-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
221 lines (179 loc) · 7.25 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from itertools import *
import json
import os
import numpy as np
import param_search
DEBUG = False
# Sinustongemisch
def sinustongemisch_dict(frequencies, amplitudes):
result = dict()
for idx in range(len(frequencies)):
result[f'frequency{idx}'] = frequencies[idx]
result[f'amplitude{idx}'] = amplitudes[idx]
return result
def sinustongemisch_rename_parmameters(reference_parameters, new_parameters, n_sines):
frequency_permutations = list(permutations(list(range(n_sines)), n_sines))
best_permutation = frequency_permutations[0]
best_deviation = float('inf')
for perm in frequency_permutations:
frequency_deviation = 0.
for idx in range(n_sines):
ref_frequency = reference_parameters[f'frequency{idx}']
other_frequency = new_parameters[f'frequency{perm[idx]}']
frequency_deviation += abs(ref_frequency - other_frequency)
if frequency_deviation < best_deviation:
best_deviation = frequency_deviation
best_permutation = perm
result = dict()
for idx in range(n_sines):
result[f'frequency{idx}'] = new_parameters[f'frequency{best_permutation[idx]}']
result[f'amplitude{idx}'] = new_parameters[f'amplitude{best_permutation[idx]}']
return result
def eval_sinustongemisch(n_sines):
count, iterations, rounds = default_settings()
result = []
frequencies = list(combinations(equidistant_frequency(count), n_sines))
amplitudes = list(combinations(equidistant_amplitude(count), n_sines))
idx = 0
for f in frequencies:
for a in amplitudes:
print(f'Evaluating {idx + 1} / {len(frequencies) * len(amplitudes)}')
true_params = sinustongemisch_dict(f, a)
model, patch_y = param_search.setup_sinustongemisch(true_params)
_, found_params = param_search.find_parameters(model, patch_y, iterations, rounds)
found_params = sinustongemisch_rename_parmameters(true_params, found_params, n_sines)
r = {
'actual': true_params,
'predicted': found_params
}
result.append(r)
idx += 1
debug_str = 'DEBUG' if DEBUG else ''
with open(f'eval/{debug_str}sinustongemisch_nsines={n_sines}count={count}_iterations={iterations}'
f'_rounds={rounds}.json', 'w') as f:
json.dump(result, f, indent=4)
# Amplitude Modulation
def eval_amplitude_modulation():
count, iterations, rounds = default_settings()
result = []
frequencies = list(combinations(equidistant_frequency(count), 2))
amplitudes = list(combinations(equidistant_amplitude(count), 2))
idx = 0
for f in frequencies:
for a in amplitudes:
print(f'Evaluating {idx + 1} / {len(frequencies) * len(amplitudes)}')
true_params = amplitude_modulation_dict(f, a)
model, patch_y = param_search.setup_amplitude_modulation(true_params)
_, found_params = param_search.find_parameters(model, patch_y, iterations, rounds)
r = {
'actual': true_params,
'predicted': found_params
}
result.append(r)
idx += 1
debug_str = 'DEBUG' if DEBUG else ''
with open(f'eval/{debug_str}amplitude_modulation_count={count}_iterations={iterations}'
f'_rounds={rounds}.json', 'w') as f:
json.dump(result, f, indent=4)
def amplitude_modulation_dict(frequencies, amplitudes):
result = dict()
result[f'frequency_carrier'] = frequencies[0]
result[f'amplitude_carrier'] = amplitudes[0]
result[f'frequency_modulator'] = frequencies[1]
result[f'amplitude_modulator'] = amplitudes[1]
return result
# Harmonic
def eval_harmonic(waveshape, n_tones):
count, iterations, rounds = default_settings()
result = []
frequencies = list(combinations(equidistant_frequency(count), n_tones))
amplitudes = list(combinations(equidistant_amplitude(count), n_tones))
idx = 0
for f in frequencies:
for a in amplitudes:
print(f'Evaluating {idx + 1} / {len(frequencies) * len(amplitudes)}')
true_params = sinustongemisch_dict(f, a)
model, patch_y = param_search.setup_harmonic_tones(waveshape, true_params)
_, found_params = param_search.find_parameters(model, patch_y, iterations, rounds)
found_params = sinustongemisch_rename_parmameters(true_params, found_params, n_tones)
r = {
'actual': true_params,
'predicted': found_params
}
result.append(r)
idx += 1
debug_str = 'DEBUG' if DEBUG else ''
with open(f'eval/{debug_str}harmonic_waveshape={waveshape}_ntones={n_tones}_count={count}_iterations={iterations}'
f'_rounds={rounds}.json', 'w') as f:
json.dump(result, f, indent=4)
# Frequency Modulation
def eval_frequency_modulation():
count, iterations, rounds = default_settings('frequency modulation')
result = []
eqf = equidistant_frequency(count)
frequencies = list(product(eqf, eqf, eqf))
amplitudes = equidistant_amplitude(count)
idx = 0
for f in frequencies:
for a in amplitudes:
print(f'Evaluating {idx + 1} / {len(frequencies) * len(amplitudes)}')
true_params = frequency_modulation_dict(f, a)
model, patch_y = param_search.setup_frequency_modulation(true_params)
_, found_params = param_search.find_parameters(model, patch_y, iterations, rounds)
r = {
'actual': true_params,
'predicted': found_params
}
result.append(r)
idx += 1
debug_str = 'DEBUG' if DEBUG else ''
with open(f'eval/{debug_str}frequency_modulation_count={count}_iterations={iterations}'
f'_rounds={rounds}.json', 'w') as f:
json.dump(result, f, indent=4)
def frequency_modulation_dict(frequencies, amplitude):
result = dict()
result[f'amplitude_carrier'] = amplitude
result[f'frequency_carrier'] = frequencies[0]
result[f'frequency_modulator'] = frequencies[1]
result[f'modulation_depth'] = frequencies[2]
return result
# Common
def default_settings(synth='default'):
if DEBUG:
count = 2
iterations = 10
rounds = 1
return count, iterations, rounds
if synth == 'default':
count = 6
iterations = 500
rounds = 3
elif synth == 'frequency modulation':
count = 5
iterations = 500
rounds = 3
else:
raise ValueError()
return count, iterations, rounds
def equidistant_frequency(count):
start = np.log10(20.)
end = np.log10(5000.)
result = np.logspace(start, end, count)
return result
def equidistant_amplitude(count):
start_amplitude = 0.05
end_amplitude = 0.95
start = np.log10(start_amplitude ** 2)
end = np.log10(end_amplitude ** 2)
result = np.logspace(start, end, count) # power
result = np.sqrt(result) # amplitude
return result
def main():
# eval_frequency_modulation()
# eval_amplitude_modulation()
for waveshape in ['square', 'triangle', 'sawtooth']:
eval_harmonic(waveshape, 2)
if __name__ == '__main__':
if not os.path.exists('eval'):
os.mkdir('eval')
main()