forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrick_vi_sol.m
351 lines (299 loc) · 10.3 KB
/
brick_vi_sol.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
% ======================================================================
% This function implements the value iteration algorithm for the brick.
% The tasks are:
% 1) lqr regulator task w/ discrete actions
% 2) lqr regulator task w/ continuous actions
% 3) limit cycle task
% It returns the optimal value function J and policy PI.
% - Rick
% ======================================================================
function [J,PI] = brick_vi
global problem dt pfig sfig;
pfig = 11; % policy figure handle
sfig = 25; % simulation figure handle
% === DEFINE THE PROBLEM TO RUN HERE ===
% 'mtime' - minimum time problem
% 'dlqr' - lqr regulator task w/ discrete actions
% 'clqr' - lqr regulator task w/ continuous actions
% 'cycle' - limit cycle trajectory task
problem = 'mtime';
% define the mesh points
q_bins = linspace(-5,5,25);
qdot_bins = linspace(-10,10,25);
if (strcmp(problem,'mtime'))
q_bins = linspace(-2,2,65);
qdot_bins = linspace(-2,2,65);
end
% dynamics dt
dt= 1e-2;
% create the mesh
[q qdot] = ndgrid(q_bins,qdot_bins);
s = [reshape(q,1,numel(q)); reshape(qdot,1,numel(qdot))];
ns = size(s,2);
% code for discrete actions
if (~strcmp(problem,'clqr'))
if (strcmp(problem,'mtime'))
a = [-1 1];
else
a = linspace(-5,5,11);
end
na = size(a,2);
% generate all possible state and action pairs
S = repmat(s,1,na); % repeat s na times
A = reshape(repmat(a,ns,1),1,ns*na); % repeat a ns times
% compute the one-step dynamics
Sn = S + dynamics(S,A).*dt;
% Compute the transition matrix
disp('Computing Transition Matrix...');
[Pi,P] = volumetric_interp(s,Sn,q_bins,qdot_bins);
% Compute the one-step cost
C = reshape(cost(S,A),ns,na);
end
% Setup value iteration
J = zeros(ns,1); % arbitrary initialization
converged = 0.1; % value converged threshold
% don't discount min-time problem
if (strcmp(problem,'mtime'))
gamma = 1;
else
gamma = 0.99; % discount factor
end
iter = 1; err = 1e6;
% now iterate the value estimate
% THIS CODE IS FOR DISCRETE ACTIONS
if (~strcmp(problem,'clqr'))
while (err > converged)
[Jnew, PI] = min(C + gamma*reshape(sum(P.*J(Pi),1),ns,na),[],2);
err = max(abs(Jnew-J));
disp(['iteration = ',num2str(iter),' ; max_err = ',num2str(err)]);
J = Jnew; iter = iter+1;
vi_plot(J,a(PI),q_bins,qdot_bins);
end
PI = a(PI)';
else
% THIS CODE IS FOR CONTINUOUS ACTIONS
while (err > converged)
% compute the gradient
dJdx = get_grad(J,s,s,q_bins,qdot_bins);
[Q,R] = get_QR;
% compute the optimal actions
% note: need continuous time R
uopt = -(dt/R)*dJdx(2,:);
% compute the one step cost using uopt
C = cost(s,uopt);
% compute the cost-to-go of our next state
% using action uopt
Sn = s + dynamics(s,uopt).*dt;
[Pi,P] = volumetric_interp(s,Sn,q_bins,qdot_bins);
Jnext = gamma*sum(P.*J(Pi),1);
