This repository has been archived by the owner on Feb 19, 2020. It is now read-only.
forked from tawheeler/2017_iv_deep_radar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GAN.py
354 lines (298 loc) · 16.9 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras.models import Model, Sequential
from keras.regularizers import l2
from keras.layers import Input, Dense, Lambda, Flatten, Reshape, Merge
from keras.layers.convolutional import Convolution2D, Deconvolution2D, UpSampling2D
from keras.layers.normalization import BatchNormalization
from keras import backend as K
import time
import argparse
import tensorflow as tf
tf.python.control_flow_ops = tf # bugfix see https://github.com/fchollet/keras/issues/3857
import numpy as np
import random
import h5py
##########################
# Input Parser
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--nsteps', type=int, default=10)
parser.add_argument('--l2', type=float, default=0.0001) # weight l2 regularization
parser.add_argument('--verbosity', type=int, default=1)
parser.add_argument('--train', type=int, default=1)
parser.add_argument('--act', type=str, default='relu') # activation
parser.add_argument('--opt', type=str, default='adadelta') # optimizer
parser.add_argument('--tbdir', type=str, default='/tmp/keras_drm_GAN/')
parser.add_argument('--tblog', type=str, default='')
parser.add_argument('--dset', type=str, default='dset_runway.h5')
parser.add_argument('--save', type=str, default='') # log file
parser.add_argument('--load', type=str, default='') # optionally specify filepath for initial net to load from h5 file
parser.add_argument('--save_pred', type=str, default='gan_predictions.h5')
parser.add_argument('--fraction_loss_gan', type=float, default=0.95)
parser.add_argument('--logP_var', type=float, default=0.1)
parser.add_argument('--epsilon_std', type=float, default=0.01)
parser.add_argument('--dim_z', type=int, default=16)
args = parser.parse_args()
if len(args.tblog) == 0:
args.tblog = args.tbdir + time.strftime("run%Y%m%d-%H%M%S")
if args.verbosity > 0:
print args
##########################
# Load Data
data = h5py.File(args.dset, 'r')
O_test = data['data/O_test'][:]
T_test = data['data/T_test'][:]
Y_test = data['data/Y_test'][:]
O_train = data['data/O_train'][:]
T_train = data['data/T_train'][:]
Y_train = data['data/Y_train'][:]
data.close()
O_train = np.swapaxes(np.swapaxes(O_train, 0, 3), 1, 2)
T_train = np.swapaxes(np.swapaxes(T_train, 0, 3), 1, 2)
Y_train = np.swapaxes(np.swapaxes(Y_train, 0, 3), 1, 2)
O_test = np.swapaxes(np.swapaxes(O_test, 0, 3), 1, 2)
T_test = np.swapaxes(np.swapaxes(T_test, 0, 3), 1, 2)
Y_test = np.swapaxes(np.swapaxes(Y_test, 0, 3), 1, 2)
n_train = O_train.shape[0] - (O_train.shape[0]%args.batch_size)
n_test = O_test.shape[0] - (O_test.shape[0]%args.batch_size)
O_train = O_train[0:n_train,:,:,:]
T_train = T_train[0:n_train,:,:,:]
Y_train = Y_train[0:n_train,:,:,:]
O_test = O_test[0:n_test,:,:,:]
T_test = T_test[0:n_test,:,:,:]
Y_test = Y_test[0:n_test,:,:,:]
if args.verbosity > 0:
print "\nSHAPES"
print "\tO_train shape: ", O_train.shape
print "\tT_train shape: ", T_train.shape
print "\tY_train shape: ", Y_train.shape
print "\tO_test shape: ", O_test.shape
print "\tT_test shape: ", T_test.shape
print "\tY_test shape: ", Y_test.shape
print "\n"
# ######################################
# Construct Discriminator Model
discriminator = Sequential()
discriminator.add(Convolution2D( 8, 3, 3, name='d_conv1_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2), input_shape=(64,64,1)))
discriminator.add(Convolution2D( 8, 3, 3, name='d_conv1_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Convolution2D(16, 3, 3, name='d_conv2_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Convolution2D(16, 3, 3, name='d_conv2_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Convolution2D(32, 3, 3, name='d_conv3_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Convolution2D(32, 3, 3, name='d_conv3_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Convolution2D(32, 3, 3, name='d_conv4_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Convolution2D( 4, 3, 3, name='d_conv4_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(Flatten())
