forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch_08.py
406 lines (364 loc) · 14.2 KB
/
ch_08.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
__meta__ = type
# ----------------------------------------------------------------------------
from functools import wraps
def memo(func):
cache = {} # Stored subproblem solutions
@wraps(func) # Make wrap look like func
def wrap(*args): # The memoized wrapper
if args not in cache: # Not already computed?
cache[args] = func(*args) # Compute & cache the solution
return cache[args] # Return the cached solution
return wrap # Return the wrapper
def test_memo():
"""
>>> @memo
... def fib(i):
... if i < 2: return 1
... return fib(i-1) + fib(i-2)
...
>>> fib(10)
89
>>> #fib = memo(fib)
>>> print(fib(100)) # Avoid the L suffix in 2.7
573147844013817084101
>>> @memo
... def two_pow(i):
... if i == 0: return 1
... return two_pow(i-1) + two_pow(i-1)
...
>>> two_pow(10)
1024
>>> print(two_pow(100))
1267650600228229401496703205376
>>> def two_pow(i):
... if i == 0: return 1
... return 2*two_pow(i-1)
...
>>> two_pow(10)
1024
>>> print(two_pow(100))
1267650600228229401496703205376
"""
# ----------------------------------------------------------------------------
from itertools import combinations
def naive_lis(seq):
for length in range(len(seq), 0, -1): # n, n-1, ... , 1
for sub in combinations(seq, length): # Subsequences of given length
if list(sub) == sorted(sub): # An increasing subsequence?
return sub # Return it!
def test_lis():
"""
>>> seq = [3, 1, 0, 2, 4]
>>> naive_lis(seq)
(1, 2, 4)
>>> rec_lis(seq)
3
>>> basic_lis(seq)
3
>>> lis(seq)
3
>>> naive_lis([1, 0, 7, 2, 8, 3, 4, 9, 5, 6])
(1, 2, 3, 4, 5, 6)
>>> from random import *
>>> seqs = [[randrange(100) for i in range(5+i)] for i in range(10)]
>>> seqs.append([1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 4, 3, 3, 3, 4, 4, 4])
>>> for seq in seqs:
... res = naive_lis(seq)
... for f in [basic_lis, rec_lis, lis]:
... res2 = f(seq)
... assert res2 == len(res), (res, seq, res2, f)
"""
def rec_lis(seq): # Longest increasing subseq.
@memo
def L(cur): # Longest ending at seq[cur]
res = 1 # Length is at least 1
for pre in range(cur): # Potential predecessors
if seq[pre] <= seq[cur]: # A valid (smaller) predec.
res = max(res, 1 + L(pre)) # Can we improve the solution?
return res
return max(L(i) for i in range(len(seq))) # The longest of them all
def basic_lis(seq):
L = [1] * len(seq)
for cur, val in enumerate(seq):
for pre in range(cur):
if seq[pre] <= val:
L[cur] = max(L[cur], 1 + L[pre])
return max(L)
from bisect import bisect
def lis(seq): # Longest increasing subseq.
end = [] # End-values for all lengths
for val in seq: # Try every value, in order
idx = bisect(end, val) # Can we build on an end val?
if idx == len(end): end.append(val) # Longest seq. extended
else: end[idx] = val # Prev. endpoint reduced
return len(end) # The longest we found
DAG = {
'a': {'b':0},
'b': {'c':4, 'd':6},
'c': {'g':2, 'h':-6},
'd': {'f':3, 'e':5},
'e': {'g':0, 'h':-6},
'f': {'i':-1},
'g': {'h':4},
'h': {'i':7},
'i': {}
}
def test_dag_sp():
"""
>>> rec_dag_sp(DAG, 'a', 'i')
5
>>> dag_sp(DAG, 'a', 'i')
5
"""
def rec_dag_sp(W, s, t): # Shortest path from s to t
@memo # Memoize f
def d(u): # Distance from u to t
if u == t: return 0 # We're there!
return min(W[u][v]+d(v) for v in W[u]) # Best of every first step
return d(s) # Apply f to actual start node
# From Chapter 4:
def topsort(G):
count = dict((u, 0) for u in G) # The in-degree for each node
for u in G:
for v in G[u]:
count[v] += 1 # Count every in-edge
Q = [u for u in G if count[u] == 0] # Valid initial nodes
S = [] # The result
while Q: # While we have start nodes...
u = Q.pop() # Pick one
S.append(u) # Use it as first of the rest
for v in G[u]:
count[v] -= 1 # "Uncount" its out-edges
if count[v] == 0: # New valid start nodes?
