-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
525 lines (421 loc) · 22.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
"""
Implementation of Inflation/Deflation method based on Block Neural Autoregressive Flow
http://arxiv.org/abs/1904.04676
"""
import warnings
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as D
from torch.utils.data import DataLoader, TensorDataset
import sys
import math
import numpy as np
import os
import time
import argparse
import pprint
from functools import partial
from scipy.special import gamma
#import matplotlib
#matplotlib.use('Agg')
import matplotlib
from matplotlib import pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
from tqdm import tqdm
import pdb
from sklearn.datasets import make_swiss_roll
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from scipy.special import i0
from scipy import integrate
from datasets import load_simulator, SIMULATORS
from models import BlockNeuralAutoregressiveFlow as BNAF
from plotting import plt_latent_distribution as plot_latent
from torch.utils.data import DataLoader
# from utils import create_filename
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
# general
parser.add_argument('--train', action='store_true', help='Train a flow.')
parser.add_argument('--plot', action='store_true', help='Plot a flow and target density.')
parser.add_argument('--calculate_KS', action='store_true', help='Caclulates KS_test at the end of the training.')
parser.add_argument('--restore_file', action='store_true', help='Restore model.')
parser.add_argument('--debug', action='store_true', help='Debug mode: for more infos')
#parser.add_argument('--output_dir', default='results\{}'.format(os.path.splitext(__file__)[0]))
parser.add_argument('--output_dir', default='./results') #.format(os.path.splitext(__file__)[0]))
parser.add_argument('--cuda', default=0, type=int, help='Which GPU to run on.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
# target density
parser.add_argument('--dataset', type=str, help='Which potential function to approximate.')
parser.add_argument("--latent_distribution", type=str, default=None, help="Latent distribution (for datasets where that is variable)")
# model parameters
parser.add_argument('--data_dim', type=int, default=3, help='Dimension of the data.')
parser.add_argument('--hidden_dim', type=int, default=210, help='Dimensions of hidden layers.')
parser.add_argument('--n_hidden', type=int, default=3, help='Number of hidden layers.')
# training parameters
parser.add_argument('--step', type=int, default=0, help='Current step of training (number of minibatches processed).')
parser.add_argument('--n_gradient_steps', type=int, default=2000, help='Number of steps to train.')
parser.add_argument('--batch_size', type=int, default=200, help='Training batch size.')
parser.add_argument('--lr', type=float, default=1e-1, help='Initial learning rate.')
parser.add_argument('--lr_decay', type=float, default=0.5, help='Learning rate decay.')
parser.add_argument('--lr_patience', type=float, default=2000, help='Number of steps before decaying learning rate.')
parser.add_argument('--log_interval', type=int, default=50, help='How often to save model and samples.')
parser.add_argument("--noise_type", type=str, default="gaussian", help="Noise type: gaussian, normal (if possible)")
parser.add_argument('--shuffle', action='store_true', help='Shuffling train data')
# For the general model we have to set up the potential
parser.add_argument('--optim', type=str, default='adam', help='Which optimizer to use?')