discriminator.add(Dense(16, name='d_dense1', activation=args.act, W_regularizer=l2(args.l2)))
discriminator.add(BatchNormalization(mode=2))
discriminator.add(Dense( 1, name='d_dense2', activation='sigmoid', W_regularizer=l2(args.l2)))
discriminator.compile(loss='binary_crossentropy', optimizer=args.opt)
# ##################################################
# Construct combined Generator - Discriminator Model
# Untrainable Discriminator
untrainable_discriminator = Sequential()
untrainable_discriminator.trainable=False
untrainable_discriminator.add(discriminator)
##########################
# Object Head
O_in = Input(shape=(O_train.shape[1], O_train.shape[2], O_train.shape[3]), dtype='float32', name='O') # [None, 2, 1, 9]
O_conv1 = Convolution2D(16, 1, 1, name='o_conv1', border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 2, 1, 16]
O_conv2 = Convolution2D(16, 1, 1, name='o_conv2', border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 2, 1, 16]
O_out = Flatten() # [None, 32]
o_conv1 = O_conv1(O_in)
o_conv2 = O_conv2(o_conv1)
o_out = O_out(o_conv2)
##########################
# Terrain Head
#T_in = Input(shape=(T_train.shape[1],), dtype='float32', name='T') # [None, 1]
T_in = Input(shape=(T_train.shape[1],T_train.shape[2], T_train.shape[3]), dtype='float32', name='T') # [None, 1]
T_conv1 = Convolution2D(2, 3, 3, name='t_conv1', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2)) # [None, 64, 64, 1]
T_conv2 = Convolution2D(4, 3, 3, name='t_conv2', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2)) # [None, 32, 32, 2]
T_conv3 = Convolution2D(8, 3, 3, name='t_conv3', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2)) # [None, 16, 16, 4]
T_conv4 = Convolution2D(16, 3, 3, name='t_conv4', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2)) # [None, 8, 8, 8]
T_conv5 = Convolution2D(32, 3, 3, name='t_conv5', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2)) # [None, 4, 4, 16]
T_conv6 = Convolution2D(64, 3, 3, name='t_conv6', border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 2, 2, 32]
T_out = Flatten() # [None, 32]
t_conv1 = T_conv1(T_in)
t_conv2 = T_conv2(t_conv1)
t_conv3 = T_conv3(t_conv2)
t_conv4 = T_conv4(t_conv3)
t_conv5 = T_conv5(t_conv4)
t_conv6 = T_conv6(t_conv5)
t_out = T_out(t_conv6)
##########################
# X Head
#X_in = Merge(mode='concat', concat_axis=1)([o_out, T_in]) # [None, 33]
X_in = Merge(mode='concat', concat_axis=1)([o_out, t_out]) # [None, 33]
X_dense1 = Dense(128, name='x_dense1', activation=args.act, W_regularizer=l2(args.l2))
X_bnorm1 = BatchNormalization(mode=2)
X_dense2 = Dense(128, name='x_dense2', activation=args.act, W_regularizer=l2(args.l2))
X_out = BatchNormalization(mode=2)
x_dense1 = X_dense1(X_in)
x_bnorm1 = X_bnorm1(x_dense1)
x_dense2 = X_dense2(x_bnorm1)
x_out = X_out(x_dense2)
##########################
# Y Head
Y_in = Input(shape=(Y_train.shape[1], Y_train.shape[2], Y_train.shape[3]), dtype='float32', name='Y_in') # [None, 64, 64, 1]
Y_conv1_1 = Convolution2D( 8, 3, 3, name='y_conv1_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 32, 32, 8]
Y_conv1_2 = Convolution2D( 8, 3, 3, name='y_conv1_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 32, 32, 8]
Y_conv2_1 = Convolution2D(16, 3, 3, name='y_conv2_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 16, 16, 16]
Y_conv2_2 = Convolution2D(16, 3, 3, name='y_conv2_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 16, 16, 16]
Y_conv3_1 = Convolution2D(32, 3, 3, name='y_conv3_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 8, 8, 32]
Y_conv3_2 = Convolution2D(32, 3, 3, name='y_conv3_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 8, 8, 32]
Y_conv4_1 = Convolution2D(32, 3, 3, name='y_conv4_1', subsample=(2,2), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 4, 4, 32]
