forked from lcy-seso/tensorflow_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_basics.py
137 lines (110 loc) · 4.39 KB
/
01_basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Summary of tensorflow basics.
Parag K. Mital, Jan 2016."""
# %% Import tensorflow and pyplot
import tensorflow as tf
import matplotlib.pyplot as plt
# %% tf.Graph represents a collection of tf.Operations
# You can create operations by writing out equations.
# By default, there is a graph: tf.get_default_graph()
# and any new operations are added to this graph.
# The result of a tf.Operation is a tf.Tensor, which holds
# the values.
# %% First a tf.Tensor
n_values = 32
x = tf.linspace(-3.0, 3.0, n_values)
# %% Construct a tf.Session to execute the graph.
sess = tf.Session()
result = sess.run(x)
# %% Alternatively pass a session to the eval fn:
x.eval(session=sess)
# x.eval() does not work, as it requires a session!
# %% We can setup an interactive session if we don't
# want to keep passing the session around:
sess.close()
sess = tf.InteractiveSession()
# %% Now this will work!
x.eval()
# %% Now a tf.Operation
# We'll use our values from [-3, 3] to create a Gaussian Distribution
sigma = 1.0
mean = 0.0
z = (tf.exp(tf.neg(tf.pow(x - mean, 2.0) /
(2.0 * tf.pow(sigma, 2.0)))) *
(1.0 / (sigma * tf.sqrt(2.0 * 3.1415))))
# %% By default, new operations are added to the default Graph
assert z.graph is tf.get_default_graph()
# %% Execute the graph and plot the result
plt.plot(z.eval())
# %% We can find out the shape of a tensor like so:
print(z.get_shape())
# %% Or in a more friendly format
print(z.get_shape().as_list())
# %% Sometimes we may not know the shape of a tensor
# until it is computed in the graph. In that case
# we should use the tf.shape fn, which will return a
# Tensor which can be eval'ed, rather than a discrete
# value of tf.Dimension
print(tf.shape(z).eval())
# %% We can combine tensors like so:
print(tf.pack([tf.shape(z), tf.shape(z), [3], [4]]).eval())
# %% Let's multiply the two to get a 2d gaussian
z_2d = tf.matmul(tf.reshape(z, [n_values, 1]), tf.reshape(z, [1, n_values]))
# %% Execute the graph and store the value that `out` represents in `result`.
plt.imshow(z_2d.eval())
# %% For fun let's create a gabor patch:
x = tf.reshape(tf.sin(tf.linspace(-3.0, 3.0, n_values)), [n_values, 1])
y = tf.reshape(tf.ones_like(x), [1, n_values])
z = tf.mul(tf.matmul(x, y), z_2d)
plt.imshow(z.eval())
# %% We can also list all the operations of a graph:
ops = tf.get_default_graph().get_operations()
print([op.name for op in ops])
# %% Lets try creating a generic function for computing the same thing:
def gabor(n_values=32, sigma=1.0, mean=0.0):
x = tf.linspace(-3.0, 3.0, n_values)
z = (tf.exp(tf.neg(tf.pow(x - mean, 2.0) /
(2.0 * tf.pow(sigma, 2.0)))) *
(1.0 / (sigma * tf.sqrt(2.0 * 3.1415))))
gauss_kernel = tf.matmul(
tf.reshape(z, [n_values, 1]), tf.reshape(z, [1, n_values]))
x = tf.reshape(tf.sin(tf.linspace(-3.0, 3.0, n_values)), [n_values, 1])
y = tf.reshape(tf.ones_like(x), [1, n_values])
gabor_kernel = tf.mul(tf.matmul(x, y), gauss_kernel)
return gabor_kernel
# %% Confirm this does something:
plt.imshow(gabor().eval())
# %% And another function which can convolve
def convolve(img, W):
# The W matrix is only 2D
# But conv2d will need a tensor which is 4d:
# height x width x n_input x n_output
if len(W.get_shape()) == 2:
dims = W.get_shape().as_list() + [1, 1]
W = tf.reshape(W, dims)
if len(img.get_shape()) == 2:
# num x height x width x channels
dims = [1] + img.get_shape().as_list() + [1]
img = tf.reshape(img, dims)
elif len(img.get_shape()) == 3:
dims = [1] + img.get_shape().as_list()
img = tf.reshape(img, dims)
# if the image is 3 channels, then our convolution
# kernel needs to be repeated for each input channel
W = tf.concat(2, [W, W, W])
# Stride is how many values to skip for the dimensions of
# num, height, width, channels
convolved = tf.nn.conv2d(img, W,
strides=[1, 1, 1, 1], padding='SAME')
return convolved
# %% Load up an image:
from skimage import data
img = data.astronaut()
plt.imshow(img)
print(img.shape)
# %% Now create a placeholder for our graph which can store any input:
x = tf.placeholder(tf.float32, shape=img.shape)
# %% And a graph which can convolve our image with a gabor
out = convolve(x, gabor())
# %% Now send the image into the graph and compute the result
result = tf.squeeze(out).eval(feed_dict={x: img})
plt.imshow(result)