parser.add_argument('--sig2', type=float, default='0.0', help='Noise magnitude')
parser.add_argument('--mc_samples', type=int, default='1', help='amount of MC samples for noise')
def calculate_KS_in_2d(diff,n_pts,dx,dy):
CDF_diff_ = np.zeros([n_pts,n_pts])
for i in range(n_pts):
for j in range(n_pts):
summe = np.sum(diff[0:i,0:j])
CDF_diff_[i,j] = np.abs(summe)
KS_1 = np.max(CDF_diff_)*(dx*dy)
CDF_diff_ = np.zeros([n_pts,n_pts])
for i in range(n_pts):
for j in range(n_pts):
summe = np.sum(diff[0:i,j:])
CDF_diff_[i,j] = np.abs(summe)
KS_2 = np.max(CDF_diff_)*(dx*dy)
CDF_diff_ = np.zeros([n_pts,n_pts])
for i in range(n_pts):
for j in range(n_pts):
summe = np.sum(diff[i:,0:j])
CDF_diff_[i,j] = np.abs(summe)
KS_3 = np.max(CDF_diff_)*(dx*dy)
CDF_diff_ = np.zeros([n_pts,n_pts])
for i in range(n_pts):
for j in range(n_pts):
summe = np.sum(diff[i:,j:])
CDF_diff_[i,j] = np.abs(summe)
KS_4 = np.max(CDF_diff_)*(dx*dy)
#3 calculate max
KS = np.max([KS_1,KS_2,KS_3,KS_4])
print('Impact',np.abs(KS-KS_1))
return KS
def calculate_KS_stats(args,model,simulator,n=100):
logger.info("Start calculating KS statistics")
model.eval()
if args.dataset == 'von_Mises_circle':
prec = n #precision for integrals
CDF_original = torch.zeros(prec)
CDF_model = torch.zeros(prec)
for k in range(prec):
b = -np.pi*(prec-1-k)/(prec-1) + np.pi*k/(prec-1)
z = torch.linspace(-np.pi,b,1000)
dens = integrand_circle(z,model,args.datadim, args.pieepsilon**2)
CDF_model[k] = torch.trapz(dens, z)
log_prob = torch.tensor(simulator._log_density(z.cpu().numpy()))
CDF_original[k] = torch.trapz(torch.exp(log_prob),z)
CDF_diff = torch.abs(CDF_model-CDF_original)
KS_test = torch.max(CDF_diff).cpu().detach().cpu().numpy()
logger.info("KS statistics: %s", KS_test)
elif simulator.latent_dim() == 2: # args.dataset in ['torus','swiss_roll','sphere','hyperboloid','spheroid']:
n_pts = n
data, latent, true_probs, jacobians, multiplier = simulator.generate_grid(n_pts,mode='data_space')
# print('jacobian',jacobians.shapes)
u1, u2 = latent[0], latent[1] #theta phi for torus,sphere; u,v for swissroll
dx = u1[1]-u1[0] #for integration
dy = u2[1]-u2[0] #for integration
# pdb.set_trace()
xx = torch.tensor(data).to(args.device, torch.float)
logprobs = []
with torch.no_grad():
model.eval()
for xx_k in xx.split(args.batch_size, dim=0):
z_k, logdet_k = model(xx_k)
logprobs += [torch.sum(model.base_dist.log_prob(z_k)+ logdet_k, dim=1) ]
logprobs = torch.cat(logprobs, 0)
probs_flow = torch.exp(logprobs+0.5*np.log(2*np.pi*args.sig2)) #gaussian noise assumption
# pdb.set_trace()
probs_flow = probs_flow.view(latent[1].shape[0],latent[0].shape[0])
density_flow = probs_flow * torch.abs(torch.tensor(jacobians)).to(args.device, torch.float)
print('true probs integral ',true_probs.sum()*dx*dy)
print('flow probs integral ',density_flow.sum()*dx*dy)
# import pdb
# pdb.set_trace() .T
diff = density_flow - torch.tensor(true_probs).view(n_pts,int(n_pts*multiplier)).to(args.device, torch.float)
# CDF_diff = torch.zeros([n_pts,n_pts*multiplier])
# for i in range(n_pts):
# for j in range(n_pts*multiplier):
# summe = torch.sum(diff[0:i,0:j])
# CDF_diff[i,j] = torch.abs(summe)
KS_test = calculate_KS_in_2d(diff.detach().cpu().numpy(),n_pts,dx,dy)
# KS_test = (torch.max(CDF_diff)*(dx*dy)).cpu().detach().cpu().numpy()
logger.info("KS statistics: %s", KS_test)
elif args.dataset in ['thin_spiral']:
def integrand(x, model, simulator):
data = simulator._transform_z_to_x(x,mode='test')
xx_ = torch.tensor(data).to(args.device, torch.float)
model.eval()
with torch.no_grad():
z_, logdet_ = model(xx_)
log_prob = torch.sum(model.base_dist.log_prob(z_)+logdet_,dim=1) +0.5*np.log(2*np.pi*args.sig2)