Q.append(v) # Deal with them next
return S
def dag_sp(W, s, t): # Shortest path from s to t
d = {u:float('inf') for u in W} # Distance estimates
d[s] = 0 # Start node: Zero distance
for u in topsort(W): # In top-sorted order...
if u == t: break # Have we arrived?
for v in W[u]: # For each out-edge ...
d[v] = min(d[v], d[u] + W[u][v]) # Relax the edge
return d[t] # Distance to t (from s)
# ----------------------------------------------------------------------------
def test_c():
"""
>>> @memo
... def C(n,k):
... if k == 0: return 1
... if n == 0: return 0
... return C(n-1,k-1) + C(n-1,k)
>>> C(4,2)
6
>>> print(C(100,50))
100891344545564193334812497256
>>> C(10,7)
120
>>> C(4, 4)
1
>>> C(4, 5)
0
"""
def test_c2():
"""
>>> from collections import defaultdict
>>> n, k = 10, 7
>>> C = defaultdict(int)
>>> for row in range(n+1):
... C[row,0] = 1
... for col in range(1,k+1):
... C[row,col] = C[row-1,col-1] + C[row-1,col]
...
>>> C[n,k]
120
"""
# ----------------------------------------------------------------------------
def test_lcs():
"""
>>> rec_lcs("spock", "asoka")
3
>>> rec_lcs("AGCGA", "CAGATAGAG")
4
>>> rec_lcs("Starbuck", "Starwalker")
5
>>> lcs("spock", "asoka")
3
>>> lcs("AGCGA", "CAGATAGAG")
4
>>> lcs("Starbuck", "Starwalker")
5
"""
def rec_lcs(a,b): # Longest common subsequence
@memo # L is memoized
def L(i,j): # Prefixes a[:i] and b[:j]
if min(i,j) < 0: return 0 # One prefix is empty
if a[i] == b[j]: return 1 + L(i-1,j-1) # Match! Move diagonally
return max(L(i-1,j), L(i,j-1)) # Chop off either a[i] or b[j]
return L(len(a)-1,len(b)-1) # Run L on entire sequences
def lcs(a,b):
n, m = len(a), len(b)
pre, cur = [0]*(n+1), [0]*(n+1) # Previous/current row
for j in range(1,m+1): # Iterate over b
pre, cur = cur, pre # Keep prev., overwrite cur.
for i in range(1,n+1): # Iterate over a
if a[i-1] == b[j-1]: # Last elts. of pref. equal?
cur[i] = pre[i-1] + 1 # L(i,j) = L(i-1,j-1) + 1
else: # Otherwise...
cur[i] = max(pre[i], cur[i-1]) # max(L(i,j-1),L(i-1,j))
return cur[n] # L(n,m)
# ----------------------------------------------------------------------------
def test_knapsack():
"""
>>> funcs = [brutish_knapsack, old_rec_knapsack, rec_knapsack,
... knapsack]
>>> cases = [
... #[[2, 4, 3, 6, 5], [2, 4, 3, 6, 6], 12, -1],
... [[2, 3, 4, 5], [3, 4, 5, 6], 5, 7]
... ]
>>> from random import *
>>> for i in range(20):
... n = randrange(10)
... w = [randrange(100) for i in range(n)]
... v = [randrange(100) for i in range(n)]
... W = randrange(sum(w)+1)
... cases.append([w, v, W, -1])
>>> for w, v, W, e in cases:
... sols = set(f(w, v, W) for f in funcs)
... assert len(sols) == 1, (w, v, W, e, sols)
... if e >= 0: assert sols.pop() == e
...
>>>
"""
# Not used -- just for testing:
def brutish_knapsack(w, v, W):
items = list(range(len(w)))
vals = [0]
for r in range(1,len(items)+1):
for subset in combinations(items, r):
wt = sum(w[x] for x in subset)
if wt <= W: vals.append(sum(v[x] for x in subset))
return max(vals)
def rec_knapsack(w, v, c): # Weights, values and capacity
@memo # m is memoized
def m(k, r): # Max val., k objs and cap r
if k == 0 or r == 0: return 0 # No objects/no capacity
i = k-1 # Object under consideration
drop = m(k-1, r) # What if we drop the object?
