-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmigrate.py
51 lines (41 loc) · 1.57 KB
/
migrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import keras.backend as K
import numpy as np
from config import channel
from model import build_encoder_decoder
from vgg16 import vgg16_model
def migrate_model(new_model):
old_model = vgg16_model(224, 224, 3)
# print(old_model.summary())
old_layers = [l for l in old_model.layers]
new_layers = [l for l in new_model.layers]
old_conv1_1 = old_model.get_layer('conv1_1')
old_weights = old_conv1_1.get_weights()[0]
old_biases = old_conv1_1.get_weights()[1]
new_weights = np.zeros((3, 3, channel, 64), dtype=np.float32)
new_weights[:, :, 0:3, :] = old_weights
new_weights[:, :, 3:channel, :] = 0.0
new_conv1_1 = new_model.get_layer('conv1_1')
new_conv1_1.set_weights([new_weights, old_biases])
for i in range(2, 31):
old_layer = old_layers[i]
new_layer = new_layers[i + 1]
new_layer.set_weights(old_layer.get_weights())
# flatten = old_model.get_layer('flatten')
# f_dim = flatten.input_shape
# print('f_dim: ' + str(f_dim))
# old_dense1 = old_model.get_layer('dense1')
# input_shape = old_dense1.input_shape
# output_dim = old_dense1.get_weights()[1].shape[0]
# print('output_dim: ' + str(output_dim))
# W, b = old_dense1.get_weights()
# shape = (7, 7, 512, output_dim)
# new_W = W.reshape(shape)
# new_conv6 = new_model.get_layer('conv6')
# new_conv6.set_weights([new_W, b])
del old_model
if __name__ == '__main__':
model = build_encoder_decoder()
migrate_model(model)
print(model.summary())
model.save_weights('models/model_weights.h5')
K.clear_session()