c1 = 540 * 2* np.pi / 360
r = np.sqrt(x) * c1
jacobians = ((1+r**2)/r**2) * c1**4 / 36
density = torch.exp(log_prob) * torch.sqrt(torch.tensor(jacobians).to(args.device, torch.float))
return density
prec = n #precision for integrals
CDF_original = torch.zeros(prec)
CDF_model = torch.zeros(prec)
a_, b_ = 0, 2.5
dx = (b_ - a_)/1000
dy = 1
for k in range(1,prec+1):
b = a_*(prec-k)/(prec) + b_*k/(prec)
z_np = np.linspace(a_,b,1000+1)[1:] #.to(args.device, torch.float)
z_torch = torch.tensor(z_np).to(args.device, torch.float)
dens = integrand(z_np,model,simulator)
CDF_model[k-1] = torch.trapz(dens, z_torch)
true_probs = torch.tensor(simulator._density(np.abs(z_np))).to(args.device, torch.float)
CDF_original[k-1] = torch.trapz(true_probs,z_torch)
print('true probs integral ',true_probs.sum()*dx*dy)
print('flow probs integral ',dens.sum()*dx*dy)
CDF_diff = torch.abs(CDF_model-CDF_original)
KS_test = torch.max(CDF_diff).cpu().detach().cpu().numpy()
logger.info("KS statistics: %s", KS_test)
# data, latent, true_probs, jacobians, multiplier = simulator.generate_grid(n_pts,mode='data_space')
# latent_test = simulator.load_latent(train=False,dataset_dir=create_filename("dataset", None, args))
# order = np.argsort(latent_test)
# latent_test = latent_test[order] #sort: lowest to highest
# z = np.sqrt(latent_test) * 540 * (2 * np.pi) / 360
# d1x = - np.cos(z) * z #d/dz = -cos(z) +sin(z)z --> ||grad||^2 = cos^2 - cos sin z + sin^2 z^2 +
# d1y = np.sin(z) * z #d/dz = sin(z) +cos(z)z ---> sin^2 + cos sin z + cos^2 z^2
# x = np.stack([ d1x, d1y], axis=1) / 3 #
# x = torch.tensor(data).to(args.device, torch.float)
# logprobs = []
# # with torch.no_grad():
# model.eval()
# params_ = None
# step = 0
# with torch.no_grad():
# model.eval()
# for xx_k in xx.split(args.batch_size, dim=0):
# z_k, logdet_k = model(xx_k)
# logprobs += [torch.sum(model.base_dist.log_prob(z_k)+ logdet_k, dim=1) ]
# logprobs = torch.cat(logprobs, 0)
# density_flow = torch.exp(logprobs+0.5*np.log(2*np.pi*args.sig2)) * torch.abs(torch.tensor(jacobians))
# logger.info("Calculated latent probs, KS not implemented")
# np.save(create_filename("results", "latent_probs", args), logprobs.detach().cpu().numpy())
elif args.dataset in ['two_thin_spirals']:
def integrand(x, model, simulator):
data = np.sign(x).reshape([x.shape[0],1]) * simulator._transform_z_to_x(np.abs(x),mode='test')
xx_ = torch.tensor(data).to(args.device, torch.float)
model.eval()
with torch.no_grad():
z_, logdet_ = model(xx_)
log_prob = torch.sum(model.base_dist.log_prob(z_)+logdet_,dim=1) +0.5*np.log(2*np.pi*args.sig2)
c1 = 540 * 2* np.pi / 360
r = np.sqrt(np.abs(x)) * c1
r[r==0]=1/10000
jacobians = ((1+r**2)/r**2) * c1**4 / 36
density = torch.exp(log_prob) * torch.sqrt(torch.tensor(jacobians).to(args.device, torch.float))
return density
prec = n #precision for integrals
CDF_original = torch.zeros(prec)
CDF_model = torch.zeros(prec)
a_, b_ = -2.5, 2.5
dx = (b_ - a_)/1000
dy = 1
for sign in range(2):
for k in range(1,prec+1):
b = a_*(prec-k)/(prec) + b_*k/(prec)
z_np = np.linspace(a_,b,1000+1)[1:] #.to(args.device, torch.float)
z_torch = torch.tensor(z_np).to(args.device, torch.float)
dens = integrand(z_np,model,simulator)
CDF_model[k-1] = torch.trapz(dens, z_torch)
true_probs = torch.tensor(0.5*simulator._density(z_np)).to(args.device, torch.float)
CDF_original[k-1] = torch.trapz(true_probs,z_torch)
print('true probs integral ',true_probs.sum()*dx*dy)
print('flow probs integral ',dens.sum()*dx*dy)
CDF_diff = torch.abs(CDF_model-CDF_original)
KS_test = torch.max(CDF_diff).cpu().detach().cpu().numpy()
logger.info("KS statistics: %s", KS_test)
elif args.dataset in ['stiefel']:
def integrand(x, model, simulator):
