forked from piskvorky/gensim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
392 lines (303 loc) · 14 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2014 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Run with::
python ./setup.py install
"""
import itertools
import os
import platform
import shutil
import sys
from setuptools import Extension, find_packages, setup, distutils
from setuptools.command.build_ext import build_ext
c_extensions = {
'gensim.models.word2vec_inner': 'gensim/models/word2vec_inner.c',
'gensim.corpora._mmreader': 'gensim/corpora/_mmreader.c',
'gensim.models.fasttext_inner': 'gensim/models/fasttext_inner.c',
'gensim._matutils': 'gensim/_matutils.c',
'gensim.models.nmf_pgd': 'gensim/models/nmf_pgd.c',
'gensim.similarities.fastss': 'gensim/similarities/fastss.c',
}
cpp_extensions = {
'gensim.models.doc2vec_inner': 'gensim/models/doc2vec_inner.cpp',
'gensim.models.word2vec_corpusfile': 'gensim/models/word2vec_corpusfile.cpp',
'gensim.models.fasttext_corpusfile': 'gensim/models/fasttext_corpusfile.cpp',
'gensim.models.doc2vec_corpusfile': 'gensim/models/doc2vec_corpusfile.cpp',
}
def need_cython():
"""Return True if we need Cython to translate any of the extensions.
If the extensions have already been translated to C/C++, then we don't need
to install Cython and perform the translation.
"""
expected = list(c_extensions.values()) + list(cpp_extensions.values())
return any([not os.path.isfile(f) for f in expected])
def make_c_ext(use_cython=False):
for module, source in c_extensions.items():
if use_cython:
source = source.replace('.c', '.pyx')
extra_args = []
# extra_args.extend(['-g', '-O0']) # uncomment if optimization limiting crash info
yield Extension(
module,
sources=[source],
language='c',
extra_compile_args=extra_args,
)
def make_cpp_ext(use_cython=False):
extra_args = []
system = platform.system()
if system == 'Linux':
extra_args.append('-std=c++11')
elif system == 'Darwin':
extra_args.extend(['-stdlib=libc++', '-std=c++11'])
# extra_args.extend(['-g', '-O0']) # uncomment if optimization limiting crash info
for module, source in cpp_extensions.items():
if use_cython:
source = source.replace('.cpp', '.pyx')
yield Extension(
module,
sources=[source],
language='c++',
extra_compile_args=extra_args,
extra_link_args=extra_args,
)
#
# We use use_cython=False here for two reasons:
#
# 1. Cython may not be available at this stage
# 2. The actual translation from Cython to C/C++ happens inside CustomBuildExt
#
ext_modules = list(itertools.chain(make_c_ext(use_cython=False), make_cpp_ext(use_cython=False)))
class CustomBuildExt(build_ext):
"""Custom build_ext action with bootstrapping.
We need this in order to use numpy and Cython in this script without
importing them at module level, because they may not be available yet.
"""
#
# http://stackoverflow.com/questions/19919905/how-to-bootstrap-numpy-installation-in-setup-py
#
def finalize_options(self):
build_ext.finalize_options(self)
# Prevent numpy from thinking it is still in its setup process:
# https://docs.python.org/2/library/__builtin__.html#module-__builtin__
__builtins__.__NUMPY_SETUP__ = False
import numpy
self.include_dirs.append(numpy.get_include())
if need_cython():
import Cython.Build
Cython.Build.cythonize(list(make_c_ext(use_cython=True)))
Cython.Build.cythonize(list(make_cpp_ext(use_cython=True)))
class CleanExt(distutils.cmd.Command):
description = 'Remove C sources, C++ sources and binaries for gensim extensions'
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
for root, dirs, files in os.walk('gensim'):
files = [
os.path.join(root, f)
for f in files
if os.path.splitext(f)[1] in ('.c', '.cpp', '.so')
]
for f in files:
self.announce('removing %s' % f, level=distutils.log.INFO)
os.unlink(f)
if os.path.isdir('build'):
self.announce('recursively removing build', level=distutils.log.INFO)
shutil.rmtree('build')
cmdclass = {'build_ext': CustomBuildExt, 'clean_ext': CleanExt}
WHEELHOUSE_UPLOADER_COMMANDS = {'fetch_artifacts', 'upload_all'}
if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv):
import wheelhouse_uploader.cmd
cmdclass.update(vars(wheelhouse_uploader.cmd))
LONG_DESCRIPTION = u"""
==============================================
gensim -- Topic Modelling in Python
==============================================
|GA|_
|Wheel|_
.. |GA| image:: https://github.com/RaRe-Technologies/gensim/actions/workflows/tests.yml/badge.svg?branch=develop
.. |Wheel| image:: https://img.shields.io/pypi/wheel/gensim.svg
.. _GA: https://github.com/RaRe-Technologies/gensim/actions
.. _Downloads: https://pypi.python.org/pypi/gensim
.. _License: http://radimrehurek.com/gensim/about.html
.. _Wheel: https://pypi.python.org/pypi/gensim
Gensim is a Python library for *topic modelling*, *document indexing* and *similarity retrieval* with large corpora.
