forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
499 lines (492 loc) · 26.2 KB
/
benchmark.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
name: Benchmarks
env:
# TODO: this rescheduling makes gpt2, mixtral and llama unjitted slower
COMPARE_SCHEDULE: "0"
RUN_PROCESS_REPLAY: "1"
ASSERT_PROCESS_REPLAY: "0"
PYTHONPATH: .
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
on:
push:
branches:
- master
- update_benchmark
- update_benchmark_staging
workflow_dispatch:
inputs:
run_process_replay:
description: "Run process replay tests"
required: false
default: false
type: boolean
jobs:
testmacbenchmark:
name: Mac Benchmark
runs-on: [self-hosted, macOS]
defaults:
run:
shell: bash -o pipefail {0}
if: github.repository_owner == 'tinygrad'
steps:
- name: Checkout Code
uses: actions/checkout@v4
- name: Symlink models and datasets
run: |
mkdir -p weights
ln -s ~/tinygrad/extra/disassemblers/applegpu extra/disassemblers/applegpu
ln -s ~/tinygrad/weights/sd-v1-4.ckpt weights/sd-v1-4.ckpt
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz
- name: setup staging db
if: github.ref == 'refs/heads/update_benchmark_staging'
run: |
echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV
rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal
- name: Run Stable Diffusion
run: JIT=2 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt
- name: Run Stable Diffusion with fp16
run: JIT=2 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing | tee sd_fp16.txt
- name: Run SDXL
run: JIT=2 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
- name: Run model inference benchmark
run: METAL=1 python3 test/external/external_model_benchmark.py
- name: Test speed vs torch
run: BIG=2 MPS=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt
- name: Test tensor cores
run: METAL=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded
- name: Run Tensor Core GEMM
run: |
DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt
DEBUG=2 HALF=1 python3 extra/gemm/simple_matmul.py | tee matmul_half.txt
- name: Fuzz Padded Tensor Core GEMM
run: METAL=1 M_START=6 M_STOP=10 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=6 K_STOP=24 K_STEP=1 TC_OPT=2 DEBUG=2 python3 ./extra/gemm/fuzz_matmul.py
- name: Run LLaMA
run: |
JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt
- name: Run LLaMA with BEAM
run: JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
- name: Run quantized LLaMA
run: |
python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize int8 | tee llama_int8.txt
python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing --quantize nf4 | tee llama_nf4.txt
- name: Run LLaMA 7B on 4 (virtual) GPUs
run: python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
- name: Run GPT2
run: |
JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt
- name: Run GPT2 w HALF
run: HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt
- name: Run GPT2 w HALF/BEAM
run: HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAST_BEFORE_VIEW=0 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt
- name: Train MNIST
run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt
- name: Run 10 CIFAR training steps
run: JIT=2 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
- name: Run 10 CIFAR training steps w HALF
run: JIT=2 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
#- name: Run 10 CIFAR training steps w BF16
# run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
- name: Run 10 CIFAR training steps w winograd
run: JIT=2 WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (Mac)
path: |
onnx_inference_speed.csv
torch_speed.txt
llama_unjitted.txt
llama_jitted.txt
llama_beam.txt
llama_int8.txt
llama_nf4.txt
llama_four_gpu.txt
gpt2_unjitted.txt
gpt2_jitted.txt
gpt2_half.txt
gpt2_half_beam.txt
matmul.txt
matmul_half.txt
sd.txt
sd_fp16.txt
sdxl.txt
beautiful_mnist.txt
train_cifar.txt
train_cifar_half.txt
train_cifar_bf16.txt
train_cifar_wino.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
testnvidiabenchmark:
name: tinybox green Benchmark
runs-on: [self-hosted, Linux, tinyboxgreen]
defaults:
run:
shell: bash -o pipefail {0}
if: github.repository_owner == 'tinygrad'
steps:
- name: Checkout Code
uses: actions/checkout@v4
- name: Print nvidia-smi
run: nvidia-smi
- name: Symlink models and datasets
run: |
mkdir -p weights
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA
ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen
ln -s /raid/weights/LLaMA-2 weights/LLaMA-2
ln -s /raid/weights/LLaMA-3 weights/LLaMA-3
mkdir -p extra/datasets
ln -s /raid/datasets/imagenet extra/datasets/imagenet
- name: setup staging db
