forked from theblackcat102/edgedict
-
Notifications
You must be signed in to change notification settings - Fork 2
/
sparse_img_wrap.py
351 lines (293 loc) · 14.6 KB
/
sparse_img_wrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#################################################
### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###
#################################################
# file to edit: dev_nb/SparseImageWarp.ipynb
import torch
import numpy as np
def sparse_image_warp(img_tensor,
source_control_point_locations,
dest_control_point_locations,
interpolation_order=2,
regularization_weight=0.0,
num_boundaries_points=0):
control_point_flows = (dest_control_point_locations - source_control_point_locations)
# clamp_boundaries = num_boundary_points > 0
# boundary_points_per_edge = num_boundary_points - 1
batch_size, image_height, image_width = img_tensor.shape
grid_locations = get_grid_locations(image_height, image_width)
flattened_grid_locations = torch.tensor(flatten_grid_locations(grid_locations, image_height, image_width))
# flattened_grid_locations = constant_op.constant(
# _expand_to_minibatch(flattened_grid_locations, batch_size), image.dtype)
# if clamp_boundaries:
# (dest_control_point_locations,
# control_point_flows) = _add_zero_flow_controls_at_boundary(
# dest_control_point_locations, control_point_flows, image_height,
# image_width, boundary_points_per_edge)
flattened_flows = interpolate_spline(
dest_control_point_locations,
control_point_flows,
flattened_grid_locations,
interpolation_order,
regularization_weight)
dense_flows = create_dense_flows(flattened_flows, batch_size, image_height, image_width)
warped_image = dense_image_warp(img_tensor, dense_flows)
return warped_image, dense_flows
def get_grid_locations(image_height, image_width):
"""Wrapper for np.meshgrid."""
y_range = np.linspace(0, image_height - 1, image_height)
x_range = np.linspace(0, image_width - 1, image_width)
y_grid, x_grid = np.meshgrid(y_range, x_range, indexing='ij')
return np.stack((y_grid, x_grid), -1)
def flatten_grid_locations(grid_locations, image_height, image_width):
return np.reshape(grid_locations, [image_height * image_width, 2])
def create_dense_flows(flattened_flows, batch_size, image_height, image_width):
# possibly .view
return torch.reshape(flattened_flows, [batch_size, image_height, image_width, 2])
def interpolate_spline(train_points, train_values, query_points, order, regularization_weight=0.0,):
# First, fit the spline to the observed data.
w, v = solve_interpolation(train_points, train_values, order, regularization_weight)
# Then, evaluate the spline at the query locations.
query_values = apply_interpolation(query_points, train_points, w, v, order)
return query_values
def solve_interpolation(train_points, train_values, order, regularization_weight):
b, n, d = train_points.shape
k = train_values.shape[-1]
# First, rename variables so that the notation (c, f, w, v, A, B, etc.)
# follows https://en.wikipedia.org/wiki/Polyharmonic_spline.
# To account for python style guidelines we use
# matrix_a for A and matrix_b for B.
c = train_points
f = train_values.float()
matrix_a = phi(cross_squared_distance_matrix(c,c), order).unsqueeze(0) # [b, n, n]
# print('Matrix A', matrix_a, matrix_a.shape)
# if regularization_weight > 0:
# batch_identity_matrix = array_ops.expand_dims(
# linalg_ops.eye(n, dtype=c.dtype), 0)
# matrix_a += regularization_weight * batch_identity_matrix
# Append ones to the feature values for the bias term in the linear model.
ones = torch.ones(1, dtype=train_points.dtype).view([-1, 1, 1])
matrix_b = torch.cat((c, ones), 2).float() # [b, n, d + 1]
# print('Matrix B', matrix_b, matrix_b.shape)
# [b, n + d + 1, n]
left_block = torch.cat((matrix_a, torch.transpose(matrix_b, 2, 1)), 1)
# print('Left Block', left_block, left_block.shape)
num_b_cols = matrix_b.shape[2] # d + 1
# print('Num_B_Cols', matrix_b.shape)
# lhs_zeros = torch.zeros((b, num_b_cols, num_b_cols), dtype=train_points.dtype).float()
# In Tensorflow, zeros are used here. Pytorch gesv fails with zeros for some reason we don't understand.
# So instead we use very tiny randn values (variance of one, zero mean) on one side of our multiplication.
lhs_zeros = torch.randn((b, num_b_cols, num_b_cols)) / 1e10
right_block = torch.cat((matrix_b, lhs_zeros),
1) # [b, n + d + 1, d + 1]
# print('Right Block', right_block, right_block.shape)
lhs = torch.cat((left_block, right_block),
2) # [b, n + d + 1, n + d + 1]
# print('LHS', lhs, lhs.shape)
rhs_zeros = torch.zeros((b, d + 1, k), dtype=train_points.dtype).float()
rhs = torch.cat((f, rhs_zeros), 1) # [b, n + d + 1, k]
# print('RHS', rhs, rhs.shape)
# Then, solve the linear system and unpack the results.
X, LU = torch.solve(rhs, lhs)
w = X[:, :n, :]
v = X[:, n:, :]
return w, v
def cross_squared_distance_matrix(x, y):
"""Pairwise squared distance between two (batch) matrices' rows (2nd dim).
