forked from leod/hncynic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_transformer.py
168 lines (156 loc) · 6.22 KB
/
my_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""Define the Google's Transformer model."""
# Simple modification of
# https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/models/transformer.py
# to allow using a different number of layers for encoder/decoder
import tensorflow as tf
import opennmt as onmt
from opennmt.models.sequence_to_sequence import SequenceToSequence, EmbeddingsSharingLevel
from opennmt.encoders.encoder import ParallelEncoder
from opennmt.encoders.self_attention_encoder import SelfAttentionEncoder
from opennmt.decoders.self_attention_decoder import SelfAttentionDecoder
from opennmt.layers.position import SinusoidalPositionEncoder
from opennmt.utils.misc import merge_dict
# Called by opennmt-main
def model():
return MyTransformerBase()
class MyTransformer(SequenceToSequence):
"""Attention-based sequence-to-sequence model as described in
https://arxiv.org/abs/1706.03762.
"""
def __init__(self,
source_inputter,
target_inputter,
num_layers_encoder,
num_layers_decoder,
num_units,
num_heads,
ffn_inner_dim,
dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
position_encoder=SinusoidalPositionEncoder(),
decoder_self_attention_type="scaled_dot",
share_embeddings=EmbeddingsSharingLevel.NONE,
share_encoders=False,
alignment_file_key="train_alignments",
name="transformer"):
"""Initializes a Transformer model.
Args:
source_inputter: A :class:`opennmt.inputters.inputter.Inputter` to process
the source data. If this inputter returns parallel inputs, a multi
source Transformer architecture will be constructed.
target_inputter: A :class:`opennmt.inputters.inputter.Inputter` to process
the target data. Currently, only the
:class:`opennmt.inputters.text_inputter.WordEmbedder` is supported.
num_layers_encoder: The number of layers in the encoder.
num_layers_decoder: The number of layers in the decoder.
num_units: The number of hidden units.
num_heads: The number of heads in each self-attention layers.
ffn_inner_dim: The inner dimension of the feed forward layers.
dropout: The probability to drop units in each layer output.
attention_dropout: The probability to drop units from the attention.
relu_dropout: The probability to drop units from the ReLU activation in
the feed forward layer.
position_encoder: A :class:`opennmt.layers.position.PositionEncoder` to
apply on the inputs.
decoder_self_attention_type: Type of self attention in the decoder,
"scaled_dot" or "average" (case insensitive).
share_embeddings: Level of embeddings sharing, see
:class:`opennmt.models.sequence_to_sequence.EmbeddingsSharingLevel`
for possible values.
share_encoders: In case of multi source architecture, whether to share the
separate encoders parameters or not.
alignment_file_key: The data configuration key of the training alignment
file to support guided alignment.
name: The name of this model.
"""
encoders = [
SelfAttentionEncoder(
num_layers_encoder,
num_units=num_units,
num_heads=num_heads,
ffn_inner_dim=ffn_inner_dim,
dropout=dropout,
attention_dropout=attention_dropout,
relu_dropout=relu_dropout,
position_encoder=position_encoder)
for _ in range(source_inputter.num_outputs)]
if len(encoders) > 1:
encoder = ParallelEncoder(
encoders,
outputs_reducer=None,
states_reducer=None,
share_parameters=share_encoders)
else:
encoder = encoders[0]
decoder = SelfAttentionDecoder(
num_layers_decoder,
num_units=num_units,
num_heads=num_heads,
ffn_inner_dim=ffn_inner_dim,
dropout=dropout,
attention_dropout=attention_dropout,
relu_dropout=relu_dropout,
position_encoder=position_encoder,
self_attention_type=decoder_self_attention_type)
self._num_units = num_units
super(MyTransformer, self).__init__(
source_inputter,
target_inputter,
encoder,
decoder,
share_embeddings=share_embeddings,
alignment_file_key=alignment_file_key,
daisy_chain_variables=True,
name=name)
def auto_config(self, num_devices=1):
config = super(MyTransformer, self).auto_config(num_devices=num_devices)
return merge_dict(config, {
"params": {
"average_loss_in_time": True,
"label_smoothing": 0.1,
"optimizer": "LazyAdamOptimizer",
"optimizer_params": {
"beta1": 0.9,
"beta2": 0.998
},
"learning_rate": 2.0,
"decay_type": "noam_decay_v2",
"decay_params": {
"model_dim": self._num_units,
"warmup_steps": 8000
}
},
"train": {
"effective_batch_size": 25000,
"batch_size": 3072,
"batch_type": "tokens",
"maximum_features_length": 100,
"maximum_labels_length": 100,
"keep_checkpoint_max": 8,
"average_last_checkpoints": 8
}
})
def _initializer(self, params):
return tf.variance_scaling_initializer(
mode="fan_avg", distribution="uniform", dtype=self.dtype)
class MyTransformerBase(MyTransformer):
"""Defines a Transformer model as decribed in https://arxiv.org/abs/1706.03762."""
def __init__(self, dtype=tf.float32):
super(MyTransformerBase, self).__init__(
source_inputter=onmt.inputters.WordEmbedder(
vocabulary_file_key="source_words_vocabulary",
embedding_size=512,
dtype=dtype),
target_inputter=onmt.inputters.WordEmbedder(
vocabulary_file_key="target_words_vocabulary",
embedding_size=512,
dtype=dtype),
num_layers_encoder=3,
num_layers_decoder=9,
num_units=512,
num_heads=8,
ffn_inner_dim=2048,
dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1)