if: github.ref == 'refs/heads/update_benchmark_staging'
run: |
echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV
rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal
- name: Run model inference benchmark
run: NV=1 NOCLANG=1 python3 test/external/external_model_benchmark.py
- name: Test speed vs torch
run: NV=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt
- name: Test tensor cores
run: |
NV=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded
PTX=1 NV=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded
- name: Run Tensor Core GEMM (CUDA)
run: |
CUDA=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul.txt
CUDA=1 BFLOAT16=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_bfloat16.txt
- name: Run Tensor Core GEMM (PTX)
run: NV=1 PTX=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_ptx.txt
- name: Run Tensor Core GEMM (NV)
run: NV=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_nv.txt
- name: Run Tensor Core GEMM (NV) with BEAM
run: BEAM=4 NV=1 HALF=1 IGNORE_BEAM_CACHE=1 DEBUG=2 python3 extra/gemm/simple_matmul.py
- name: Run Stable Diffusion
run: NV=1 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt
- name: Run SDXL
run: NV=1 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
- name: Run LLaMA
run: |
NV=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
NV=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt
- name: Run LLaMA with BEAM
run: NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
- name: Run LLaMA 7B on 4 GPUs
run: NV=1 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
- name: Run LLaMA 7B on 6 GPUs
run: NV=1 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
- name: Run LLaMA-3 8B BEAM
run: NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_beam.txt
- name: Run LLaMA-3 8B on 4 GPUs
run: NV=1 python3 examples/llama3.py --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
- name: Run LLaMA-3 8B on 6 GPUs
run: NV=1 python3 examples/llama3.py --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
- name: Run LLaMA-2 70B
run: NV=1 MAX_CONTEXT=256 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
- name: Run Mixtral 8x7B
run: time NV=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
- name: Run GPT2
run: |
NV=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
NV=1 JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt
- name: Run GPT2 w HALF
run: NV=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt
- name: Run GPT2 w HALF/BEAM
run: NV=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAST_BEFORE_VIEW=0 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (NVIDIA)
path: |
onnx_inference_speed.csv
torch_speed.txt
matmul.txt
matmul_bfloat16.txt
matmul_ptx.txt
matmul_nv.txt
sd.txt
sdxl.txt
llama_unjitted.txt
llama_jitted.txt
llama_beam.txt
llama_four_gpu.txt
llama_six_gpu.txt
llama3_beam.txt
llama3_four_gpu.txt
llama3_six_gpu.txt
llama_2_70B.txt
mixtral.txt
gpt2_unjitted.txt
gpt2_jitted.txt
gpt2_half.txt
gpt2_half_beam.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
testmorenvidiabenchmark:
name: tinybox green Training Benchmark
runs-on: [self-hosted, Linux, tinyboxgreen]
defaults:
run:
shell: bash -o pipefail {0}
if: github.repository_owner == 'tinygrad'
steps:
- name: Checkout Code
uses: actions/checkout@v4
- name: Symlink models and datasets
run: |
mkdir -p weights
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz
ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen
ln -s /raid/weights/LLaMA-2 weights/LLaMA-2
mkdir -p extra/datasets
ln -s /raid/datasets/imagenet extra/datasets/imagenet
- name: setup staging db
if: github.ref == 'refs/heads/update_benchmark_staging'
run: |
echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV
rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal
- name: Fuzz Padded Tensor Core GEMM (NV)
run: NV=1 M_START=12 M_STOP=20 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 python3 ./extra/gemm/fuzz_matmul.py
- name: Fuzz Padded Tensor Core GEMM (PTX)
run: NV=1 PTX=1 M_START=12 M_STOP=20 M_STEP=1 N_START=6 N_STOP=10 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 python3 ./extra/gemm/fuzz_matmul.py
- name: Train MNIST
run: time PYTHONPATH=. NV=1 TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt
- name: Run 10 CIFAR training steps
run: NV=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
- name: Run 10 CIFAR training steps w HALF
run: NV=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
- name: Run 10 CIFAR training steps w BF16
run: NV=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
- name: Run 10 CIFAR training steps w winograd
run: NV=1 WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