Computes the pairwise distances between rows of x and rows of y
Args:
x: [batch_size, n, d] float `Tensor`
y: [batch_size, m, d] float `Tensor`
Returns:
squared_dists: [batch_size, n, m] float `Tensor`, where
squared_dists[b,i,j] = ||x[b,i,:] - y[b,j,:]||^2
"""
x_norm_squared = torch.sum(torch.mul(x, x))
y_norm_squared = torch.sum(torch.mul(y, y))
x_y_transpose = torch.matmul(x.squeeze(0), y.squeeze(0).transpose(0,1))
# squared_dists[b,i,j] = ||x_bi - y_bj||^2 = x_bi'x_bi- 2x_bi'x_bj + x_bj'x_bj
squared_dists = x_norm_squared - 2 * x_y_transpose + y_norm_squared
return squared_dists.float()
def phi(r, order):
"""Coordinate-wise nonlinearity used to define the order of the interpolation.
See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition.
Args:
r: input op
order: interpolation order
Returns:
phi_k evaluated coordinate-wise on r, for k = r
"""
EPSILON=torch.tensor(1e-10)
# using EPSILON prevents log(0), sqrt0), etc.
# sqrt(0) is well-defined, but its gradient is not
if order == 1:
r = torch.max(r, EPSILON)
r = torch.sqrt(r)
return r
elif order == 2:
return 0.5 * r * torch.log(torch.max(r, EPSILON))
elif order == 4:
return 0.5 * torch.square(r) * torch.log(torch.max(r, EPSILON))
elif order % 2 == 0:
r = torch.max(r, EPSILON)
return 0.5 * torch.pow(r, 0.5 * order) * torch.log(r)
else:
r = torch.max(r, EPSILON)
return torch.pow(r, 0.5 * order)
def apply_interpolation(query_points, train_points, w, v, order):
"""Apply polyharmonic interpolation model to data.
Given coefficients w and v for the interpolation model, we evaluate
interpolated function values at query_points.
Args:
query_points: `[b, m, d]` x values to evaluate the interpolation at
train_points: `[b, n, d]` x values that act as the interpolation centers
( the c variables in the wikipedia article)
w: `[b, n, k]` weights on each interpolation center
v: `[b, d, k]` weights on each input dimension
order: order of the interpolation
Returns:
Polyharmonic interpolation evaluated at points defined in query_points.
"""
query_points = query_points.unsqueeze(0)
# First, compute the contribution from the rbf term.
# print(query_points.shape, train_points.shape)
pairwise_dists = cross_squared_distance_matrix(query_points.float(), train_points.float())
# print('Pairwise', pairwise_dists)
phi_pairwise_dists = phi(pairwise_dists, order)
# print('Pairwise phi', phi_pairwise_dists)
rbf_term = torch.matmul(phi_pairwise_dists, w)
# Then, compute the contribution from the linear term.
# Pad query_points with ones, for the bias term in the linear model.
ones = torch.ones_like(query_points[..., :1])
query_points_pad = torch.cat((
query_points,
ones
), 2).float()
linear_term = torch.matmul(query_points_pad, v)
return rbf_term + linear_term
def dense_image_warp(image, flow):
"""Image warping using per-pixel flow vectors.
Apply a non-linear warp to the image, where the warp is specified by a dense
flow field of offset vectors that define the correspondences of pixel values
in the output image back to locations in the source image. Specifically, the
pixel value at output[b, j, i, c] is
images[b, j - flow[b, j, i, 0], i - flow[b, j, i, 1], c].
The locations specified by this formula do not necessarily map to an int
index. Therefore, the pixel value is obtained by bilinear
interpolation of the 4 nearest pixels around
(b, j - flow[b, j, i, 0], i - flow[b, j, i, 1]). For locations outside
of the image, we use the nearest pixel values at the image boundary.
Args:
image: 4-D float `Tensor` with shape `[batch, height, width, channels]`.
flow: A 4-D float `Tensor` with shape `[batch, height, width, 2]`.
name: A name for the operation (optional).
Note that image and flow can be of type tf.half, tf.float32, or tf.float64,
and do not necessarily have to be the same type.
Returns:
A 4-D float `Tensor` with shape`[batch, height, width, channels]`
and same type as input image.
Raises:
ValueError: if height < 2 or width < 2 or the inputs have the wrong number
of dimensions.