data = simulator._transform_z_to_x(x,mode='test')
xx_ = torch.tensor(data).to(args.device, torch.float)
model.eval()
with torch.no_grad():
z_, logdet_ = model(xx_)
log_prob = torch.sum(model.base_dist.log_prob(z_)+logdet_,dim=1) +0.5*(simulator.data_dim()-simulator.latent_dim())*np.log(2*np.pi*args.sig2)
jacobians = 2
density = torch.exp(log_prob) * torch.sqrt(torch.tensor(jacobians).to(args.device, torch.float))
return density
prec = n #precision for integrals
CDF_original = torch.zeros(prec)
CDF_model = torch.zeros(prec)
a_, b_ = -np.pi, np.pi
dx = (b_ - a_)/1000
dy = 1
for k in range(1,prec+1):
b = a_*(prec-k)/(prec) + b_*k/(prec)
z_np = np.linspace(a_,b,1000+1) #[1:] #.to(args.device, torch.float)
z_torch = torch.tensor(z_np).to(args.device, torch.float)
dens = integrand(z_np,model,simulator)
CDF_model[k-1] = torch.trapz(dens, z_torch)
true_probs = torch.tensor(simulator._density(z_np)).to(args.device, torch.float)
CDF_original[k-1] = torch.trapz(true_probs,z_torch)
print('true probs integral ',true_probs.sum()*dx*dy)
print('flow probs integral ',dens.sum()*dx*dy)
pdb.set_trace()
CDF_diff = torch.abs(CDF_model-CDF_original)
KS_test = torch.max(CDF_diff).cpu().detach().cpu().numpy()
logger.info("KS statistics: %s", KS_test)
else:
KS_test = 0
logger.info("KS not implemented for %s dataset", args.dataset)
np.save(os.path.join(args.output_dir, 'KS_test.npy'), KS_test)
def compute_kl_pq_loss(model, batch):
""" Compute BNAF eq 2 & 16:
KL(p||q_fwd) where q_fwd is the forward flow transform (log_q_fwd = log_q_base + logdet), p is the target distribution.
Returns the minimization objective for density estimation (NLL under the flow since the entropy of the target dist is fixed wrt the optimization) """
z_, logdet_ = model(batch)
log_probs = torch.sum(model.base_dist.log_prob(z_)+ logdet_, dim=1)
return -log_probs.mean(0)
# return -log_probs/mc_samples
# --------------------
# Validating
# --------------------
from torch.utils.data import Dataset
class NumpyValidationSet(Dataset):
def __init__(self, x, device='cpu', dtype=torch.float):
self.device = device
self.dtype = dtype
self.x = torch.from_numpy(x)
def __getitem__(self, index):
x = self.x[index, ...]
return x.to(self.device,self.dtype)
def __len__(self):
return self.x.shape[0]
with torch.no_grad():
def validate_flow(model, val_loader, loss_fn):
losses_val = 0
for batch_data in val_loader:
args.step += 1
model.eval()
batch_loss = loss_fn(model, batch_data)
losses_val += batch_loss.item()
return losses_val/len(val_loader)
# --------------------
# Training
# --------------------
def train_flow(model, simulator, loss_fn, optimizer, scheduler, args, double_precision=False):
losses = []
best_loss = np.inf
dtype = torch.double if double_precision else torch.float
validation_set = simulator.sample(1000)
validation_set = NumpyValidationSet(validation_set,device=args.device,dtype=dtype)
val_loader = DataLoader(
validation_set,
shuffle=True,
batch_size=args.batch_size,
# pin_memory=self.run_on_gpu,
#num_workers=n_workers,
)
# pdb.set_trace()
with tqdm(total=args.n_gradient_steps, desc='Start step {}; Training for {} steps'.format(args.step,args.n_gradient_steps)) as pbar:
for step in range(args.step+1,args.n_gradient_steps):
args.step += 1
model.train()
batch = simulator.sample_and_noise(args.batch_size,sig2=args.sig2)
x = torch.from_numpy(batch[:,:,0]).to(args.device, dtype)
noise = torch.from_numpy(batch[:,:,1]).to(args.device, dtype)
# print('noise',noise)
if args.sig2 >0:
x_tilde = x + noise
else:
x_tilde = x
if args.shuffle:
idx_shuffle = torch.randperm(args.batch_size)
x_tilde = x_tilde[idx_shuffle,:]
loss = loss_fn(model, x_tilde)