% update the value function
Jnew = (C + Jnext)';
err = max(abs(Jnew-J));
disp(['iteration = ',num2str(iter),' ; max_err = ',num2str(err)]);
J = Jnew; iter = iter+1;
vi_plot(J,uopt,q_bins,qdot_bins);
end
end
disp('Value Estimate converged!');
subplot(2,1,1);xlabel('q'); ylabel('q_{dot}'); title('u'); colorbar;
subplot(2,1,2);xlabel('q'); ylabel('q_{dot}'); title('Value function'); colorbar;
% plot the analytical min_time policy
if (strcmp(problem,'mtime'))
figure(pfig);subplot(2,1,1); hold on;
plot(q_bins, -sign(q_bins).*sqrt(2*sign(q_bins).*q_bins),'c','LineWidth', 2); hold off;
end
disp('Press Enter to simulate...');pause;
% simulate a trajectory
T = 20; disp_dts = 5;
xtraj = zeros(2,T/dt); x = [-1 -1]';
utraj = zeros(1,size(xtraj,2));
for i=1:T/dt
xtraj(:,i) = x;
if (~strcmp(problem,'clqr'))
[ind,coef] = volumetric_interp(s,x,q_bins,qdot_bins);
u = sum(coef.*PI(ind),1);
else
% cont. actions
dJdx = get_grad(J,x,s,q_bins,qdot_bins);
[Q,R] = get_QR;
u = -(dt/R)*dJdx(2);
end
if (mod(i,disp_dts)==0)
draw((i-1)*dt,x);
end
utraj(i) = u;
x = x + dynamics(x,u).*dt;
end
% plot the trajectory
figure(pfig);
subplot(2,1,1); hold on; plot(xtraj(1,:),xtraj(2,:),'w'); hold off;
subplot(2,1,2); hold on; plot(xtraj(1,:),xtraj(2,:),'w'); hold off;
figure(20);plot(dt.*(1:length(utraj)),utraj);
title('u trajectory'); xlabel('time'); ylabel('u');
end % end of pend_vi
% ==========================================================
% This function performs volumetric interpolation on the
% state(s) Sn, returning the box indices(Pi) and weights(P)
% (a.k.a. transition probabilities)
% ==========================================================
function [Pi,P] = volumetric_interp(s,Sn,q_bins,qdot_bins)
ns = size(Sn,2);
Pi = zeros(4,ns);
P = Pi;
% impose limits and wrapping on the state
Sn = normalize(Sn,q_bins,qdot_bins);
% compute each transition individualy
for i=1:ns
if (mod(i,4e3)==0)
disp([num2str((i/ns)*1e2),'% done']);
end
% lower left corner
ind_q = max([find(q_bins <= Sn(1,i),1,'last') 1]);
ind_qdot = max([find(qdot_bins <= Sn(2,i),1,'last') 1]);
offset = [0 0;1 0;0 1;1 1];
if (ind_q == length(q_bins))
offset(:,1) = -offset(:,1);
end
if (ind_qdot == length(qdot_bins))
offset(:,2) = -offset(:,2);
end
% compute the total area of the containing box
totl_area = abs(q_bins(ind_q+offset(2,1))-q_bins(ind_q))*...
abs(qdot_bins(ind_qdot+offset(3,2))-qdot_bins(ind_qdot));
% compute the four corner indices and weights
for j=1:4
state = [q_bins(ind_q+offset(j,1)); qdot_bins(ind_qdot+offset(j,2))];
Pi(j,i) = find(sum(abs(s-repmat(state,1,size(s,2))),1)==0);
P(5-j,i) = (abs(Sn(1,i)-q_bins(ind_q+offset(j,1)))*abs(Sn(2,i)-qdot_bins(ind_qdot+offset(j,2))))/totl_area;
end
end
end
% =============================================================
% This function returns the gradients of the value function
% J (a column vector) for a given state x = [q qdot]'.