if w[i] > r: return drop # Too heavy: Must drop it
return max(drop, v[i] + m(k-1, r-w[i])) # Include it? Max of in/out
return m(len(w), c) # All objects, all capacity
def old_rec_knapsack(w, v, c): # Weights, values and capacity
@memo # m is memoized
def m(i, r): # Max val., obj 0..i and cap r
if i == -1 or r == 0: return 0 # No objects/no capacity
drop = m(i-1, r) # What if we drop object i?
if w[i] > r: return drop # Too heavy: Must drop it
return max(drop, v[i] + m(i-1, r-w[i])) # Include it? Max of in/out
return m(len(w)-1, c) # All objects, all capacity
def knapsack_old(w, v, c):
n = len(w)
m = [[0]*(c+1) for i in range(n+1)]
for k in range(1,n+1):
i = k-1
for r in range(1,c+1):
m[k][r] = drop = m[k-1][r]
if w[i] <= r:
m[k][r] = max(drop, v[i] + m[k-1][r-w[i]])
return m[n][c]
def knapsack_wrap(w, v, c):
return knapsack_inner(w, v, c)[0][len(w)][c]
def test_knapsack_items():
"""
>>> knapsack = knapsack_inner
>>> w, v, c = [2, 3, 4, 5], [3, 4, 5, 6], 5
>>> m, P = knapsack(w, v, c)
>>> k, r, items = len(w), c, set()
>>> while k > 0 and r > 0:
... i = k-1
... if P[k][r]:
... items.add(i)
... r -= w[i]
... k -= 1
...
>>> sorted(items)
[0, 1]
"""
def knapsack(w, v, c): # Returns solution matrices
n = len(w) # Number of available items
m = [[0]*(c+1) for i in range(n+1)] # Empty max-value matrix
P = [[False]*(c+1) for i in range(n+1)] # Empty keep/drop matrix
for k in range(1,n+1): # We can use k first objects
i = k-1 # Object under consideration
for r in range(1,c+1): # Every positive capacity
m[k][r] = drop = m[k-1][r] # By default: drop the object
if w[i] > r: continue # Too heavy? Ignore it
keep = v[i] + m[k-1][r-w[i]] # Value of keeping it
m[k][r] = max(drop, keep) # Best of dropping and keeping
P[k][r] = keep > drop # Did we keep it?
return m, P # Return full results
knapsack_inner = knapsack
knapsack = knapsack_wrap
def test_unbounded_knapsack():
"""
>>> funcs = [rec_unbounded_knapsack, unbounded_knapsack]
>>> w, v = [1, 2], [2, 5]
>>> [f(w, v, 5) for f in funcs]
[12, 12]
>>> w, v = [3, 2, 4], [5, 4, 2]
>>> [f(w, v, 7) for f in funcs]
[13, 13]
"""
def rec_unbounded_knapsack(w, v, c): # Weights, values and capacity
@memo # m is memoized
def m(r): # Max val. w/remaining cap. r
if r == 0: return 0 # No capacity? No value
val = m(r-1) # Ignore the last cap. unit?
for i, wi in enumerate(w): # Try every object
if wi > r: continue # Too heavy? Ignore it
val = max(val, v[i] + m(r-wi)) # Add value, remove weight
return val # Max over all last objects
return m(c) # Full capacity available
def unbounded_knapsack(w, v, c):
m = [0]
for r in range(1,c+1):
val = m[r-1]
for i, wi in enumerate(w):
if wi > r: continue
val = max(val, v[i] + m[r-wi])
m.append(val)
return m[c]
# ----------------------------------------------------------------------------
def test_opt_tree():
"""
>>> w = [0.25, 0.2, 0.05, 0.2, 0.3]
>>> rec_opt_tree(w)
2.1
>>> opt_tree(w)
2.1
>>> from random import *
>>> ws = [[random() for i in range(randrange(4,9))] for j in range(20)]
>>> for w in ws:
... assert rec_opt_tree(w) == opt_tree(w)
"""
def rec_opt_tree(p):
@memo
def s(i,j):
if i == j: return 0
return s(i,j-1) + p[j-1]
@memo
def e(i,j):
if i == j: return 0
sub = min(e(i,r) + e(r+1,j) for r in range(i,j))
return sub + s(i,j)
return e(0,len(p))
from collections import defaultdict
def opt_tree(p):
n = len(p)
s, e = defaultdict(int), defaultdict(int)
for l in range(1,n+1):
for i in range(n-l+1):
j = i + l
s[i,j] = s[i,j-1] + p[j-1]
e[i,j] = min(e[i,r] + e[r+1,j] for r in range(i,j))
e[i,j] += s[i,j]
return e[0,n]