forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
245 lines (184 loc) · 7.77 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2019 Dong-Hyun Lee, Kakao Brain.
import csv
import itertools
import pprint
from typing import NamedTuple
from enum import Enum
import torch
from torch.utils.data import Dataset, TensorDataset, DataLoader
import tokenization
class Config(NamedTuple):
""" Config for classification dataset """
task: str = "agnews"
vocab_file: str = "../uncased_L-12_H-768_A-12/vocab.txt"
data_file: dict = {"train": "../agnews/train.csv",
"eval": "../agnews/test.csv"}
max_len: int = 128
comments: list = [] # for comments in json file
def get_class(task):
""" Mapping from task string to Dataset Class """
table = {"mrpc": MRPC, "agnews": AGNews}
return table[task]
class Pipeline:
""" Preprocess Pipeline Class : callable """
def __call__(self, x):
raise NotImplementedError
class PreprocessedTextDataset(Dataset):
""" Preprocessed Text Dataset Class """
def __init__(self, text_file, pipelines=[], n_data=None):
super().__init__()
data = []
# an instance is a list of fields
for instance in itertools.islice(self.get_instances(text_file), n_data):
# a bunch of pre-processing for instance
for pipeline in pipelines:
assert isinstance(pipeline, Pipeline)
instance = pipeline(instance)
data.append(instance)
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def get_instances(self, text_file):
""" get array of instances from text_file """
raise NotImplementedError
def get_tensors(self):
""" get torch tensors from list of integers """
return (torch.tensor(x, dtype=torch.long) for x in zip(*self.data))
### Dataset Classes ###
class MRPC(PreprocessedTextDataset):
""" Dataset class for MRPC """
labels = ("0", "1") # label names
def __init__(self, *args, **kwags):
super().__init__(*args, **kwags)
def get_instances(self, text_file):
with open(text_file, "r") as f:
# each line is a list of fields
lines = csv.reader(f, delimiter='\t', quotechar=None)
for line in itertools.islice(lines, 1, None): # skip header
# label, text_a, text_b
yield line[0], line[3], line[4]
class MNLI(PreprocessedTextDataset):
""" Dataset class for MNLI """
labels = ("contradiction", "entailment", "neutral") # label names
def __init__(self, *args, **kwags):
super().__init__(*args, **kwags)
def get_instances(self, text_file):
with open(text_file, "r") as f:
# each line is a list of fields
lines = csv.reader(f, delimiter='\t', quotechar=None)
for line in itertools.islice(lines, 1, None): # skip header
# label, text_a, text_b
yield line[-1], line[8], line[9]
class AGNews(PreprocessedTextDataset):
""" Dataset class for AGNews """
labels = ("1", "2", "3", "4") # label names
def __init__(self, *args, **kwags):
super().__init__(*args, **kwags)
def get_instances(self, text_file):
with open(text_file, "r") as f:
# each line is a list of fields
for line in csv.reader(f, delimiter=',', quotechar='"'):
# label, text_a, text_b(N/A)
yield line[0], line[1]+' '+line[2], None
### Pipeline Classes for preprocessing ###
class RemoveSymbols(Pipeline):
""" Remove unnecessary symbols """
def __init__(self, symbols):
super().__init__()
self.symbols = symbols
def __call__(self, instance):
label, text_a, text_b = instance
for c in self.symbols:
text_a = text_a.replace(c, ' ')
text_b = text_b.replace(c, ' ') if text_b else None
return (label, text_a, text_b)
class Tokenizing(Pipeline):
""" Tokenizing sentence pair """
def __init__(self, preprocessor, tokenize):
super().__init__()
self.preprocessor = preprocessor # e.g. text normalization
self.tokenize = tokenize # tokenize function
def __call__(self, instance):
label, text_a, text_b = instance
label = self.preprocessor(label)
tokens_a = self.tokenize(self.preprocessor(text_a))
tokens_b = self.tokenize(self.preprocessor(text_b)) \
if text_b else []
return (label, tokens_a, tokens_b)
def truncate_tokens_pair(tokens_a, tokens_b, max_len):
while True:
if len(tokens_a) + len(tokens_b) <= max_len:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
class AddSpecialTokensWithTruncation(Pipeline):
""" Add special tokens [CLS], [SEP] with truncation """
def __init__(self, max_len=128):
super().__init__()
self.max_len = max_len
def __call__(self, instance):
label, tokens_a, tokens_b = instance
# -3 special tokens for [CLS] text_a [SEP] text_b [SEP]
# -2 special tokens for [CLS] text_a [SEP]
_max_len = self.max_len - 3 if tokens_b else self.max_len - 2
truncate_tokens_pair(tokens_a, tokens_b, _max_len)
# Add Special Tokens
tokens_a = ['[CLS]'] + tokens_a + ['[SEP]']
tokens_b = tokens_b + ['[SEP]'] if tokens_b else []
return (label, tokens_a, tokens_b)
class TokenIndexing(Pipeline):
""" Convert tokens into token indexes and do zero-padding """
def __init__(self, indexer, labels, max_len=128):
super().__init__()
self.indexer = indexer # function : tokens to indexes
# map from a label name to a label index
self.label_map = {name: i for i, name in enumerate(labels)}
self.max_len = max_len
def __call__(self, instance):
label, tokens_a, tokens_b = instance
input_ids = self.indexer(tokens_a + tokens_b)
segment_ids = [0]*len(tokens_a) + [1]*len(tokens_b) # token type ids
input_mask = [1]*(len(tokens_a) + len(tokens_b))
label_id = self.label_map[label]
# zero padding
n_pad = self.max_len - len(input_ids)
input_ids.extend([0]*n_pad)
segment_ids.extend([0]*n_pad)
input_mask.extend([0]*n_pad)
return (input_ids, segment_ids, input_mask, label_id)
if __name__ == '__main__':
# Test Case (Optional)
cfg = Config(task="agnews",
vocab_file="../uncased_L-12_H-768_A-12/vocab.txt",
data_file={"train": "../agnews/train.csv",
"eval": "../agnews/test.csv"},
max_len=16)
#import json
#cfg = Config(**json.load(open('config/mrpc_data.json')))
#print(cfg.task)
TaskDataset = get_class(cfg.task)
tokenizer = tokenization.FullTokenizer(
vocab_file=cfg.vocab_file,
do_lower_case=True)
pipelines = [RemoveSymbols('\\'),
Tokenizing(tokenizer.convert_to_unicode, tokenizer.tokenize),
AddSpecialTokensWithTruncation(cfg.max_len),
TokenIndexing(tokenizer.convert_tokens_to_ids,
TaskDataset.labels, cfg.max_len)]
print(f"\n* Take a look at the dataset according to pipeline (max_len : {cfg.max_len}):\n")
for i in range(len(pipelines)+1):
print("Preprocessing Pipeline : ", end="")
for proc in pipelines[:i]:
print(type(proc).__name__, end=", ")
dataset = TaskDataset(cfg.data_file["train"], pipelines[:i], n_data=15)
print('\n', dataset[0], '\n', dataset[1], '\n')
print("\nTensors from DataLoader : \n")
dataset = TensorDataset(*dataset.get_tensors())
for i, data in enumerate(DataLoader(dataset, batch_size=5, shuffle=True)):
print(f"<batch {i}>")
pprint.pprint(data)
print()