% The inputs are:
% J: the value function
% x: the state you want the gradients for
% s: the mesh over the state space
% [q_bins,qdot_bins]: the bins used to create the mesh for s
% =============================================================
function dJdx = get_grad(J,x,s,q_bins,qdot_bins)
nx = size(x,2);
dJdx = zeros(size(x));
% impose limits and wrapping on the state
x = normalize(x,q_bins,qdot_bins);
% compute each gradient individualy
% (a vectorized form would be more efficient)
for i=1:nx
if (mod(i,4e3)==0)
disp([num2str((i/nx)*1e2),'% done']);
end
[ind,coef] = volumetric_interp(s,x(:,i),q_bins,qdot_bins);
Jcor = J(ind); % the value function at the corners
q = s(1,ind); qdot = s(2,ind); % the state at the corners
dJdq = (Jcor(2)-Jcor(1))./(q(2)-q(1));
dJdqdot = (Jcor(3)-Jcor(1))./(qdot(3)-qdot(1));
dJdx(:,i) = [dJdq; dJdqdot];
end
end
% =============================================================
% This function defines the continuous dynamics of the brick
% =============================================================
function xdot = dynamics(x,u)
global problem;
xdot = [x(2,:); u];
% for min-time problem, stay at the origin
% i.e. no bang-bang
if (strcmp(problem,'mtime'));
ind = sum(abs(x),1) == 0;
xdot(:,ind) = repmat([0 0]',1,size(x(:,ind),2));
end
end
% =============================================================
% This function defines the instantaneous cost (i.e. g(x,u))
% =============================================================
function C = cost(X,u)
global problem;
switch (problem)
case 'mtime'
C = double(sum(abs(X),1) > 0);
return;
case {'dlqr','clqr'}
Xerr = X;
case 'cycle'
% limit cycle brick trajectory
Xdes = repmat([0 5]',1,size(X,2));
X(2,:) = abs(X(2,:));
Xerr = X - Xdes;
end
% get the cost matrices
[Q,R] = get_QR;
% implement a quadratic cost
C = dot(Xerr,0.5*Q*Xerr) + 0.5*u.^2.*R;
end
% =========================================================
% This just makes the cost matrices accessible to the rest
% of the script.
% =========================================================
function [Q,R] = get_QR
global problem dt;
switch(problem)
case {'dlqr','clqr'}
Q = diag([10 1]).*dt;
R = .1.*dt;
case 'cycle'
Q = diag([1 1]);
R = .1;
end
end
% ==============================================================
% This function imposes limits on the state
% ==============================================================
function s = normalize(s,q_bins,qdot_bins)
% impose limits
N = size(s,2);
smax = repmat([q_bins(end);qdot_bins(end)],1,N); ind = s>smax;
s(ind) = smax(ind);
smin = repmat([q_bins(1);qdot_bins(1)],1,N); ind = s<smin;
s(ind) = smin(ind);
end
% ===============================================================
% This function plots the value function and policy
%================================================================
function vi_plot(J,PI,q_bins,qdot_bins)
global pfig;
figure(pfig);
n1 = size(q_bins,2); n2 = size(qdot_bins,2);
subplot(2,1,1);imagesc(q_bins,qdot_bins,reshape(PI,n1,n2)'); axis xy;
subplot(2,1,2);imagesc(q_bins,qdot_bins,reshape(J,n1,n2)'); axis xy;
drawnow;
end
% ==============================================================
% This is the draw function.
% ==============================================================
function draw(t,x)
global sfig;
persistent hFig blockx blocky;
if (isempty(hFig))
hFig = figure(sfig);
set(hFig,'DoubleBuffer','on');
blockx = [-1, -1, 1, 1, -1];
blocky = [0, 0.5, 0.5, 0, 0];
end
figure(hFig);
clf;
% draw the mass
brickcolor=[.75 .6 .5];
fill(blockx+repmat(x(1),1,5),blocky,brickcolor);
hold on
faintline=[.6 .8 .65]*1.1;
plot(min(blockx)+[0 0],[-5 5],'k:','Color',faintline);
plot(max(blockx)+[0 0],[-5 5],'k:','Color',faintline);
% draw the ground
line([-5, 5], [0, 0],'Color',[.3 .5 1],'LineWidth',1);
axis([-5 5 -1 2]);
%grid on
axis equal;
title(['t = ', num2str(t)]);
drawnow;
end