Target audience is the *natural language processing* (NLP) and *information retrieval* (IR) community.
Features
---------
* All algorithms are **memory-independent** w.r.t. the corpus size (can process input larger than RAM, streamed, out-of-core)
* **Intuitive interfaces**
* easy to plug in your own input corpus/datastream (simple streaming API)
* easy to extend with other Vector Space algorithms (simple transformation API)
* Efficient multicore implementations of popular algorithms, such as online **Latent Semantic Analysis (LSA/LSI/SVD)**,
**Latent Dirichlet Allocation (LDA)**, **Random Projections (RP)**, **Hierarchical Dirichlet Process (HDP)** or **word2vec deep learning**.
* **Distributed computing**: can run *Latent Semantic Analysis* and *Latent Dirichlet Allocation* on a cluster of computers.
* Extensive `documentation and Jupyter Notebook tutorials <https://github.com/RaRe-Technologies/gensim/#documentation>`_.
If this feature list left you scratching your head, you can first read more about the `Vector
Space Model <http://en.wikipedia.org/wiki/Vector_space_model>`_ and `unsupervised
document analysis <http://en.wikipedia.org/wiki/Latent_semantic_indexing>`_ on Wikipedia.
Installation
------------
This software depends on `NumPy and Scipy <http://www.scipy.org/Download>`_, two Python packages for scientific computing.
You must have them installed prior to installing `gensim`.
It is also recommended you install a fast BLAS library before installing NumPy. This is optional, but using an optimized BLAS such as MKL, `ATLAS <http://math-atlas.sourceforge.net/>`_ or `OpenBLAS <http://xianyi.github.io/OpenBLAS/>`_ is known to improve performance by as much as an order of magnitude. On OSX, NumPy picks up its vecLib BLAS automatically, so you don't need to do anything special.
Install the latest version of gensim::
pip install --upgrade gensim
Or, if you have instead downloaded and unzipped the `source tar.gz <http://pypi.python.org/pypi/gensim>`_ package::
python setup.py install
For alternative modes of installation, see the `documentation <http://radimrehurek.com/gensim/#install>`_.
Gensim is being `continuously tested <http://radimrehurek.com/gensim/#testing>`_ under all `supported Python versions <https://github.com/RaRe-Technologies/gensim/wiki/Gensim-And-Compatibility>`_.
Support for Python 2.7 was dropped in gensim 4.0.0 – install gensim 3.8.3 if you must use Python 2.7.
How come gensim is so fast and memory efficient? Isn't it pure Python, and isn't Python slow and greedy?
--------------------------------------------------------------------------------------------------------
Many scientific algorithms can be expressed in terms of large matrix operations (see the BLAS note above). Gensim taps into these low-level BLAS libraries, by means of its dependency on NumPy. So while gensim-the-top-level-code is pure Python, it actually executes highly optimized Fortran/C under the hood, including multithreading (if your BLAS is so configured).
Memory-wise, gensim makes heavy use of Python's built-in generators and iterators for streamed data processing. Memory efficiency was one of gensim's `design goals <http://radimrehurek.com/gensim/about.html>`_, and is a central feature of gensim, rather than something bolted on as an afterthought.
Documentation
-------------
* `QuickStart`_
* `Tutorials`_
* `Tutorial Videos`_
* `Official Documentation and Walkthrough`_
Citing gensim
-------------
When `citing gensim in academic papers and theses <https://scholar.google.cz/citations?view_op=view_citation&hl=en&user=9vG_kV0AAAAJ&citation_for_view=9vG_kV0AAAAJ:u-x6o8ySG0sC>`_, please use this BibTeX entry::
@inproceedings{rehurek_lrec,
title = {{Software Framework for Topic Modelling with Large Corpora}},
author = {Radim {\\v R}eh{\\r u}{\\v r}ek and Petr Sojka},
booktitle = {{Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks}},
pages = {45--50},
year = 2010,
month = May,
day = 22,
publisher = {ELRA},
address = {Valletta, Malta},
language={English}
}
----------------
Gensim is open source software released under the `GNU LGPLv2.1 license <http://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html>`_.
Copyright (c) 2009-now Radim Rehurek
|Analytics|_
.. |Analytics| image:: https://ga-beacon.appspot.com/UA-24066335-5/your-repo/page-name
.. _Analytics: https://github.com/igrigorik/ga-beacon
.. _Official Documentation and Walkthrough: http://radimrehurek.com/gensim/
.. _Tutorials: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#tutorials
.. _Tutorial Videos: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#videos
.. _QuickStart: https://radimrehurek.com/gensim/gensim_numfocus/auto_examples/core/run_core_concepts.html
"""
distributed_env = ['Pyro4 >= 4.27']
visdom_req = ['visdom >= 0.1.8, != 0.1.8.7']
# packages included for build-testing everywhere
core_testenv = [
'pytest',
'pytest-cov',
# 'pytest-rerunfailures', # disabled 2020-08-28 for <https://github.com/pytest-dev/pytest-rerunfailures/issues/128>
'mock',
'cython',
'testfixtures',
'Morfessor>=2.0.2a4',
]
if not (sys.platform.lower().startswith("win") and sys.version_info[:2] >= (3, 9)):
core_testenv.extend([
'pyemd',
'nmslib',
])
# Add additional requirements for testing on Linux that are skipped on Windows.
linux_testenv = core_testenv[:] + visdom_req
# Skip problematic/uninstallable packages (& thus related conditional tests) in Windows builds.
# We still test them in Linux via Travis, see linux_testenv above.
# See https://github.com/RaRe-Technologies/gensim/pull/2814
win_testenv = core_testenv[:]
#
# This list partially duplicates requirements_docs.txt.
# The main difference is that we don't include version pins here unless
# absolutely necessary, whereas requirements_docs.txt includes pins for
# everything, by design.
#
# For more info about the difference between the two:
#
# https://packaging.python.org/discussions/install-requires-vs-requirements/
#
docs_testenv = core_testenv + distributed_env + visdom_req + [
'sphinx',
'sphinx-gallery',
'sphinxcontrib.programoutput',
'sphinxcontrib-napoleon',
'matplotlib', # expected by sphinx-gallery
'memory_profiler',
'annoy',
'Pyro4',
'nltk',
'testfixtures',
'statsmodels',
'pandas',
]
NUMPY_STR = 'numpy >= 1.17.0'
#
# We pin the Cython version for reproducibility. We expect our extensions
# to build with any sane version of Cython, so we should update this pin
# periodically.
#
CYTHON_STR = 'Cython==0.29.23'
install_requires = [
NUMPY_STR,
'scipy >= 0.18.1',
'smart_open >= 1.8.1',
"dataclasses; python_version < '3.7'", # pre-py3.7 needs `dataclasses` backport for use of `dataclass` in doc2vec.py
]
setup_requires = [NUMPY_STR]
if need_cython():
install_requires.append(CYTHON_STR)
setup_requires.append(CYTHON_STR)
setup(
name='gensim',
version='4.1.3.dev0',
description='Python framework for fast Vector Space Modelling',
long_description=LONG_DESCRIPTION,
ext_modules=ext_modules,
cmdclass=cmdclass,
packages=find_packages(),
author=u'Radim Rehurek',
author_email='[email protected]',
url='http://radimrehurek.com/gensim',
download_url='http://pypi.python.org/pypi/gensim',
license='LGPL-2.1-only',
keywords='Singular Value Decomposition, SVD, Latent Semantic Indexing, '
'LSA, LSI, Latent Dirichlet Allocation, LDA, '
'Hierarchical Dirichlet Process, HDP, Random Projections, '
'TFIDF, word2vec',
platforms='any',
zip_safe=False,
classifiers=[ # from http://pypi.python.org/pypi?%3Aaction=list_classifiers
'Development Status :: 5 - Production/Stable',
'Environment :: Console',
'Intended Audience :: Science/Research',
'Operating System :: OS Independent',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3 :: Only',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Text Processing :: Linguistic',
],
test_suite="gensim.test",
python_requires='>=3.6',
setup_requires=setup_requires,
install_requires=install_requires,
tests_require=linux_testenv,
extras_require={
'distributed': distributed_env,
'test-win': win_testenv,
'test': linux_testenv,
'docs': docs_testenv,
},
include_package_data=True,
)