-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
529 lines (513 loc) · 19.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# -*- coding: utf-8 -*-
"""
Code to run the EVA_H and FAIR models
"""
# --- imports
# std lib imports:
import base64 as b64
from copy import deepcopy
import datetime
import sys
# third party imports:
from fair.RCPs import rcp45
from fair.ancil import cmip5_annex2_forcing as ar5
from fair.forward import fair_scm
import netCDF4 as nc
import numpy as np
from scipy.integrate import solve_ivp
from scipy.interpolate import PchipInterpolator
# local imports:
from eva_h.eightboxequations import eightboxequations
from eva_h.parameters import ModelParams
from eva_h.postproc import postproc
from eva_h.so2injection_8boxes import so2injection_8boxes
# --- global variables
# ---
def check_params(request_params):
"""
Check supplied parameters, converting values as required
:param request_params: POST supplied parameters
"""
# init output dict:
user_params = {}
# handle wavelength values first. if wavelengths parameters present:
if 'wavelengths' in request_params.keys():
try:
# get requested values:
wavelengths_in = request_params['wavelengths']
# convert from string to list:
wavelengths_out = [
float(i) for i in
wavelengths_in.lstrip('[').rstrip(']').split(',')
]
# if 550 is not in the list, add it:
if 550 not in wavelengths_out:
wavelengths_out.append(550)
# convert to numpy array, scale and sort the values:
wavelengths_out = np.array(wavelengths_out) / 1000
wavelengths_out.sort()
# store the unique wavelength values:
user_params['wavelengths'] = np.unique(wavelengths_out)
except:
err_msg = 'invalid wavelengths parameter'
return False, {}, err_msg
else:
# no parameters present. use default values:
user_params['wavelengths'] = np.array([380, 550, 1020]) / 1000
# additional expected parameters:
params = [
{'name': 'lat', 'type': float},
{'name': 'year', 'type': int},
{'name': 'month', 'type': int},
{'name': 'so2_mass', 'type': float},
{'name': 'so2_height', 'type': float},
{'name': 'tropo_height', 'type': float},
{'name': 'aerosol_timescale', 'type': float},
{'name': 'rad_eff', 'type': float}
]
# loop through expected parameters and try to get values:
for param in params:
param_name = param['name']
param_type = param['type']
try:
user_params[param_name] = np.array([
param_type(request_params[param_name])
])
# return False on failure:
except:
err_msg = 'invalid {} parameter'.format(param_name)
return False, {}, err_msg
# check for optional netcdf flag, presume not:
user_params['nc'] = False
if 'nc' in request_params.keys():
# 1 is True, anything else is False:
if request_params['nc'] == '1':
user_params['nc'] = True
# check parameter values ... so2_mass:
for i in user_params['so2_mass']:
if not 0 <= i <= 999999:
err_msg = 'so2_mass parameter should not be less than 0'
err_msg += ' or greater than 999999 ({0})'.format(i)
return False, {}, err_msg
# check lat:
for i in user_params['lat']:
if not -90 <= i <= 90:
err_msg = 'lat parameter should not be less than -90'
err_msg += ' or greater than 90 ({0})'.format(i)
return False, {}, err_msg
# check year:
for i in user_params['year']:
if not 1800 <= i <= 2050:
err_msg = 'lat parameter should not be less than 1800'
err_msg += ' or greater than 2050 ({0})'.format(i)
return False, {}, err_msg
# check month:
for i in user_params['month']:
if not 1 <= i <= 12:
err_msg = 'month parameter should not be less than 1'
err_msg += ' or greater than 12 ({0})'.format(i)
return False, {}, err_msg
# check so2_height:
for i in user_params['so2_height']:
if not 0 <= i <= 50:
err_msg = 'so2_height parameter should not be less than 0'
err_msg += ' or greater than 50 ({0})'.format(i)
return False, {}, err_msg
# check tropo_height:
for i in user_params['tropo_height']:
if not 0 <= i <= 50:
err_msg = 'tropo_height parameter should not be less than 0'
err_msg += ' or greater than 50 ({0})'.format(i)
