forked from 62442katieb/hb-idconn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhb-preproc.py
194 lines (175 loc) · 8.05 KB
/
hb-preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os.path import join, basename, exists
import numpy as np
import nibabel as nb
from glob import glob
from bids.grabbids import BIDSLayout
from nipype import MapNode, JoinNode
import nipype.pipeline.engine as pe
from nipype.interfaces.utility import IdentityInterface, Function
from nipype.interfaces import fsl
from IPython.display import Image
from bids.grabbids import BIDSLayout
from os.path import join, basename
import nipype.interfaces.io as nio
import nipype.interfaces.utility as niu
import nipype.algorithms as na
from IPython.display import Image
def get_niftis(subject_id, data_dir):
from glob import glob
from os.path import join, basename, exists
parent_dir = '/Users/Katie/Dropbox/Data/habenula/'
t1 = join(parent_dir, subject_id, 'anat', '3d.nii')
epi = join(parent_dir, subject_id, 'func', 'rest.nii')
assert exists(t1), "t1 does not exist"
assert exists(epi), "epi does not exist"
return t1, epi
def motion_regressors(motion_params, order=0, derivatives=1):
"""Compute motion regressors upto given order and derivative
motion + d(motion)/dt + d2(motion)/dt2 (linear + quadratic)
"""
out_files = []
for idx, filename in enumerate(filename_to_list(motion_params)):
params = np.genfromtxt(filename)
out_params = params
for d in range(1, derivatives + 1):
cparams = np.vstack((np.repeat(params[0, :][None, :], d, axis=0),
params))
out_params = np.hstack((out_params, np.diff(cparams, d, axis=0)))
out_params2 = out_params
for i in range(2, order + 1):
out_params2 = np.hstack((out_params2, np.power(out_params, i)))
filename = os.path.join(os.getcwd(), "motion_regressor%02d.txt" % idx)
np.savetxt(filename, out_params2, fmt=str('%.5f'))
out_files.append(filename)
return out_files
def build_filter(motion_params, comp_norm, outliers, detrend_poly=None):
"""Builds a regressor set comprising motion parameters, composite norm and
outliers
The outliers are added as a single time point column for each outlier
Parameters
----------
motion_params: a text file containing motion parameters and its derivatives
comp_norm: a text file containing the composite norm
outliers: a text file containing 0-based outlier indices
detrend_poly: number of polynomials to add to detrend
Returns
-------
components_file: a text file containing all the regressors
"""
out_files = []
for idx, filename in enumerate(filename_to_list(motion_params)):
params = np.genfromtxt(filename)
norm_val = np.genfromtxt(filename_to_list(comp_norm)[idx])
out_params = np.hstack((params, norm_val[:, None]))
if detrend_poly:
timepoints = out_params.shape[0]
X = np.ones((timepoints, 1))
for i in range(detrend_poly):
X = np.hstack((X, legendre(
i + 1)(np.linspace(-1, 1, timepoints))[:, None]))
out_params = np.hstack((out_params, X))
try:
outlier_val = np.genfromtxt(filename_to_list(outliers)[idx])
except IOError:
outlier_val = np.empty((0))
for index in np.atleast_1d(outlier_val):
outlier_vector = np.zeros((out_params.shape[0], 1))
outlier_vector[index] = 1
out_params = np.hstack((out_params, outlier_vector))
filename = os.path.join(os.getcwd(), "filter_regressor%02d.txt" % idx)
np.savetxt(filename, out_params, fmt=str('%.5f'))
out_files.append(filename)
return out_files
def bandpass_filter(files, lowpass_freq, highpass_freq, fs):
"""Bandpass filter the input files
Parameters
----------
files: list of 4d nifti files
lowpass_freq: cutoff frequency for the low pass filter (in Hz)
highpass_freq: cutoff frequency for the high pass filter (in Hz)
fs: sampling rate (in Hz)
"""