# if torch.isnan(loss).any() or torch.isinf(loss).any():
# import pdb
# pdb.set_trace()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.optim == 'adam':
scheduler.step(loss) #x
pbar.set_postfix(loss = '{:.3f}'.format(loss.item()))
pbar.update()
if step %10000 == 0:
# scheduler.step()
# save model
checkpoint = {'step': args.step,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict()}
torch.save(checkpoint , os.path.join(args.output_dir, 'checkpoint.pt'))
# calculate_KS_stats(args,model,simulator)
if step %10000 == 0:
val_loss = validate_flow(model, val_loader, loss_fn)
if val_loss < best_loss:
# save model
checkpoint = {'step': args.step,
'state_dict': model.state_dict()}
torch.save(checkpoint , os.path.join(args.output_dir, 'checkpoint_best.pt'))
# if args.calculate_KS:
# calculate_KS_stats(args,model,simulator)
if step%1000 == 0 or args.step == 1:
# pdb.set_trace()
plot_latent(args.output_dir,simulator,model,i_epoch=step,n_grid=100,dtype=dtype,device=args.device)
if args.calculate_KS:
calculate_KS_stats(args,model,simulator)
#to do: KS statistics
if __name__ == '__main__':
warnings.simplefilter("once")
args = parser.parse_args()
logging.basicConfig(format="%(asctime)-5.5s %(name)-20.20s %(levelname)-7.7s %(message)s", datefmt="%H:%M", level=logging.DEBUG if args.debug else logging.INFO)
logger.info("Hi!")
param_string = 'sig2_'+str(args.sig2)+'_seed_'+str(args.seed)
original_output_dir = os.path.join(args.output_dir, args.dataset)
args.output_dir = os.path.join(args.output_dir, args.dataset, args.latent_distribution,args.noise_type, param_string)
if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir)
args.device = torch.device('cuda:{}'.format(args.cuda) if args.cuda is not None and torch.cuda.is_available() else 'cpu')
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.device.type == 'cuda': torch.cuda.manual_seed(args.seed)
model = BNAF(args.data_dim, args.n_hidden, args.hidden_dim, use_batch_norm = False).to(args.device)
# save settings
config = 'Parsed args:\n{}\n\n'.format(pprint.pformat(args.__dict__)) + \
'Num trainable params: {:,.0f}\n\n'.format(sum(p.numel() for p in model.parameters())) + \
'Model:\n{}'.format(model)
config_path = os.path.join(args.output_dir, 'config.txt')
if not os.path.exists(config_path):
with open(config_path, 'a') as f:
print(config, file=f)
simulator = load_simulator(args)
loss_fn = compute_kl_pq_loss
if args.train:
if args.optim == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
#scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.n_gradient_steps)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.lr_decay, patience=args.lr_patience, verbose=True)
elif args.optim == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.lr_decay, patience=args.lr_patience, verbose=True)
else:
raise RuntimeError('Invalid `optimizer`.')
if args.restore_file:
from utils import load_checkpoint
model, optimizer, scheduler, args.step = load_checkpoint(args.output_dir,model,optimizer,scheduler)
# pdb.set_trace()
# optim_checkpoint = torch.load(os.path.dirname(args.restore_file) + '/optim_checkpoint.pt', map_location=args.device)
# optimizer.load_state_dict(optim_checkpoint['optimizer'])
# scheduler.load_state_dict(optim_checkpoint['scheduler'])
train_flow(model, simulator, loss_fn, optimizer, scheduler, args)
if args.restore_file:
from utils import load_checkpoint
model, optimizer, scheduler, args.step = load_checkpoint(args.output_dir,model,best=True)
if args.plot:
plot_latent(args.output_dir,simulator,model,i_epoch=1337,n_grid=500,dtype=torch.float,device=args.device)
# plot(model, potential_or_sampling_fn, args)
if args.calculate_KS:
calculate_KS_stats(args,model,simulator,n=500)