return False, {}, err_msg
# check aerosol_timescale:
for i in user_params['aerosol_timescale']:
if not 0.1 <= i <= 50:
err_msg = 'aerosol_timescale parameter should not be less than 0.1'
err_msg += ' or greater than 50 ({0})'.format(i)
return False, {}, err_msg
# check rad_eff:
for i in user_params['rad_eff']:
if not -50 <= i <= -0.1:
err_msg = 'rad_eff parameter should not be less than -50'
err_msg += ' or greater than -0.1 ({0})'.format(i)
return False, {}, err_msg
# check wavelengths:
for i in user_params['wavelengths']:
if not 1 <= i * 1000 <= 100000:
err_msg = 'wavelength parameter should not be less than 1'
err_msg += ' or greater than 100000 ({0})'.format(round(i * 1000))
return False, {}, err_msg
# return the parameters:
return True, user_params, None
def data_to_nc(model_dates, model_lats, model_alts, model_wls,
model_ext, model_ssa, model_asy, model_saod):
"""
Create NetCDF dataset for model data and return as base64
:param model_dates: List of model dates as strings in format %Y-%m-%d
:param model_lats: Numpy array of model latitudes
:param model_alts: Numpy array of model altitudes
:param model_wls: Numpy array of model wavelengths
:param model_ext: Numpy array of model aerosol extinction
:param model_ssa: Numpy array of model single scattering albedo
:param model_ssa: Numpy array of model aerosol scattering asymmtery factor
:param model_saod: Numpy array of model stratospheric aerosol optical depth
"""
# create the netcdf dataset:
nc_data = nc.Dataset(None, mode='w', memory=True, format='NETCDF4')
# set up time units and calendar:
nc_time_units = 'days since 1900-01-01 00:00:00'
# convert model dates to datetimes:
model_datetimes = [
datetime.datetime.strptime(i, '%Y-%m-%d') for i in model_dates
]
# convert datetimes to netcdf times:
nc_time_values = nc.date2num(model_datetimes, nc_time_units)
# create time dimension:
nc_data.createDimension('time', len(model_datetimes))
# create time variable:
nc_times = nc_data.createVariable('time', 'f', ('time'))
# store the times, long name, standard_name, units and calendar:
nc_times[:] = nc_time_values
nc_times.long_name = 'time'
nc_times.standard_name = 'time'
nc_times.calendar = 'standard'
nc_times.units = nc_time_units
# create latitude dimension:
nc_data.createDimension('latitude', model_lats.size)
# create latitude variable:
nc_lats = nc_data.createVariable('latitude', 'f', ('latitude'))
# store the latitudes, long name, standard_name, and units:
nc_lats[:] = model_lats
nc_lats.long_name = 'latitude'
nc_lats.standard_name = 'latitude'
nc_lats.units = 'degrees_north'
# create altitude dimension:
nc_data.createDimension('altitude', model_alts.size)
# create altitude variable:
nc_alts = nc_data.createVariable('altitude', 'f', ('altitude'))
# store the altitudes, long name, standard_name, and units:
nc_alts[:] = model_alts
nc_alts.long_name = 'altitude'
nc_alts.standard_name = 'altitude'
nc_alts.units = 'K m'
# create wavelength dimension:
nc_data.createDimension('wavelength', model_wls.size)
# create wavelength variable:
nc_wls = nc_data.createVariable('wavelength', 'f', ('wavelength'))
# store the wavelengths, long name, and units:
nc_wls[:] = model_wls
nc_wls.long_name = 'wavelength'
nc_wls.units = 'nm'
# create aerosol extinction variable:
nc_ext = nc_data.createVariable(
'ext', 'f', ('time', 'latitude', 'altitude', 'wavelength'),
zlib=True, complevel=1
)
# store the extinction, long name, and units:
nc_ext[:] = model_ext
nc_ext.long_name = 'aerosol extinction'
nc_ext.units = 'K m**-1'
# create single scattering albedo variable:
nc_ssa = nc_data.createVariable(
'ssa', 'f', ('time', 'latitude', 'altitude', 'wavelength'),
zlib=True, complevel=1
)
# store the scattering and long name:
nc_ssa[:] = model_ssa
nc_ssa.long_name = 'single scattering albedo'
# create aerosol scattering asymmtery factor variable:
nc_asy = nc_data.createVariable(
