-
Notifications
You must be signed in to change notification settings - Fork 1
/
S_nucleus_noise.py
125 lines (95 loc) · 4.19 KB
/
S_nucleus_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 3 18:46:35 2024
@author: celinesoeiro
"""
import numpy as np
from tcm_params import TCM_model_parameters, coupling_matrix_normal, coupling_matrix_PD
from model_functions import izhikevich_dudt, izhikevich_dvdt, tm_synapse_eq
neuron_quantities = TCM_model_parameters()['neuron_quantities']
neuron_per_structure = TCM_model_parameters()['neuron_per_structure']
neuron_params = TCM_model_parameters()['neuron_paramaters']
currents = TCM_model_parameters()['currents_per_structure']
dt = TCM_model_parameters()['dt']
syn_params = TCM_model_parameters()['synapse_params_excitatory']
n_S = neuron_quantities['S']
vr = TCM_model_parameters()['vr']
vp = TCM_model_parameters()['vp']
W_N = coupling_matrix_normal()['weights']
W_S_self = W_N['W_EE_s']
W_S_M = W_N['W_EE_s_m']
W_S_D = W_N['W_EE_s_d']
W_S_CI = W_N['W_EI_s_ci']
W_S_TR = W_N['W_EI_s_tr']
W_S_TC = W_N['W_EE_s_tc']
# W_PD = coupling_matrix_PD()['weights']
# W_S_self = W_PD['W_EE_s']
# W_S_M = W_PD['W_EE_s_m']
# W_S_D = W_PD['W_EE_s_d']
# W_S_CI = W_PD['W_EI_s_ci']
# W_S_TR = W_PD['W_EI_s_tr']
# W_S_TC = W_PD['W_EE_s_tc']
a_S = neuron_params['a_S']
b_S = neuron_params['b_S']
c_S = neuron_params['c_S']
d_S = neuron_params['d_S']
td_wl = TCM_model_parameters()['time_delay_within_layers']
td_bl = TCM_model_parameters()['time_delay_between_layers']
td_ct = TCM_model_parameters()['time_delay_cortex_thalamus']
td_tc = TCM_model_parameters()['time_delay_thalamus_cortex']
td_syn = TCM_model_parameters()['time_delay_synapse']
p = TCM_model_parameters()['synapse_total_params']
t_f_E = syn_params['t_f']
t_d_E = syn_params['t_d']
t_s_E = syn_params['t_s']
U_E = syn_params['U']
A_E = syn_params['distribution']
I_S = currents['S']
noise = TCM_model_parameters()['noise']
kisi_S = noise['kisi_S']
zeta_S = noise['zeta_S']
I_ps = TCM_model_parameters()['poisson_bg_activity']
I_ps_S = I_ps['S']
def S_nucleus(t, v_S, u_S, AP_S, PSC_S, PSC_M, PSC_D, PSC_CI, PSC_TC, PSC_TR, u_S_syn, R_S_syn, I_S_syn):
I_syn = np.zeros((1, n_S))
for s in range(n_S):
v_S_aux = 1*v_S[s][t - 1]
u_S_aux = 1*u_S[s][t - 1]
AP_S_aux = 0
if (v_S_aux >= vp + zeta_S[s][t - 1]):
AP_S_aux = 1
AP_S[s][t] = t - 1
v_S_aux = v_S[s][t]
v_S[s][t] = c_S[0][s]
u_S[s][t] = u_S_aux + d_S[0][s]
else:
AP_S[s][t] = 0
AP_S_aux = 0
# Self feedback - Inhibitory
coupling_S_S = W_S_self[s][0]*1*PSC_S[0][t - td_wl - td_syn - 1]
# Coupling S to M - Excitatory
coupling_S_M = W_S_M[s][0]*1*PSC_M[0][t - td_bl - td_syn - 1]
# Coupling S to D - Excitatory
coupling_S_D = W_S_D[s][0]*1*PSC_D[0][t - td_bl - td_syn - 1]
# Coupling S to CI - Inhibitory
coupling_S_CI = W_S_CI[s][0]*1*PSC_CI[0][t - td_wl - td_syn - 1]
# Coupling S to TC - Excitatory
coupling_S_TC = W_S_TC[s][0]*1*PSC_TC[0][t - td_tc - td_syn - 1]
# Coupling S to TR - Excitatory
coupling_S_TR = W_S_TR[s][0]*1*PSC_TR[0][t - td_tc - td_syn - 1]
dv_S = izhikevich_dvdt(v = v_S_aux, u = u_S_aux, I = I_S[s])
du_S = izhikevich_dudt(v = v_S_aux, u = u_S_aux, a = a_S[0][s], b = b_S[0][s])
coupling_cortex = (coupling_S_S + coupling_S_M + coupling_S_D + coupling_S_CI)/n_S
coupling_thalamus = (coupling_S_TC + coupling_S_TR)/n_S
bg_activity = kisi_S[s][t - 1] + I_ps_S[0][t - td_wl - td_syn - 1] - I_ps_S[1][t - td_wl - td_syn - 1]
v_S[s][t] = v_S_aux + dt*(dv_S + coupling_cortex + coupling_thalamus + bg_activity)
u_S[s][t] = u_S_aux + dt*du_S
# Synapse - Within cortex
syn_S = tm_synapse_eq(u = u_S_syn, R = R_S_syn, I = I_S_syn, AP = AP_S_aux, t_f = t_f_E, t_d = t_d_E, t_s = t_s_E, U = U_E, A = A_E, dt = dt, p = p)
R_S_syn = 1*syn_S['R']
u_S_syn = 1*syn_S['u']
I_S_syn = 1*syn_S['I']
I_syn[0][s] = 1*syn_S['Ipost']
PSC_S[0][t] = np.sum(I_syn)
return v_S, u_S, PSC_S, u_S_syn, I_S_syn, R_S_syn