Y_conv4_2 = Convolution2D( 4, 3, 3, name='y_conv4_2', subsample=(1,1), border_mode='same', activation=args.act, W_regularizer=l2(args.l2)) # [None, 4, 4, 4]
Y_out = Flatten() # [64]
y_conv1_1 = Y_conv1_1(Y_in)
y_conv1_2 = Y_conv1_2(y_conv1_1)
y_conv2_1 = Y_conv2_1(y_conv1_2)
y_conv2_2 = Y_conv2_2(y_conv2_1)
y_conv3_1 = Y_conv3_1(y_conv2_2)
y_conv3_2 = Y_conv3_2(y_conv3_1)
y_conv4_1 = Y_conv4_1(y_conv3_2)
y_conv4_2 = Y_conv4_2(y_conv3_2)
y_out = Y_out(y_conv4_2)
##########################
# Encoder
E_in = Merge(mode='concat', concat_axis=1)
E_dense1 = Dense(32, name='e_dense1', activation='linear', W_regularizer=l2(args.l2))
E_bnorm1 = BatchNormalization(mode=2)
E_dense2 = Dense(32, name='e_dense2', activation='linear', W_regularizer=l2(args.l2))
E_bnorm2 = BatchNormalization(mode=2)
Z_mean = Dense(args.dim_z, name='dense_z_mean', activation='linear', W_regularizer=l2(args.l2))
Z_logvar = Dense(args.dim_z, name='dense_z_logvar', activation='linear', W_regularizer=l2(args.l2))
e_in = E_in([x_out, y_out])
e_dense1 = E_dense1(e_in)
e_bnorm1 = E_bnorm1(e_dense1)
e_dense2 = E_dense2(e_bnorm1)
e_bnorm2 = E_bnorm2(e_dense2)
z_mean = Z_mean(e_bnorm2)
z_logvar = Z_logvar(e_bnorm2)
def sampling(sampling_args):
z_mean, z_logvar = sampling_args
epsilon = K.random_normal(shape=(args.batch_size, args.dim_z),
mean=0.0, std=args.epsilon_std)
return z_mean + K.exp(z_logvar) * epsilon
Z = Lambda(sampling, output_shape=(args.dim_z,))
z = Z([z_mean, z_logvar])
# Decoder
D_in = Merge(mode='concat', concat_axis=1)
D_dense1 = Dense(128, name='dense3', activation=args.act, W_regularizer=l2(args.l2))
D_bnorm1 = BatchNormalization(mode=2)
D_dense2 = Dense(256, name='dense4', activation=args.act, W_regularizer=l2(args.l2))
D_bnorm2 = BatchNormalization(mode=2)
D_reshape = Reshape((8, 8, 4)) # [None, 8, 8, 2]
Deco1_1 = Deconvolution2D(8, 3, 3, name='deco1_1', output_shape=(args.batch_size, 16, 16, 8), activation=args.act, border_mode='same', subsample=(2, 2), W_regularizer=l2(args.l2)) # [None, 16, 16, 8]
Deco1_2 = Deconvolution2D(8, 3, 3, name='deco1_2', output_shape=(args.batch_size, 16, 16, 8), activation=args.act, border_mode='same', subsample=(1, 1), W_regularizer=l2(args.l2)) # [None, 16, 16, 8]
Deco2_1 = Deconvolution2D(8, 3, 3, name='deco2_1', output_shape=(args.batch_size, 32, 32, 8), activation=args.act, border_mode='same', subsample=(2, 2), W_regularizer=l2(args.l2)) # [None, 32, 32, 8]
Deco2_2 = Deconvolution2D(8, 3, 3, name='deco2_2', output_shape=(args.batch_size, 32, 32, 8), activation=args.act, border_mode='same', subsample=(1, 1), W_regularizer=l2(args.l2)) # [None, 32, 32, 8]
Deco3_1 = Deconvolution2D(4, 3, 3, name='deco3_1', output_shape=(args.batch_size, 64, 64, 4), activation=args.act, border_mode='same', subsample=(2, 2), W_regularizer=l2(args.l2)) # [None, 64, 64, 4]
D_out = Deconvolution2D(1, 3, 3, name='deco3_2', output_shape=(args.batch_size, 64, 64, 1), activation='linear', border_mode='same', subsample=(1, 1), W_regularizer=l2(args.l2)) # [None, 64, 64, 1]
d_in = D_in([x_out, z])
d_dense1 = D_dense1(d_in)
d_bnorm1 = D_bnorm1(d_dense1)
d_dense2 = D_dense2(d_bnorm1)
d_bnorm2 = D_bnorm2(d_dense2)
d_reshape = D_reshape(d_bnorm2)
deco1_1 = Deco1_1(d_reshape)
deco1_2 = Deco1_2(deco1_1)
deco2_1 = Deco2_1(deco1_2)
deco2_2 = Deco2_2(deco2_1)
deco3_1 = Deco3_1(deco2_2)
d_out = D_out(deco3_1)
#print 'd_out.shape ', d_out.get_shape()
def vae_loss(Y_true, Y_pred):
y_true = K.flatten(Y_true)
y_mean = K.flatten(Y_pred)
logP_loss = 0.5 * K.mean(K.log(args.logP_var) + K.square(y_mean - y_true)/args.logP_var, axis=-1) # negative logl
kl_loss = -0.5 * K.mean(1 + z_logvar - K.square(z_mean) - K.exp(z_logvar), axis=-1) # penalizes deviation from normal distr
return logP_loss + kl_loss
# ######################################
# Construct Discriminator Model
adversary = Sequential()
adversary.add(Convolution2D(2, 3, 3, input_shape=(Y_train.shape[1], Y_train.shape[2], Y_train.shape[3]), name='a_conv1', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2))) # [None, 64, 64, 1]