- name: Run full CIFAR training w 1 GPU
run: time NV=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt
- name: Run full CIFAR training steps w 6 GPUS
run: time NV=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt
- name: Run MLPerf resnet eval on training data
run: time NV=1 MODEL=resnet python3 examples/mlperf/model_eval.py
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: NV=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
run: NV=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (NVIDIA Training)
path: |
beautiful_mnist.txt
train_cifar.txt
train_cifar_half.txt
train_cifar_bf16.txt
train_cifar_wino.txt
train_cifar_one_gpu.txt
train_resnet.txt
train_resnet_one_gpu.txt
train_cifar_six_gpu.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
testamdbenchmark:
name: tinybox red Benchmark
runs-on: [self-hosted, Linux, tinybox]
defaults:
run:
shell: bash -o pipefail {0}
if: github.repository_owner == 'tinygrad'
steps:
- name: Checkout Code
uses: actions/checkout@v4
- name: Symlink models and datasets
run: |
mkdir -p weights
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz
ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen
ln -s /raid/weights/LLaMA-2 weights/LLaMA-2
ln -s /raid/weights/LLaMA-3 weights/LLaMA-3
mkdir -p extra/datasets
ln -s /raid/datasets/imagenet extra/datasets/imagenet
- name: setup staging db
if: github.ref == 'refs/heads/update_benchmark_staging'
run: |
echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV
rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal
- name: Show off tinybox
run: /opt/rocm/bin/rocm-bandwidth-test
# TODO: unstable on AMD
#- name: Run model inference benchmark
# run: LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 NOCLANG=1 python3 test/external/external_model_benchmark.py
# TODO: unstable on AMD
#- name: Test speed vs torch
# run: |
# python3 -c "import torch; print(torch.__version__)"
# LD_PRELOAD="/opt/rocm/lib/libhsa-runtime64.so" HSA=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt
- name: Test tensor cores
run: |
AMD=1 python3 test/test_linearizer.py TestLinearizer.test_tensor_cores TestLinearizer.test_tensor_cores_padded
- name: Run Tensor Core GEMM (AMD)
run: AMD=1 HALF=1 DEBUG=2 python3 extra/gemm/simple_matmul.py | tee matmul_amd.txt
# TODO: AMD compiler bug causes this to fail
#- name: Fuzz Padded Tensor Core GEMM
# run: HSA=1 M_START=12 M_STOP=20 M_STEP=1 N_START=12 N_STOP=20 N_STEP=1 K_START=28 K_STOP=36 K_STEP=1 HALF=1 TC_OPT=2 DEBUG=2 python3 ./extra/gemm/fuzz_matmul.py
- name: Run Stable Diffusion
run: AMD=1 python3 examples/stable_diffusion.py --seed 0 --noshow --timing | tee sd.txt
- name: Run SDXL
run: AMD=1 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
- name: Run LLaMA 7B
run: |
AMD=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
AMD=1 JIT=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_jitted.txt
- name: Run LLaMA 7B with BEAM
run: AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
- name: Run LLaMA 7B on 4 GPUs
run: AMD=1 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
- name: Run LLaMA 7B on 6 GPUs
run: AMD=1 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
- name: Run LLaMA-3 8B BEAM
run: AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_beam.txt
- name: Run LLaMA-3 8B on 4 GPUs
run: AMD=1 python3 examples/llama3.py --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
- name: Run LLaMA-3 8B on 6 GPUs
run: AMD=1 python3 examples/llama3.py --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
- name: Run LLaMA-2 70B
run: AMD=1 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
- name: Run Mixtral 8x7B
run: time AMD=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
- name: Run GPT2
run: |
AMD=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
AMD=1 JIT=1 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_jitted.txt
- name: Run GPT2 w HALF
run: AMD=1 HALF=1 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half.txt
- name: Run GPT2 w HALF/BEAM
run: AMD=1 HALF=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 CAST_BEFORE_VIEW=0 python3 examples/gpt2.py --count 10 --temperature 0 --timing | tee gpt2_half_beam.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AMD)
path: |
onnx_inference_speed.csv
torch_speed.txt
llama_unjitted.txt
llama_jitted.txt
llama_beam.txt
llama_four_gpu.txt
llama_six_gpu.txt
llama3_beam.txt
llama3_four_gpu.txt
llama3_six_gpu.txt
llama_2_70B.txt
gpt2_unjitted.txt
gpt2_jitted.txt
gpt2_half.txt
gpt2_half_beam.txt
matmul.txt
matmul_amd.txt
sd.txt
sdxl.txt
mixtral.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