'asy', 'f', ('time', 'latitude', 'altitude', 'wavelength'),
zlib=True, complevel=1
)
# store the scattering asymmetry factor and long name:
nc_asy[:] = model_asy
nc_asy.long_name = 'aerosol scattering asymmtery factor'
# create stratospheric aerosol optical depth variable:
nc_saod = nc_data.createVariable(
'saod', 'f', ('time', 'latitude', 'wavelength'),
zlib=True, complevel=1
)
# store the stratospheric aerosol optical depth and long name:
nc_saod[:] = model_saod
nc_saod.long_name = 'stratospheric aerosol optical depth'
# close the dataset:
nc_mem = nc_data.close()
# convert to base64:
nc_b64 = b64.b64encode(nc_mem.tobytes()).decode()
# return base64 encoded NetCDF:
return nc_b64
def __run_model(eva_h_dir, user_params):
"""
Main model running function
:param eva_h_dir: Directory containing EVA_H data files
:param user_params: User supplied parameters
"""
# init the model parameters:
model_params = ModelParams()
# model run time in years:
run_years = 5
# subtract 1 from month value, so january = 0:
user_params['month'] -= 1
# add eruption year to months:
user_params['month'] += (user_params['year'] * 12)
# time span in months. run for five years, starting from lowest eruption
# date:
start_month = user_params['month'].min()
tspan = [start_month, start_month + (run_years * 12)]
# copy user params, and set so2_mass to 0 for anomaly calculating:
user_params_ref = deepcopy(user_params)
user_params_ref['so2_mass'] = np.array([0.])
user_params_ref['wavelengths'] = np.array([550]) / 1000
# adjust aerosol timescale to user provided value:
model_params.tauprod = np.ones(8) * user_params['aerosol_timescale']
# calculate volcanic so2 injections:
inmass, intime = so2injection_8boxes(
eva_h_dir,
model_params.h1lim,
model_params.h2lim,
model_params.latlim,
user_params
)
# same again for reference values:
inmass_ref, intime_ref = so2injection_8boxes(
eva_h_dir,
model_params.h1lim,
model_params.h2lim,
model_params.latlim,
user_params_ref
)
# set initial conditions:
ic = np.array([0.0126,0.0468,0.0152,0.0192,0.0359,0.0218,0.0349,0.0417])
# init arrays for model dates:
tref = []
model_time_dates = []
# create time range, where each step is the first day of each month in the
# range:
for i in np.arange(tspan[0], tspan[1] + 1):
# year for this time step:
step_yr = int(np.floor(i / 12))
# month for this time step:
step_month = int((i % 12) + 1)
# datetime for this time step:
step_dt = datetime.datetime(step_yr, step_month, 1)
# day of year for this time step:
step_doy = step_dt.timetuple().tm_yday - 1
# decimal year for this time step:
if (step_yr % 4) == 0:
step_dy = step_yr + (step_doy / 365)
else:
step_dy = step_yr + (step_doy / 366)
# date string for this time step:
step_str = step_dt.strftime('%Y-%m-%d')
# store the date and date string:
tref.append(step_dy)
model_time_dates.append(step_str)
# convert tref to numpy array in months:
tref = np.array(tref) * 12
# run the model:
sol = solve_ivp(
eightboxequations, tspan, ic,
args=[inmass, intime, model_params, model_params.backinj],
rtol=1e-4, atol=1e-8
)
so4_mass = PchipInterpolator(sol.t, sol.y.T, axis=0)(tref)
# same again for reference values:
sol_ref = solve_ivp(
eightboxequations, tspan, ic,
args=[inmass_ref, intime_ref, model_params, model_params.backinj],
rtol=1e-4, atol=1e-8
)
so4_mass_ref = PchipInterpolator(sol_ref.t, sol_ref.y.T, axis=0)(tref)
# list of wavelengths at which output are requested, in um:
wavelengths = user_params['wavelengths']
# run the post processing:
gmsaod, saod, reff, ext, ssa, asy, lat, alt = postproc(
eva_h_dir, so4_mass, model_params, model_params.mstar,
model_params.R_reff, wavelengths
)
# same again for reference values:
wavelengths_ref = user_params_ref['wavelengths']
(gmsaod_ref, saod_ref, reff_ref, ext_ref, ssa_ref, asy_ref, lat_ref,
alt_ref) = postproc(
eva_h_dir, so4_mass_ref, model_params, model_params.mstar,
model_params.R_reff, wavelengths_ref
)