adversary.add(Convolution2D(4, 3, 3, name='a_conv2', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2))) # [None, 32, 32, 2]
adversary.add(Convolution2D(8, 3, 3, name='a_conv3', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2))) # [None, 16, 16, 4]
adversary.add(Convolution2D(16, 3, 3, name='a_conv4', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2))) # [None, 8, 8, 8]
adversary.add(Convolution2D(32, 3, 3, name='a_conv5', border_mode='same', subsample=(2,2), activation=args.act, W_regularizer=l2(args.l2))) # [None, 4, 4, 16]
adversary.add(Convolution2D(1, 3, 3, name='a_conv6', border_mode='same', subsample=(2,2), activation='sigmoid', W_regularizer=l2(args.l2))) # [None, 1, 1, 1]
adversary.add(Flatten()) # [None, 32]
adversary.compile(loss='binary_crossentropy', optimizer=args.opt, metrics =['binary_accuracy'])
# Untrainable Adversary
untrainable_adversary = Sequential()
untrainable_adversary.trainable=False
untrainable_adversary.add(adversary)
# Construct Generator
adv = untrainable_adversary(d_out)
generator = Model(input=[O_in, T_in, Y_in], output=[d_out, adv])
generator.compile(optimizer=args.opt,
loss=[vae_loss, 'binary_crossentropy'],
loss_weights=[1-args.fraction_loss_gan, args.fraction_loss_gan])
# ######################################
# Load from File
if len(args.load) > 0:
if args.verbosity > 0:
print 'loading model weights from ', args.load
generator.load_weights(args.load)
if args.verbosity > 0:
generator.summary()
##########################
# Training
if args.train == 1:
# when training the discriminator, first half are realdata (class 1), second half predicted data (class 0)
d_disc = np.vstack([np.ones((args.batch_size,1),dtype=np.float),np.zeros((args.batch_size,1),dtype=np.float)])
# when training the generator, we want to fake out the discriminator, so want it to claim class 1
d_comb = np.ones((args.batch_size,1), dtype=np.float)
def train_discriminator(nsteps):
mean_loss = 0.0
for i in range(1,nsteps):
# pick real samples
batch_indeces = np.random.randint(0,O_train.shape[0],args.batch_size)
y_real = Y_train[batch_indeces,:,:,:]
# pick fake samples
batch_indeces = np.random.randint(0,O_train.shape[0],args.batch_size)
o_in = O_train[batch_indeces,:,:,:]
t_in = T_train[batch_indeces,:,:,:]
y_in = Y_train[batch_indeces,:,:,:]
y_fake = generator.predict([o_in, t_in, y_in])[0]
# train
y_disc = np.vstack([y_real, y_fake])
r = adversary.fit(y_disc, d_disc,
#callbacks=[TensorBoard(log_dir=args.tblog + '_D', write_graph=False)],
verbose=0)
loss = r.history['loss'][0]
mean_loss = mean_loss + loss
return mean_loss / nsteps
def train_generator(nsteps):
mean_loss = 0.0
for i in range(1,nsteps):
batch_indeces = np.random.randint(0,O_train.shape[0],args.batch_size)
o_in = O_train[batch_indeces,:,:,:]
t_in = T_train[batch_indeces,:,:,:]
y_in = Y_train[batch_indeces,:,:,:]
r = generator.fit([o_in,t_in,y_in], [y_in, d_comb],
#callbacks=[TensorBoard(log_dir=args.tblog + '_G', write_graph=False)],
verbose=0)
loss = r.history['loss'][0]
mean_loss = mean_loss + loss
return mean_loss / nsteps
for step in range(1,args.nsteps):
step = step + 1
loss_D = train_discriminator(10)
loss_G = train_generator(10)
print "(%5d) D: %10.3f G: %10.3f" % (step, loss_D, loss_G)
if len(args.save) > 0:
if args.verbosity > 0:
print 'saving model weights to ', args.save
generator.save_weights(args.save)
##########################
# Save Prediction
if len(args.save_pred) > 0:
f = h5py.File(args.save_pred, 'w')
pred = data=generator.predict([O_test, T_test, Y_test], batch_size=args.batch_size, verbose=args.verbosity)
f.create_dataset("predict/Y_pred", data=pred[0], dtype="float32")
f.create_dataset("predict/disc", data=pred[1], dtype="float32")
pred = data=generator.predict([O_train, T_train, Y_train], batch_size=args.batch_size, verbose=args.verbosity)
f.create_dataset("predict/Y_pred_train", data=pred[0], dtype="float32")
f.create_dataset("predict/disc_train", data=pred[1], dtype="float32")
f.close()