testmoreamdbenchmark:
name: tinybox red Training Benchmark
runs-on: [self-hosted, Linux, tinybox]
defaults:
run:
shell: bash -o pipefail {0}
if: github.repository_owner == 'tinygrad'
steps:
- name: Checkout Code
uses: actions/checkout@v4
- name: Symlink models and datasets
run: |
mkdir -p weights
ln -s ~/tinygrad/weights/bpe_simple_vocab_16e6.txt.gz weights/bpe_simple_vocab_16e6.txt.gz
ln -s ~/tinygrad/weights/LLaMA weights/LLaMA
ln -s ~/tinygrad/extra/datasets/cifar-10-python.tar.gz extra/datasets/cifar-10-python.tar.gz
ln -s /raid/weights/mixtral-8x7b-32kseqlen weights/mixtral-8x7b-32kseqlen
ln -s /raid/weights/LLaMA-2 weights/LLaMA-2
mkdir -p extra/datasets
ln -s /raid/datasets/imagenet extra/datasets/imagenet
- name: setup staging db
if: github.ref == 'refs/heads/update_benchmark_staging'
run: |
echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV
rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal
- name: Train MNIST
run: time PYTHONPATH=. AMD=1 TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt
- name: Run 10 CIFAR training steps
run: AMD=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
- name: Run 10 CIFAR training steps w HALF
run: AMD=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
- name: Run 10 CIFAR training steps w BF16
run: AMD=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
- name: Run 10 CIFAR training steps w winograd
run: AMD=1 WINO=1 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
- name: Run full CIFAR training w 1 GPU
run: time AMD=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt
- name: Run full CIFAR training steps w 6 GPUS
run: time AMD=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt
- name: Run MLPerf resnet eval
run: time AMD=1 MODEL=resnet python3 examples/mlperf/model_eval.py
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
run: AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AMD Training)
path: |
beautiful_mnist.txt
train_cifar.txt
train_cifar_half.txt
train_cifar_bf16.txt
train_cifar_wino.txt
train_cifar_one_gpu.txt
train_resnet.txt
train_resnet_one_gpu.txt
train_cifar_six_gpu.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
testqualcommbenchmark:
name: comma Benchmark
runs-on: [self-hosted, Linux, comma]
defaults:
run:
shell: bash -o pipefail {0}
if: github.repository_owner == 'tinygrad'
steps:
- name: Checkout Code
uses: actions/checkout@v4
- name: setup staging db
if: github.ref == 'refs/heads/update_benchmark_staging'
run: |
echo "CACHEDB=/tmp/staging.db" >> $GITHUB_ENV
rm -f /tmp/staging.db /tmp/staging.db-shm /tmp/staging.db-wal
- name: openpilot compile 0.9.4
run: PYTHONPATH=. NOLOCALS=1 FLOAT16=1 IMAGE=2 QCOM=1 python examples/openpilot/compile2.py | tee openpilot_compile_0_9_4.txt
- name: openpilot compile 0.9.7
run: PYTHONPATH=. NOLOCALS=1 FLOAT16=1 IMAGE=2 QCOM=1 python examples/openpilot/compile2.py https://github.com/commaai/openpilot/raw/v0.9.7/selfdrive/modeld/models/supercombo.onnx | tee openpilot_compile_0_9_7.txt
- name: validate openpilot 0.9.7
run: PYTHONPATH=. FLOAT16=0 IMAGE=2 QCOM=1 python3 test/external/external_benchmark_openpilot.py https://github.com/commaai/openpilot/raw/v0.9.7/selfdrive/modeld/models/supercombo.onnx | tee openpilot_image_0_9_7.txt
- name: benchmark openpilot 0.9.4
run: PYTHONPATH=. QCOM=1 python3 test/external/external_benchmark_openpilot.py https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx | tee openpilot_0_9_4.txt
- name: benchmark openpilot 0.9.7
run: PYTHONPATH=. QCOM=1 python3 test/external/external_benchmark_openpilot.py https://github.com/commaai/openpilot/raw/v0.9.7/selfdrive/modeld/models/supercombo.onnx | tee openpilot_0_9_7.txt
- name: benchmark openpilot w IMAGE=2 0.9.4
run: PYTHONPATH=. NOLOCALS=1 FLOAT16=1 IMAGE=2 QCOM=1 python3 test/external/external_benchmark_openpilot.py https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx | tee openpilot_image_0_9_4.txt
- name: benchmark openpilot w IMAGE=2 0.9.7
run: PYTHONPATH=. NOLOCALS=1 FLOAT16=1 IMAGE=2 QCOM=1 python3 test/external/external_benchmark_openpilot.py https://github.com/commaai/openpilot/raw/v0.9.7/selfdrive/modeld/models/supercombo.onnx | tee openpilot_image_0_9_7.txt
- name: Run process replay tests
run: cp test/external/process_replay/process_replay.py ./process_replay.py && git fetch origin master && git -c advice.detachedHead=false checkout origin/master && PYTHONPATH=. python3 process_replay.py
- uses: actions/upload-artifact@v4
with:
name: Speed (comma)
path: |
openpilot_compile_0_9_4.txt
openpilot_compile_0_9_7.txt
openpilot_0_9_4.txt
openpilot_0_9_7.txt
openpilot_image_0_9_4.txt
openpilot_image_0_9_7.txt