-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_experiments.py
61 lines (52 loc) · 2.52 KB
/
generate_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from shapely import Polygon
from shapely.geometry import Point
from scipy.spatial import ConvexHull, distance
import matplotlib.pyplot as plt
import numpy as np
import os
import yaml
import argparse
if __name__ == '__main__':
# Parse args
parser = argparse.ArgumentParser()
parser.add_argument('number', type=int, nargs='?', default=1, help='The number of experiments to generate')
parser.add_argument('--max_size', type=int, default=50, help='The maximum allowed size of the field')
args = parser.parse_args()
# Generate the specified number of experiments
for _ in range(args.number):
experiment = {'grid_size': args.max_size}
response = 'n'
while response.lower() != 'y':
# Generate field
num_points = np.random.randint(5,10)
x = [np.random.randint(0, args.max_size) for i in range(num_points)]
y = [np.random.randint(0, args.max_size) for i in range(num_points)]
vertices = list(set(zip(x,y)))
hull = ConvexHull(vertices)
conv_vertices = [vertices[i] for i in hull.vertices]
field_poly = Polygon(conv_vertices)
experiment['field'] = conv_vertices
# Plot field to verify that it's correct
plt.plot(*field_poly.exterior.xy)
plt.show()
response = input('Does the field look good (y/n)? ')
# Generate initial drone positions
experiment['init_positions'] = []
while len(experiment['init_positions']) < 3:
new_point = (np.random.randint(0, args.max_size), np.random.randint(0, args.max_size))
if field_poly.contains(Point(new_point)) and all(distance.euclidean(new_point, p) >= 5 for p in experiment['init_positions']):
experiment['init_positions'].append(new_point)
# Generate weed locations
num_weeds = np.random.randint(5,10)
experiment['infected_locations'] = []
while len(experiment['infected_locations']) < num_weeds:
new_point = (np.random.randint(0, args.max_size), np.random.randint(0, args.max_size))
if field_poly.contains(Point(new_point)) and new_point not in experiment['infected_locations']:
experiment['infected_locations'].append(new_point)
# Save as yaml file
file = lambda x: f'experiments/set{x}.yaml'
counter = 1
while os.path.exists(file(counter)):
counter += 1
with open(file(counter), 'w') as save_file:
yaml.dump(experiment, save_file)