"""
image = image.unsqueeze(3) # add a single channel dimension to image tensor
batch_size, height, width, channels = image.shape
# The flow is defined on the image grid. Turn the flow into a list of query
# points in the grid space.
grid_x, grid_y = torch.meshgrid(
torch.arange(width), torch.arange(height))
stacked_grid = torch.stack((grid_y, grid_x), dim=2).float()
# print('stacked', stacked_grid.shape)
batched_grid = stacked_grid.unsqueeze(-1).permute(3, 1, 0, 2)
# print('batched_grid', batched_grid.shape)
query_points_on_grid = batched_grid - flow
query_points_flattened = torch.reshape(query_points_on_grid,
[batch_size, height * width, 2])
# Compute values at the query points, then reshape the result back to the
# image grid.
# print('Query points', query_points_flattened, query_points_flattened.shape)
interpolated = interpolate_bilinear(image, query_points_flattened)
interpolated = torch.reshape(interpolated,
[batch_size, height, width, channels])
return interpolated
def interpolate_bilinear(grid,
query_points,
name='interpolate_bilinear',
indexing='ij'):
"""Similar to Matlab's interp2 function.
Finds values for query points on a grid using bilinear interpolation.
Args:
grid: a 4-D float `Tensor` of shape `[batch, height, width, channels]`.
query_points: a 3-D float `Tensor` of N points with shape `[batch, N, 2]`.
name: a name for the operation (optional).
indexing: whether the query points are specified as row and column (ij),
or Cartesian coordinates (xy).
Returns:
values: a 3-D `Tensor` with shape `[batch, N, channels]`
Raises:
ValueError: if the indexing mode is invalid, or if the shape of the inputs
invalid.
"""
if indexing != 'ij' and indexing != 'xy':
raise ValueError('Indexing mode must be \'ij\' or \'xy\'')
shape = grid.shape
if len(shape) != 4:
msg = 'Grid must be 4 dimensional. Received size: '
raise ValueError(msg + str(grid.shape))
batch_size, height, width, channels = grid.shape
shape = [batch_size, height, width, channels]
query_type = query_points.dtype
grid_type = grid.dtype
num_queries = query_points.shape[1]
# print('Num queries', num_queries)
alphas = []
floors = []
ceils = []
index_order = [0, 1] if indexing == 'ij' else [1, 0]
# print(query_points.shape)
unstacked_query_points = query_points.unbind(2)
# print('Squeezed query_points', unstacked_query_points[0].shape, unstacked_query_points[1].shape)
for dim in index_order:
queries = unstacked_query_points[dim]
size_in_indexing_dimension = shape[dim + 1]
# max_floor is size_in_indexing_dimension - 2 so that max_floor + 1
# is still a valid index into the grid.
max_floor = torch.tensor(size_in_indexing_dimension - 2, dtype=query_type)
min_floor = torch.tensor(0.0, dtype=query_type)
maxx = torch.max(min_floor, torch.floor(queries))
floor = torch.min(maxx, max_floor)
int_floor = floor.long()
floors.append(int_floor)
ceil = int_floor + 1
ceils.append(ceil)
# alpha has the same type as the grid, as we will directly use alpha
# when taking linear combinations of pixel values from the image.
alpha = (queries - floor).clone().detach()
min_alpha = torch.tensor(0.0, dtype=grid_type)
max_alpha = torch.tensor(1.0, dtype=grid_type)
alpha = torch.min(torch.max(min_alpha, alpha), max_alpha)
# Expand alpha to [b, n, 1] so we can use broadcasting
# (since the alpha values don't depend on the channel).
alpha = torch.unsqueeze(alpha, 2)
alphas.append(alpha)
flattened_grid = torch.reshape(
grid, [batch_size * height * width, channels])
batch_offsets = torch.reshape(
torch.arange(batch_size) * height * width, [batch_size, 1])
# This wraps array_ops.gather. We reshape the image data such that the
# batch, y, and x coordinates are pulled into the first dimension.
# Then we gather. Finally, we reshape the output back. It's possible this
# code would be made simpler by using array_ops.gather_nd.
def gather(y_coords, x_coords, name):
linear_coordinates = batch_offsets + y_coords * width + x_coords
gathered_values = torch.gather(flattened_grid.t(), 1, linear_coordinates)
return torch.reshape(gathered_values,
[batch_size, num_queries, channels])
# grab the pixel values in the 4 corners around each query point
top_left = gather(floors[0], floors[1], 'top_left')
top_right = gather(floors[0], ceils[1], 'top_right')
bottom_left = gather(ceils[0], floors[1], 'bottom_left')
bottom_right = gather(ceils[0], ceils[1], 'bottom_right')
interp_top = alphas[1] * (top_right - top_left) + top_left
interp_bottom = alphas[1] * (bottom_right - bottom_left) + bottom_left
interp = alphas[0] * (interp_bottom - interp_top) + interp_top
return interp