-
Notifications
You must be signed in to change notification settings - Fork 24
/
lookup.go
263 lines (220 loc) · 5.81 KB
/
lookup.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
package poker
const (
maxStraightFlush = 10
maxFourOfAKind = 166
maxFullHouse = 322
maxFlush = 1599
maxStraight = 1609
maxThreeOfAKind = 2467
maxTwoPair = 3325
maxPair = 6185
maxHighCard = 7462
)
var maxToRankClass = map[int32]int32{
maxStraightFlush: 1,
maxFourOfAKind: 2,
maxFullHouse: 3,
maxFlush: 4,
maxStraight: 5,
maxThreeOfAKind: 6,
maxTwoPair: 7,
maxPair: 8,
maxHighCard: 9,
}
var rankClassToString = map[int32]string{
1: "Straight Flush",
2: "Four of a Kind",
3: "Full House",
4: "Flush",
5: "Straight",
6: "Three of a Kind",
7: "Two Pair",
8: "Pair",
9: "High Card",
}
type lookupTable struct {
flushLookup map[int32]int32
unsuitedLookup map[int32]int32
}
func newLookupTable() *lookupTable {
table := &lookupTable{}
table.flushLookup = map[int32]int32{}
table.unsuitedLookup = map[int32]int32{}
table.flushes()
table.multiples()
return table
}
func (table *lookupTable) flushes() {
// straight flushes in rank order
straightFlushes := []int32{
7936, // 0b1111100000000 royal flush
3968, // 0b111110000000
1984, // 0b11111000000
992, // 0b1111100000
496, // 0b111110000
248, // 0b11111000
124, // 0b1111100
62, // 0b111110
31, // 0b11111
4111, // 0b1000000001111 5 high
}
var flushes []int32
var flush int32 = 31 // 0b11111
for i := 0; i < 1277+len(straightFlushes)-1; i++ {
flush = lexographicallyNextBitSequence(flush)
notSF := true
for _, sf := range straightFlushes {
if flush^sf == 0 {
notSF = false
}
}
if notSF {
flushes = append(flushes, flush)
}
}
for i, j := 0, len(flushes)-1; i < j; i, j = i+1, j-1 {
flushes[i], flushes[j] = flushes[j], flushes[i]
}
var rank int32 = 1
for _, sf := range straightFlushes {
primeProduct := primeProductFromRankBits(sf)
table.flushLookup[primeProduct] = rank
rank++
}
rank = maxFullHouse + 1
for _, f := range flushes {
primeProduct := primeProductFromRankBits(f)
table.flushLookup[primeProduct] = rank
rank++
}
table.straightAndHighCards(straightFlushes, flushes)
}
func (table *lookupTable) straightAndHighCards(straights, highcards []int32) {
var rank int32 = maxFlush + 1
for _, s := range straights {
primeProduct := primeProductFromRankBits(s)
table.unsuitedLookup[primeProduct] = rank
rank++
}
rank = maxPair + 1
for _, h := range highcards {
primeProduct := primeProductFromRankBits(h)
table.unsuitedLookup[primeProduct] = rank
rank++
}
}
func (table *lookupTable) multiples() {
backwardRanks := make([]int32, len(intRanks))
for i := range intRanks {
backwardRanks[13-i-1] = intRanks[i]
}
// 1) Four of a Kind
var rank int32 = maxStraightFlush + 1
for _, i := range backwardRanks {
kickers := make([]int32, len(backwardRanks))
copy(kickers, backwardRanks)
for j := 0; j < len(kickers); j++ {
if kickers[j] == i {
kickers = append(kickers[:j], kickers[j+1:]...)
break
}
}
for _, k := range kickers {
product := primes[i] * primes[i] * primes[i] * primes[i] * primes[k]
table.unsuitedLookup[product] = rank
rank++
}
}
// 2) Full House
rank = maxFourOfAKind + 1
for _, i := range backwardRanks {
pairRanks := make([]int32, len(backwardRanks))
copy(pairRanks, backwardRanks)
for j := 0; j < len(pairRanks); j++ {
if pairRanks[j] == i {
pairRanks = append(pairRanks[:j], pairRanks[j+1:]...)
break
}
}
for _, pr := range pairRanks {
product := primes[i] * primes[i] * primes[i] * primes[pr] * primes[pr]
table.unsuitedLookup[product] = rank
rank++
}
}
// 3) Three of a Kind
rank = maxStraight + 1
for _, i := range backwardRanks {
kickers := make([]int32, len(backwardRanks))
copy(kickers, backwardRanks)
for j := 0; j < len(kickers); j++ {
if kickers[j] == i {
kickers = append(kickers[:j], kickers[j+1:]...)
break
}
}
for j := 0; j < len(kickers)-1; j++ {
for k := j + 1; k < len(kickers); k++ {
c1, c2 := kickers[j], kickers[k]
product := primes[i] * primes[i] * primes[i] * primes[c1] * primes[c2]
table.unsuitedLookup[product] = rank
rank++
}
}
}
// 4) Two Pair
rank = maxThreeOfAKind + 1
for i := 0; i < len(backwardRanks)-1; i++ {
for j := i + 1; j < len(backwardRanks); j++ {
pair1, pair2 := backwardRanks[i], backwardRanks[j]
kickers := make([]int32, len(backwardRanks))
copy(kickers, backwardRanks)
for k := 0; k < len(kickers); k++ {
if kickers[k] == pair1 {
kickers = append(kickers[:k], kickers[k+1:]...)
break
}
}
for k := 0; k < len(kickers); k++ {
if kickers[k] == pair2 {
kickers = append(kickers[:k], kickers[k+1:]...)
break
}
}
for _, kicker := range kickers {
product := primes[pair1] * primes[pair1] * primes[pair2] * primes[pair2] * primes[kicker]
table.unsuitedLookup[product] = rank
rank++
}
}
}
// 5) Pair
rank = maxTwoPair + 1
for _, pairRank := range backwardRanks {
kickers := make([]int32, len(backwardRanks))
copy(kickers, backwardRanks)
for k := 0; k < len(kickers); k++ {
if kickers[k] == pairRank {
kickers = append(kickers[:k], kickers[k+1:]...)
break
}
}
for i := 0; i < len(kickers)-2; i++ {
for j := i + 1; j < len(kickers)-1; j++ {
for k := j + 1; k < len(kickers); k++ {
k1, k2, k3 := kickers[i], kickers[j], kickers[k]
product := primes[pairRank] * primes[pairRank] * primes[k1] * primes[k2] * primes[k3]
table.unsuitedLookup[product] = rank
rank++
}
}
}
}
}
// LexographicallyNextBitSequence calculates the next permutation of
// bits in a lexicographical sense. The algorithm comes from
// https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation.
func lexographicallyNextBitSequence(bits int32) int32 {
t := (bits | (bits - 1)) + 1
return t | ((((t & -t) / (bits & -bits)) >> 1) - 1)
}