out_files = []
for filename in filename_to_list(files):
path, name, ext = split_filename(filename)
out_file = os.path.join(os.getcwd(), name + '_bp' + ext)
img = nb.load(filename)
timepoints = img.shape[-1]
F = np.zeros((timepoints))
lowidx = timepoints/2 + 1
if lowpass_freq > 0:
lowidx = np.round(lowpass_freq / fs * timepoints)
highidx = 0
if highpass_freq > 0:
highidx = np.round(highpass_freq / fs * timepoints)
F[highidx:lowidx] = 1
F = ((F + F[::-1]) > 0).astype(int)
data = img.get_data()
if np.all(F == 1):
filtered_data = data
else:
filtered_data = np.real(np.fft.ifftn(np.fft.fftn(data) * F))
img_out = nb.Nifti1Image(filtered_data, img.get_affine(),
img.get_header())
img_out.to_filename(out_file)
out_files.append(out_file)
return list_to_filename(out_files)
hb_test_wf = pe.Workflow(name="hb_test", base_dir="/Users/Katie/Dropbox/Data/habenula/derivatives")
subjects = ['HIP001', 'HIP001','HIP003']
subj_iterable = pe.Node(IdentityInterface(fields=['subject_id']),
name='subj_iterable')
subj_iterable.iterables = ('subject_id', subjects)
DataGrabber = pe.Node(Function(function=get_niftis,
input_names=["subject_id", "data_dir"],
output_names=["T1", "bold"]),
name="BIDSDataGrabber")
DataGrabber.inputs.data_dir = "/Users/Katie/Dropbox/Data/habenula/"
#DataGrabber.inputs.subject_id = subject
moco = pe.Node(fsl.MCFLIRT(cost='normmi'),
name="mcflirt")
extractb0 = pe.Node(fsl.ExtractROI(t_size=1, t_min=1),
name = "extractb0")
bet = pe.Node(fsl.BET(frac=0.1, mask=True),
name="bet_func")
bet2 = pe.Node(fsl.BET(frac=0.1),
name="bet_struc")
segment = pe.Node(fsl.FAST(out_basename='fast_'),
name="fastSeg")
flirting = pe.Node(fsl.FLIRT(cost_func='normmi', dof=7, searchr_x=[-180, 180],
searchr_y=[-180, 180], searchr_z=[-180,180]),
name="struc_2_func")
applyxfm = pe.MapNode(fsl.ApplyXfm(apply_xfm = True),
name="MaskEPI", iterfield=['in_file'])
erosion = pe.MapNode(fsl.ErodeImage(),
name="erode_masks", iterfield=['in_file'])
regcheckoverlay = pe.Node(fsl.Overlay(auto_thresh_bg=True, stat_thresh=(100,500)),
name='OverlayCoreg')
regcheck = pe.Node(fsl.Slicer(),
name='CheckCoreg')
#filterfeeder = pe.MapNode(fsl.ImageMeants(eig=True, ))
datasink = pe.Node(nio.DataSink(),
name='datasink')
datasink.inputs.base_directory = "/Users/Katie/Dropbox/Data/habenula/derivatives/hb_test"
# Connect alllllll the nodes!!
hb_test_wf.connect(subj_iterable, 'subject_id', DataGrabber, 'subject_id')
hb_test_wf.connect(DataGrabber, 'bold', moco, 'in_file')
hb_test_wf.connect(moco, 'out_file', extractb0, 'in_file')
hb_test_wf.connect(extractb0, 'roi_file', bet, 'in_file')
hb_test_wf.connect(bet, 'out_file', datasink, '@epi_brain')
hb_test_wf.connect(DataGrabber, 'T1', bet2, 'in_file')
hb_test_wf.connect(bet2, 'out_file', flirting, 'in_file')
hb_test_wf.connect(bet, 'out_file', flirting, 'reference')
hb_test_wf.connect(bet, 'mask_file', datasink, '@func_brain_mask')
hb_test_wf.connect(flirting, 'out_matrix_file', applyxfm, 'in_matrix_file')
hb_test_wf.connect(bet2, 'out_file', segment, 'in_files')
hb_test_wf.connect(segment, 'partial_volume_files', applyxfm, 'in_file')
hb_test_wf.connect(bet, 'out_file', applyxfm, 'reference')
hb_test_wf.connect(moco, 'out_file', datasink, '@motion_corrected')
hb_test_wf.connect(applyxfm, 'out_file', erosion, 'in_file')
hb_test_wf.connect(erosion, 'out_file', datasink, '@eroded_mask')
hb_test_wf.connect(flirting, 'out_file', regcheckoverlay, 'background_image')
hb_test_wf.connect(bet, 'out_file', regcheckoverlay, 'stat_image')
hb_test_wf.connect(regcheckoverlay, 'out_file', regcheck, 'in_file')
hb_test_wf.connect(regcheck, 'out_file', datasink, '@regcheck')
hb_test_wf.run()
hb_test_wf.write_graph()