2}(\vec{p}_2)
v_{s_1}(\vec{p}_1)\right)
\end{equation}
\begin{figure}
\setlength{\abovecaptionskip}{15pt plus 3pt minus 2pt}
\begin{fmffile}{prob1}
\centering
\begin{subfigure}{.45\textwidth}
\setlength{\abovecaptionskip}{25pt plus 3pt minus 2pt}
\centering
\begin{fmfgraph*}(90,60)
\fmfleft{i}
\fmfright{o1,o2,o3}
\fmf{dashes,tension=2}{i,v1}
\fmf{photon}{v1,o1}
\fmf{photon,label=$W^*$}{v1,v2}
\fmf{fermion,tension=1}{o3,v2,o2}
\fmflabel{$H$}{i}
\fmflabel{$W$}{o1}
\fmflabel{$f_2$}{o2}
\fmflabel{$f_1$}{o3}
\end{fmfgraph*}
\caption{}
\end{subfigure}
\begin{subfigure}{.45\textwidth}
\setlength{\abovecaptionskip}{25pt plus 3pt minus 2pt}
\centering
\begin{fmfgraph*}(90,60)
\fmfleft{i}
\fmfright{o1,o2,o3}
\fmf{dashes,tension=2}{i,v1}
\fmf{photon}{v1,o1}
\fmf{photon,label=$Z^*$}{v1,v2}
\fmf{fermion,tension=1}{o3,v2,o2}
\fmflabel{$H$}{i}
\fmflabel{$Z$}{o1}
\fmflabel{$f$}{o2}
\fmflabel{$\bar{f}$}{o3}
\end{fmfgraph*}
\caption{}
\end{subfigure}
\end{fmffile}
\caption{Off-shell Higgs decays into (a) $WW^*$ and (b) $ZZ^*$.}
\end{figure}
{\it Calculate $\Gamma(H\to Q\overline{Q})$, where $Q$ is an arbitrary quark.}
\vspace{5mm}
We work in the rest frame of the Higgs. For a general particle decay in this
frame we have \cite[p.107]{peskin_introduction_1995}
\begin{equation}
\text{dLIPS}=\frac{d\Omega}{16\pi^2}\frac{|\vec{p}|}{E_{CM}},
\end{equation}
where $E_{CM}$ is the total initial energy and $\vec{p}$ is the spatial
momentum of either of the final state particles. Therefore the decay rate
$\Gamma(H\to\text{2 particles})$ is generally
\begin{equation}
\label{eq:gam}
\Gamma=\frac{1}{2m_H}\int\frac{d\Omega}{16\pi^2}
\frac{|\vec{p}|}{m_H}|\ME|^2
=\frac{4\pi}{16\pi^2 m_H^2}|\ME|^2|\vec{p}|
=\frac{|\vec{p}||\ME|^2}{8\pi m_H^2}.
\end{equation}
In the present case, the contributing diagram is \F{24}. Therefore the matrix
element is
\begin{equation}
i\ME=-\frac{ig}{2}{m_Q}{M_W}\bar{u}_s(\vec{p})v_{s'}(\vec{p}').
\end{equation}
Summing over final spin states and keeping in mind that the quark-antiquark
pair has three possible color-anticolor combinations, we get by the
completeness relation
\begin{equation}
\label{eq:ME2}
\begin{aligned}
\left< |\ME|^2 \right>&=3\frac{g^2 m_Q^2}{4M_W^2}\sum\limits_{s,s'}
\Tr u_s(\vec{p})\bar{u}_s(\vec{p})
v_{s'}(\vec{p}')\bar{v}_{s'}(\vec{p}') \\
&=\frac{3g^2 m_Q^2}{4M_W^2}\Tr(\slashed{p}+m_Q)(\slashed{p}'-m_Q) \\
&=\frac{3g^2 m_Q^2}{4M_W^2}\Tr(\slashed{p}\slashed{p}'-m_Q^2) \\
&=\frac{3g^2 m_Q^2}{M_W^2}\Tr(pp'-m_Q^2) \\
&=\frac{3g^2 m_Q^2}{M_W^2}\Bigg(-\frac{s}{2}-m_Q^2-m_Q^2\Bigg) \\
&=\frac{3g^2 m_Q^2}{M_W^2}\Bigg(-\frac{m_H^2}{2}-2m_Q^2\Bigg) \\
&=\frac{3g^2 m_Q^2 m_H^2}{M_W^2}\Bigg(1-\frac{4m_Q^2}{m_H^2}\Bigg).
\end{aligned}
\end{equation}
Combining \eqref{eq:gam} and \eqref{eq:ME2} yields
\begin{equation}
\label{eq:gamQ}
\begin{aligned}
\Gamma&=\frac{1}{8\pi m_H^2}{m_H}\Bigg(1-\frac{4m_Q^2}{m_H^2}\Bigg)^{1/2}
\frac{3g^2m_Q^2m_H^2}{M_W^2}\Bigg(1-\frac{4m_Q^2}{m_H^2}\Bigg)\\
&=\frac{3g^2m_Q^2m_H}{8\pi M_W^2}
\Bigg(1-\frac{4m_Q^2}{m_H^2}\Bigg)^{3/2}.
\end{aligned}