We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
If one just do a fresh conda install of pymbar 4 on a machine without cuda, one could get
│ ╭───────────────────────────────────────── locals ──────────────────────────────────────────╮ │ │ │ continuation = None │ │ │ │ f_k_nonzero = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., │ │ │ │ │ 0., 0., 0., 0., 0., 0., 0., 0., 0.]) │ │ │ │ method = 'adaptive' │ │ │ │ N_k_nonzeo = array([4584., 4982., 4251., 4232., 2857., 3734., 4141., 4565., 4730., │ │ │ │ │ 4533., 4373., 4278., 5001., 4982., 4870., 4704., 4044., 3583., │ │ │ │ │ 4179., 4490., 4437., 4616., 2181., 4681., 4576., 3712.]) │ │ │ │ N_k_nonzero = array([4584., 4982., 4251., 4232., 2857., 3734., 4141., 4565., 4730., │ │ │ │ │ 4533., 4373., 4278., 5001., 4982., 4870., 4704., 4044., 3583., │ │ │ │ │ 4179., 4490., 4437., 4616., 2181., 4681., 4576., 3712.]) │ │ │ │ options = {'maxiter': 10000, 'verbose': False} │ │ │ │ tol = 1e-12 │ │ │ │ u_kn_nonzero = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., │ │ │ │ │ │ 1.39702014e+01, 3.21518809e+01, 3.60152730e+01], │ │ │ │ │ [ 5.13781006e-01, 9.31665221e-02, 2.72818891e-01, ..., │ │ │ │ │ │ 1.23757798e+01, 3.05602798e+01, 3.44667669e+01], │ │ │ │ │ [ 1.75389511e+00, 8.02655973e-01, 1.22281803e+00, ..., │ │ │ │ │ │ 1.07887631e+01, 2.89787227e+01, 3.29260834e+01], │ │ │ │ │ ..., │ │ │ │ │ [ 1.02462922e+12, 2.36204171e+06, 4.82963911e+07, ..., │ │ │ │ │ │ -5.68161594e+00, -1.66627325e+00, -1.31547888e+00], │ │ │ │ │ [ 1.02462922e+12, 2.36203915e+06, 4.82963930e+07, ..., │ │ │ │ │ │ -3.06945073e+00, -1.06177938e+00, -8.89514293e-01], │ │ │ │ │ [ 1.02462922e+12, 2.36203706e+06, 4.82963953e+07, ..., │ │ │ │ │ │ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) │ │ │ ╰───────────────────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ /home/ubuntu/mambaforge/envs/asfe/lib/python3.8/site-packages/pymbar/mbar_solvers.py:660 in │ │ precondition_u_kn │ │ │ │ 657 │ x_n such that the current objective function value is zero, which │ │ 658 │ should give maximum precision in the objective function. │ │ 659 │ """ │ │ ❱ 660 │ return jax_precondition_u_kn(u_kn, N_k, f_k) │ │ 661 │ │ 662 │ │ 663 def solve_mbar_once( │ │ │ │ ╭───────────────────────────────────── locals ──────────────────────────────────────╮ │ │ │ f_k = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., │ │ │ │ │ 0., 0., 0., 0., 0., 0., 0., 0., 0.]) │ │ │ │ N_k = array([4584., 4982., 4251., 4232., 2857., 3734., 4141., 4565., 4730., │ │ │ │ │ 4533., 4373., 4278., 5001., 4982., 4870., 4704., 4044., 3583., │ │ │ │ │ 4179., 4490., 4437., 4616., 2181., 4681., 4576., 3712.]) │ │ │ │ u_kn = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., │ │ │ │ │ │ 1.39702014e+01, 3.21518809e+01, 3.60152730e+01], │ │ │ │ │ [ 5.13781006e-01, 9.31665221e-02, 2.72818891e-01, ..., │ │ │ │ │ │ 1.23757798e+01, 3.05602798e+01, 3.44667669e+01], │ │ │ │ │ [ 1.75389511e+00, 8.02655973e-01, 1.22281803e+00, ..., │ │ │ │ │ │ 1.07887631e+01, 2.89787227e+01, 3.29260834e+01], │ │ │ │ │ ..., │ │ │ │ │ [ 1.02462922e+12, 2.36204171e+06, 4.82963911e+07, ..., │ │ │ │ │ │ -5.68161594e+00, -1.66627325e+00, -1.31547888e+00], │ │ │ │ │ [ 1.02462922e+12, 2.36203915e+06, 4.82963930e+07, ..., │ │ │ │ │ │ -3.06945073e+00, -1.06177938e+00, -8.89514293e-01], │ │ │ │ │ [ 1.02462922e+12, 2.36203706e+06, 4.82963953e+07, ..., │ │ │ │ │ │ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) │ │ │ ╰───────────────────────────────────────────────────────────────────────────────────╯ │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ XlaRuntimeError: FAILED_PRECONDITION: Couldn't get ptxas/nvlink version string: INTERNAL: Couldn't invoke ptxas --version
It might be good to test if ptxas is there when importing pymbar 4 and advise the use to do conda install -c nvidia cuda-nvcc if it is not there.
ptxas
conda install -c nvidia cuda-nvcc
The text was updated successfully, but these errors were encountered:
Thanks for the bug report! We will need to investigate why the conda-forge package doesn't pull in the correct dependencies.
Sorry, something went wrong.
No branches or pull requests
If one just do a fresh conda install of pymbar 4 on a machine without cuda, one could get
It might be good to test if
ptxas
is there when importing pymbar 4 and advise the use to doconda install -c nvidia cuda-nvcc
if it is not there.The text was updated successfully, but these errors were encountered: