This repository has been archived by the owner on Sep 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
ryu64.go
361 lines (336 loc) · 9.11 KB
/
ryu64.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright 2018 Ulf Adams
// Modifications copyright 2019 Caleb Spare
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
//
// The code in this file is part of a Go translation of the C code written by
// Ulf Adams which may be found at https://github.com/ulfjack/ryu. That source
// code is licensed under Apache 2.0 and this code is derivative work thereof.
package ryu
import (
"math/bits"
)
type uint128 struct {
lo uint64
hi uint64
}
// dec64 is a floating decimal type representing m * 10^e.
type dec64 struct {
m uint64
e int32
}
func (d dec64) append(b []byte, neg bool) []byte {
// Step 5: Print the decimal representation.
if neg {
b = append(b, '-')
}
out := d.m
outLen := decimalLen64(out)
bufLen := outLen
if bufLen > 1 {
bufLen++ // extra space for '.'
}
// Print the decimal digits.
n := len(b)
if cap(b)-len(b) >= bufLen {
// Avoid function call in the common case.
b = b[:len(b)+bufLen]
} else {
b = append(b, make([]byte, bufLen)...)
}
// Avoid expensive 64-bit divisions.
// We have at most 17 digits, and uint32 can store 9 digits.
// If the output doesn't fit into a uint32, cut off 8 digits
// so the rest will fit into a uint32.
var i int
if out>>32 > 0 {
var out32 uint32
out, out32 = out/1e8, uint32(out%1e8)
for ; i < 8; i++ {
b[n+outLen-i] = '0' + byte(out32%10)
out32 /= 10
}
}
out32 := uint32(out)
for ; i < outLen-1; i++ {
b[n+outLen-i] = '0' + byte(out32%10)
out32 /= 10
}
b[n] = '0' + byte(out32%10)
// Print the '.' if needed.
if outLen > 1 {
b[n+1] = '.'
}
// Print the exponent.
b = append(b, 'e')
exp := d.e + int32(outLen) - 1
if exp < 0 {
b = append(b, '-')
exp = -exp
} else {
// Unconditionally print a + here to match strconv's formatting.
b = append(b, '+')
}
// Always print at least two digits to match strconv's formatting.
d2 := exp % 10
exp /= 10
d1 := exp % 10
d0 := exp / 10
if d0 > 0 {
b = append(b, '0'+byte(d0))
}
b = append(b, '0'+byte(d1), '0'+byte(d2))
return b
}
func float64ToDecimalExactInt(mant, exp uint64) (d dec64, ok bool) {
e := exp - bias64
if e > mantBits64 {
return d, false
}
shift := mantBits64 - e
mant |= 1 << mantBits64 // implicit 1
d.m = mant >> shift
if d.m<<shift != mant {
return d, false
}
for d.m%10 == 0 {
d.m /= 10
d.e++
}
return d, true
}
func float64ToDecimal(mant, exp uint64) dec64 {
var e2 int32
var m2 uint64
if exp == 0 {
// We subtract 2 so that the bounds computation has
// 2 additional bits.
e2 = 1 - bias64 - mantBits64 - 2
m2 = mant
} else {
e2 = int32(exp) - bias64 - mantBits64 - 2
m2 = uint64(1)<<mantBits64 | mant
}
even := m2&1 == 0
acceptBounds := even
// Step 2: Determine the interval of valid decimal representations.
mv := 4 * m2
mmShift := boolToUint64(mant != 0 || exp <= 1)
// We would compute mp and mm like this:
// mp := 4 * m2 + 2;
// mm := mv - 1 - mmShift;
// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
var (
vr, vp, vm uint64
e10 int32
vmIsTrailingZeros bool
vrIsTrailingZeros bool
)
if e2 >= 0 {
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
q := log10Pow2(e2) - boolToUint32(e2 > 3)
e10 = int32(q)
k := pow5InvNumBits64 + pow5Bits(int32(q)) - 1
i := -e2 + int32(q) + k
mul := pow5InvSplit64[q]
vr = mulShift64(4*m2, mul, i)
vp = mulShift64(4*m2+2, mul, i)
vm = mulShift64(4*m2-1-mmShift, mul, i)
if q <= 21 {
// This should use q <= 22, but I think 21 is also safe.
// Smaller values may still be safe, but it's more
// difficult to reason about them. Only one of mp, mv,
// and mm can be a multiple of 5, if any.
if mv%5 == 0 {
vrIsTrailingZeros = multipleOfPowerOfFive64(mv, q)
} else if acceptBounds {
// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
vmIsTrailingZeros = multipleOfPowerOfFive64(mv-1-mmShift, q)
} else if multipleOfPowerOfFive64(mv+2, q) {
vp--
}
}
} else {
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
q := log10Pow5(-e2) - boolToUint32(-e2 > 1)
e10 = int32(q) + e2
i := -e2 - int32(q)
k := pow5Bits(i) - pow5NumBits64
j := int32(q) - k
mul := pow5Split64[i]
vr = mulShift64(4*m2, mul, j)
vp = mulShift64(4*m2+2, mul, j)
vm = mulShift64(4*m2-1-mmShift, mul, j)
if q <= 1 {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vrIsTrailingZeros = true
if acceptBounds {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vmIsTrailingZeros = mmShift == 1
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
vp--
}
} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
// <=> (mv & ((1 << (q - 1)) - 1)) == 0
// We also need to make sure that the left shift does not overflow.
vrIsTrailingZeros = multipleOfPowerOfTwo64(mv, q-1)
}
}
// Step 4: Find the shortest decimal representation
// in the interval of valid representations.
var removed int32
var lastRemovedDigit uint8
var out uint64
// On average, we remove ~2 digits.
if vmIsTrailingZeros || vrIsTrailingZeros {
// General case, which happens rarely (~0.7%).
for {
vpDiv10 := vp / 10
vmDiv10 := vm / 10
if vpDiv10 <= vmDiv10 {
break
}
vmMod10 := vm % 10
vrDiv10 := vr / 10
vrMod10 := vr % 10
vmIsTrailingZeros = vmIsTrailingZeros && vmMod10 == 0
vrIsTrailingZeros = vrIsTrailingZeros && lastRemovedDigit == 0
lastRemovedDigit = uint8(vrMod10)
vr = vrDiv10
vp = vpDiv10
vm = vmDiv10
removed++
}
if vmIsTrailingZeros {
for {
vmDiv10 := vm / 10
vmMod10 := vm % 10
if vmMod10 != 0 {
break
}
vpDiv10 := vp / 10
vrDiv10 := vr / 10
vrMod10 := vr % 10
vrIsTrailingZeros = vrIsTrailingZeros && lastRemovedDigit == 0
lastRemovedDigit = uint8(vrMod10)
vr = vrDiv10
vp = vpDiv10
vm = vmDiv10
removed++
}
}
if vrIsTrailingZeros && lastRemovedDigit == 5 && vr%2 == 0 {
// Round even if the exact number is .....50..0.
lastRemovedDigit = 4
}
out = vr
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
if (vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5 {
out++
}
} else {
// Specialized for the common case (~99.3%).
// Percentages below are relative to this.
roundUp := false
for vp/100 > vm/100 {
// Optimization: remove two digits at a time (~86.2%).
roundUp = vr%100 >= 50
vr /= 100
vp /= 100
vm /= 100
removed += 2
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for vp/10 > vm/10 {
roundUp = vr%10 >= 5
vr /= 10
vp /= 10
vm /= 10
removed++
}
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
out = vr + boolToUint64(vr == vm || roundUp)
}
return dec64{m: out, e: e10 + removed}
}
var powersOf10 = [...]uint64{
1e0,
1e1,
1e2,
1e3,
1e4,
1e5,
1e6,
1e7,
1e8,
1e9,
1e10,
1e11,
1e12,
1e13,
1e14,
1e15,
1e16,
1e17,
// We only need to find the length of at most 17 digit numbers.
}
func decimalLen64(u uint64) int {
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
log2 := 64 - bits.LeadingZeros64(u) - 1
t := (log2 + 1) * 1233 >> 12
return t - boolToInt(u < powersOf10[t]) + 1
}
func mulShift64(m uint64, mul uint128, shift int32) uint64 {
hihi, hilo := bits.Mul64(m, mul.hi)
lohi, _ := bits.Mul64(m, mul.lo)
sum := uint128{hi: hihi, lo: lohi + hilo}
if sum.lo < lohi {
sum.hi++ // overflow
}
return shiftRight128(sum, shift-64)
}
func shiftRight128(v uint128, shift int32) uint64 {
// The shift value is always modulo 64.
// In the current implementation of the 64-bit version
// of Ryu, the shift value is always < 64.
// (It is in the range [2, 59].)
// Check this here in case a future change requires larger shift
// values. In this case this function needs to be adjusted.
assert(shift < 64, "shift < 64")
return (v.hi << uint64(64-shift)) | (v.lo >> uint(shift))
}
func pow5Factor64(v uint64) uint32 {
for n := uint32(0); ; n++ {
q, r := v/5, v%5
if r != 0 {
return n
}
v = q
}
}
func multipleOfPowerOfFive64(v uint64, p uint32) bool {
return pow5Factor64(v) >= p
}
func multipleOfPowerOfTwo64(v uint64, p uint32) bool {
return uint32(bits.TrailingZeros64(v)) >= p
}