-
Notifications
You must be signed in to change notification settings - Fork 5
/
constants.py
95 lines (89 loc) · 2.54 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# https://github.com/huggingface/optimum/blob/main/optimum/gptq/constants.py
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
SEQLEN_KEYS_TRANFORMERS = [
"max_position_embeddings", "seq_length", "n_positions"
]
BLOCK_PATTERNS = [
"transformer.h",
"model.decoder.layers",
"gpt_neox.layers",
"model.layers",
]
QUIP_CONFIG = "quantization_config.json"
ATTN_QKV_PATTERNS = [
"self_attention.query_key_value",
"attention.query_key_value",
"attn.c_attn",
"attn.qkv_proj",
"self_attn.W_pack",
"self_attn.k_proj",
"self_attn.v_proj",
"self_attn.q_proj",
"attn.k_proj",
"attn.v_proj",
"attn.q_proj"
]
ATTN_OUT_PATTENRS = [
"self_attention.dense",
"self_attn.out_proj",
"self_attn.o_proj",
"attn.c_proj",
"attn.out_proj",
"attention.dense",
]
FC1_PATTERN = [
"mlp.dense_h_to_4h",
"mlp.up_proj",
"mlp.gate_proj",
"mlp.c_fc",
"mlp.fc_in",
"fc1",
"mlp.w1",
"mlp.w2",
# mixtral moe
"block_sparse_moe.experts.0.w1",
"block_sparse_moe.experts.1.w1",
"block_sparse_moe.experts.2.w1",
"block_sparse_moe.experts.3.w1",
"block_sparse_moe.experts.4.w1",
"block_sparse_moe.experts.5.w1",
"block_sparse_moe.experts.6.w1",
"block_sparse_moe.experts.7.w1",
"block_sparse_moe.experts.0.w3",
"block_sparse_moe.experts.1.w3",
"block_sparse_moe.experts.2.w3",
"block_sparse_moe.experts.3.w3",
"block_sparse_moe.experts.4.w3",
"block_sparse_moe.experts.5.w3",
"block_sparse_moe.experts.6.w3",
"block_sparse_moe.experts.7.w3",
]
FC2_PATTERN = [
"mlp.dense_4h_to_h",
"mlp.down_proj",
"mlp.c_proj",
"mlp.fc_out",
"mlp.c_proj",
"fc2",
# mixtral moe
"block_sparse_moe.experts.0.w2",
"block_sparse_moe.experts.1.w2",
"block_sparse_moe.experts.2.w2",
"block_sparse_moe.experts.3.w2",
"block_sparse_moe.experts.4.w2",
"block_sparse_moe.experts.5.w2",
"block_sparse_moe.experts.6.w2",
"block_sparse_moe.experts.7.w2",
]