# convert values for json output ..
# model time in years to 2 decimal places:
model_time_years = (tref / 12)
model_time_years = np.round(model_time_years, 2).tolist()
# init list for saod values at different wavelengths:
model_saod_ts = []
model_saod = []
# loop through wavelengths:
for i in range(wavelengths.size):
# store time series data:
model_saod_ts.append(
np.round(gmsaod[:, i], 6).tolist()
)
# store 2d time-lat data:
model_saod.append(
np.round((saod[:, :, i]).T, 6).tolist()
)
# same again for reference values:
model_saod_ts_ref = []
for i in range(wavelengths_ref.size):
model_saod_ts_ref.append(
np.round(gmsaod_ref[:, i], 6).tolist()
)
# model latitude:
model_lat = lat.tolist()
# radiative forcing is model_saod_ts at 550nm multiplied by negative
# scaling factor (radiative efficiency):
index_550 = np.where(wavelengths == 0.55)[0][0]
model_rf = user_params['rad_eff'] * model_saod_ts[index_550]
index_550_ref = np.where(wavelengths_ref == 0.55)[0][0]
model_rf_ref = user_params['rad_eff'] * model_saod_ts_ref[index_550_ref]
# difference between rf for user values and rf values where mass is 0,
# i.e. rf anomaly from eva_h, which will be used with fair data:
model_rf_anom = model_rf - model_rf_ref
# get annual global mean rf values for fair. get year for each time step:
all_model_years = np.array([
np.floor(i) for i in model_time_years
], dtype=int)
# unique years in model time period:
model_years = np.unique(all_model_years)
model_years.sort()
# init list for rf means:
model_rf_means = []
# for each unique year:
for model_year in model_years:
# get mean of all values for this year:
model_rf_means.append(
np.nanmean(model_rf_anom[all_model_years == model_year])
)
