-
Notifications
You must be signed in to change notification settings - Fork 342
/
predict.c
243 lines (210 loc) · 5.22 KB
/
predict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "linear.h"
int print_null(const char *s,...) {return 0;}
static int (*info)(const char *fmt,...) = &printf;
struct feature_node *x;
int max_nr_attr = 64;
struct model* model_;
int flag_predict_probability=0;
void exit_input_error(int line_num)
{
fprintf(stderr,"Wrong input format at line %d\n", line_num);
exit(1);
}
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void do_predict(FILE *input, FILE *output)
{
int correct = 0;
int total = 0;
double error = 0;
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
int nr_class=get_nr_class(model_);
double *prob_estimates=NULL;
int j, n;
int nr_feature=get_nr_feature(model_);
if(model_->bias>=0)
n=nr_feature+1;
else
n=nr_feature;
if(flag_predict_probability)
{
int *labels;
if(!check_probability_model(model_))
{
fprintf(stderr, "probability output is only supported for logistic regression\n");
exit(1);
}
labels=(int *) malloc(nr_class*sizeof(int));
get_labels(model_,labels);
prob_estimates = (double *) malloc(nr_class*sizeof(double));
fprintf(output,"labels");
for(j=0;j<nr_class;j++)
fprintf(output," %d",labels[j]);
fprintf(output,"\n");
free(labels);
}
max_line_len = 1024;
line = (char *)malloc(max_line_len*sizeof(char));
while(readline(input) != NULL)
{
int i = 0;
double target_label, predict_label;
char *idx, *val, *label, *endptr;
int inst_max_index = 0; // strtol gives 0 if wrong format
label = strtok(line," \t\n");
if(label == NULL) // empty line
exit_input_error(total+1);
target_label = strtod(label,&endptr);
if(endptr == label || *endptr != '\0')
exit_input_error(total+1);
while(1)
{
if(i>=max_nr_attr-2) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));
}
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x[i].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
exit_input_error(total+1);
else
inst_max_index = x[i].index;
errno = 0;
x[i].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(total+1);
// feature indices larger than those in training are not used
if(x[i].index <= nr_feature)
++i;
}
if(model_->bias>=0)
{
x[i].index = n;
x[i].value = model_->bias;
i++;
}
x[i].index = -1;
if(flag_predict_probability)
{
int j;
predict_label = predict_probability(model_,x,prob_estimates);
fprintf(output,"%g",predict_label);
for(j=0;j<model_->nr_class;j++)
fprintf(output," %g",prob_estimates[j]);
fprintf(output,"\n");
}
else
{
predict_label = predict(model_,x);
fprintf(output,"%.17g\n",predict_label);
}
if(predict_label == target_label)
++correct;
error += (predict_label-target_label)*(predict_label-target_label);
sump += predict_label;
sumt += target_label;
sumpp += predict_label*predict_label;
sumtt += target_label*target_label;
sumpt += predict_label*target_label;
++total;
}
if(check_regression_model(model_))
{
info("Mean squared error = %g (regression)\n",error/total);
info("Squared correlation coefficient = %g (regression)\n",
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
);
}
else
info("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
if(flag_predict_probability)
free(prob_estimates);
}
void exit_with_help()
{
printf(
"Usage: predict [options] test_file model_file output_file\n"
"options:\n"
"-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only\n"
"-q : quiet mode (no outputs)\n"
);
exit(1);
}
int main(int argc, char **argv)
{
FILE *input, *output;
int i;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
switch(argv[i-1][1])
{
case 'b':
flag_predict_probability = atoi(argv[i]);
break;
case 'q':
info = &print_null;
i--;
break;
default:
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
break;
}
}
if(i>=argc)
exit_with_help();
input = fopen(argv[i],"r");
if(input == NULL)
{
fprintf(stderr,"can't open input file %s\n",argv[i]);
exit(1);
}
output = fopen(argv[i+2],"w");
if(output == NULL)
{
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
exit(1);
}
if((model_=load_model(argv[i+1]))==0)
{
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
exit(1);
}
x = (struct feature_node *) malloc(max_nr_attr*sizeof(struct feature_node));
do_predict(input, output);
free_and_destroy_model(&model_);
free(line);
free(x);
fclose(input);
fclose(output);
return 0;
}