# set up volcanic forcing values for fair, using ar5 values.
# need an array of same size as rcp45 emissions, init as -0.06 background
# forcing value:
ar5_volcanic = np.zeros(rcp45.Emissions.year.shape) - 0.06
# add in values available from ar5 data where available:
for rcp45_index, rcp45_year in enumerate(rcp45.Emissions.year):
# look for ar5 value for this year:
ar5_index = np.where(ar5.Forcing.year == rcp45_year)
if ar5_index[0].size > 0:
ar5_volcanic[rcp45_index] = ar5.Forcing.volcanic[ar5_index]
# update 2011 -> 2015 as per Schmidt et al (2018):
ar5_volcanic[rcp45.Emissions.year == 2011] = -0.11
ar5_volcanic[rcp45.Emissions.year == 2012] = -0.10
ar5_volcanic[rcp45.Emissions.year == 2013] = -0.03
ar5_volcanic[rcp45.Emissions.year == 2014] = -0.11
ar5_volcanic[rcp45.Emissions.year == 2015] = -0.17
# update 2019 for raikoke guess -0.20 w m-2
ar5_volcanic[rcp45.Emissions.year == 2019] = -0.20
# set background forcing for eruption year -> eruption year + 2 to be
# -0.06:
ar5_volcanic_bg = ar5_volcanic.copy()
ar5_volcanic_bg[
(user_params['year'] <= rcp45.Emissions.year) &
(rcp45.Emissions.year < user_params['year'] + 4)
] = -0.06
# run fair without eva_h updates:
fair_result = fair_scm(
emissions=rcp45.Emissions.emissions,
F_volcanic=ar5_volcanic_bg
)
forcing_a = fair_result[1]
temp_a = fair_result[2]
# update volcanic forcing values with those from eva_h:
for i, model_year in enumerate(model_years):
ar5_volcanic_bg[rcp45.Emissions.year == model_year] += model_rf_means[i]
# run fair with eva_h updates:
fair_result = fair_scm(
emissions=rcp45.Emissions.emissions,
F_volcanic=ar5_volcanic_bg
)
forcing_b = fair_result[1]
temp_b = fair_result[2]
# get required values for year of eruption +/-10.
# init lists for values:
fair_years = []
fair_rf_wo = []
fair_rf = []
fair_temp_wo = []
fair_temp = []
# loop through years:
for i in np.arange(model_years.min() - 10, model_years.min() + 11):
# store the year:
fair_years.append(int(i))
# get the index for this year:
fair_index = np.where(rcp45.Emissions.year == i)[0][0]
# store required values:
fair_rf_wo.append(forcing_a[:, 11][fair_index])
fair_rf.append(forcing_b[:, 11][fair_index])
fair_temp_wo.append(temp_a[fair_index])
fair_temp.append(temp_b[fair_index])
# round values and convert to list for json output:
model_rf = np.round(model_rf, 6).tolist()
fair_rf_wo = np.round(fair_rf_wo, 6).tolist()
fair_rf = np.round(fair_rf, 6).tolist()
fair_temp_wo = np.round(fair_temp_wo, 6).tolist()
fair_temp = np.round(fair_temp, 6).tolist()
# wavelengths * 1000 (nm):
model_wavelengths = np.round(wavelengths * 1000, 6).tolist()
# data dict for output:
model_data = {
'time_years': model_time_years,
'time_dates': model_time_dates,
'lat': model_lat,
'wavelengths': model_wavelengths,
'saod_ts': model_saod_ts,
'saod': model_saod,
'rf_ts': model_rf,
'fair_years': fair_years,
'fair_rf_wo': fair_rf_wo,
'fair_rf': fair_rf,
'fair_temp_wo': fair_temp_wo,
'fair_temp': fair_temp
}
# if netcdf data has been requested:
if user_params['nc']:
model_data['nc'] = data_to_nc(
model_time_dates, lat, alt, wavelengths * 1000,
ext, ssa, asy, saod
)
else:
model_data['nc'] = ''
# return the data:
return model_data
def run_model(eva_h_dir, request_params):
"""
Wrapper function for running model
:param eva_h_dir: Directory containing EVA_H data files
:param request_params: POST supplied parameters
"""
# init result dict:
result = {
'status': -1,
'message': '',
'data': {}
}
# check user parameters:
status, user_params, err_msg = check_params(request_params)
# if that failed ... :
if not status:
# updata result dict:
result['status'] = 1
result['message'] = err_msg
# return the result:
return result
# try to run the model:
try:
model_data = __run_model(eva_h_dir, user_params)
result['status'] = 0
result['message'] = 'model run suceeded'
result['data'] = model_data
# if that fails:
except Exception as err_msg:
sys.stderr.write('[{0}] [ERROR] {1}\n'.format(
datetime.datetime.now(), err_msg
))
result['status'] = 1
result['message'] = 'model run failed'
# return the result:
return result