-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTX_opt.m
176 lines (137 loc) · 5.28 KB
/
TX_opt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function [success,maxReal,improve,V0] = TX_opt(ps,V0,dispratio,tbd0,load_level)
% Optimize the system damping ratio by adjusting generation and demand.
%
% ps: the data structure specifying the power system
% V0: the initial and optimized power flow solution
% dispratio: relative increase or decrease allowed for each controllable load
% (the limits for generators are as specified in the data structure ps)
% tbd0: the initial step size in the SNLP optimization algorithm
% load_level: the factor by which all loads are scaled before optimization
% success: indicator for the success of solving the problem
% maxReal: values of the damping ratio obtained during optimization
% improve: percentage improvement of the damping ratio
nb=size(ps.bus,1);
ng=size(ps.gen,1);
%==================== Set the controllable load ==========================
disploc=find(ps.bus(:,2)==1 & ps.bus(:,3)>0); % locations of controllable load
nd=length(disploc); % number of controllable load
%=========================================================================
maxReal=[];
ActivePower=[];
Mset.x=[];
Mset.num=0;
Mset.abassia=[];
Mset.daba_da=[];
Mset.daba_dv=[];
%==================== Set up the optimization problem =====================
mpc_disp=load2control(ps,[],disploc,0,dispratio,load_level);
theta_IND=1:nb;
volt_IND=nb+1:2*nb;
Pg_IND=2*nb+1:2*nb+ng+nd;
Qg_IND=2*nb+ng+nd+1:2*nb+2*(ng+nd);
gamma_IND=2*nb+2*(ng+nd)+1;
Ctheta=sparse(1:nb,theta_IND,ones(nb,1),nb,2*nb+2*(ng+nd)+1);
Cvolt=sparse(1:nb,volt_IND,ones(nb,1),nb,2*nb+2*(ng+nd)+1);
Cgamma=sparse(1,gamma_IND,1,1,2*nb+2*(ng+nd)+1);
mpc_disp.gencost(:,5:7)=mpc_disp.gencost(:,5:7)*0;
mpopt = mpoption;
mpopt.opf.ac.solver='ipopt';
om = opf_setup(mpc_disp, mpopt);
[Asys0, Bsys0, Csys0, Dsys0]=DAEsys(ps,V0);
Afull=Asys0-Bsys0*(Dsys0\Csys0);
try
[Ueig0,D,Veig0] = eig(full(Afull));
catch
keyboard;
end
lambda=diag(D);
maxReal=[maxReal max(real(lambda(abs(lambda)>10^-6 & imag(lambda)>0.01))./(abs(imag(lambda(abs(lambda)>10^-6 & imag(lambda)>0.01)))))];
lamIndex=find(abs(lambda)>10^-6 & imag(lambda)>0.01 & real(lambda)./(abs(imag(lambda))+1e-8)>min(maxk(real(lambda)./(abs(imag(lambda))+1e-8),10))-0.0);
Q=sparse(2*nb+2*(ng+nd)+1,2*nb+2*(ng+nd)+1);
c=[sparse(2*nb+2*(ng+nd),1); 1];
om = add_vars(om, 'gamma', 1, [], -100, 100);
om = add_costs(om, 'usr', struct('H', Q, 'Cw', c));
om = build_cost_params(om);
max_iters = 5;
iter=1;
fobj=maxReal(1);
tbd=tbd0;
tol=10^-4;
tic;
while (iter<=max_iters)
Aadd=[Ctheta; Cvolt];
bup=[ones(nb,1)*tbd+angle(V0); ones(nb,1)*tbd+abs(V0)];
bdn=[-ones(nb,1)*tbd+angle(V0); -ones(nb,1)*tbd+abs(V0)];
for k=1:length(lamIndex)
num_of_lam=lamIndex(k);
ueig=[Ueig0(:,num_of_lam);-Dsys0\(Csys0*Ueig0(:,num_of_lam))];
veig=[Veig0(:,num_of_lam);-(Dsys0')\(Bsys0'*Veig0(:,num_of_lam))];
[dsys_da, dsys_dv]=SysGradient(ps,V0,ueig,veig,lambda(num_of_lam));
Aadd=[Aadd; real(dsys_da)*Ctheta+real(dsys_dv)*Cvolt-Cgamma];
bup=[bup; real(dsys_da)*angle(V0)+real(dsys_dv)*abs(V0)-real(lambda(num_of_lam))/imag(lambda(num_of_lam))];
bdn=[bdn; -Inf];
end
for k=1:Mset.num
if norm([angle(V0); abs(V0)]-Mset.x(:,k),inf)<=tbd
Aadd=[Aadd; Mset.daba_da(k,:)*Ctheta+Mset.daba_dv(k,:)*Cvolt-Cgamma];
bup=[bup; [Mset.daba_da(k,:) Mset.daba_dv(k,:)]*Mset.x(:,k)-Mset.abassia(k)];
bdn=[bdn; -Inf];
end
end
om_new=om;
om_new = add_constraints(om_new, 'EigCon', Aadd, bdn, bup);
mpopt.verbose=1;
mpopt.opf.init_from_mpc=-1;
mpopt.ipopt.opts.max_iter = 250;
mpopt.ipopt.opts.print_level = 5;
mpopt.ipopt.opts.max_resto_iter = 10;
mpopt.ipopt.opt = 0;
% Uncomment one of these lines according to the solver available
% [results, success, raw] = ktropf_solver_eigen(om_new, mpopt, V0);
[results, success, raw] = ipoptopf_solver_eigen(om_new, mpopt, V0);
if success == 1
V1=results.bus(:,8).*exp(1j*results.bus(:,9)/180*pi);
[Asys1, Bsys1, Csys1, Dsys1]=DAEsys(ps,V1);
Afull=Asys1-Bsys1*(Dsys1\Csys1);
try
[Ueig1,D,Veig1] = eig(full(Afull));
catch
keyboard;
end
lambda1=diag(D);
lamIndex1=find(abs(lambda1)>10^-6 & imag(lambda1)>0.01 & real(lambda1)./(abs(imag(lambda1))+1e-8)>min(maxk(real(lambda1)./(abs(imag(lambda1))+1e-8),10))-0.0);
Inx1=find(abs(lambda1)>10^-6 & imag(lambda1)>0.01);
[abassia,Inx2]=max(real(lambda1(Inx1))./(abs(imag(lambda1(Inx1)))+1e-8));
maxInx=Inx1(Inx2);
else
abassia = +inf;
end
if abassia<fobj && success==1
V0=V1;
tbd=min(2*tbd,tbd0);
fobj=abassia;
Ueig0=Ueig1;
Veig0=Veig1;
Asys0=Asys1;
Bsys0=Bsys1;
Csys0=Csys1;
Dsys0=Dsys1;
maxReal=[maxReal abassia];
ActivePower=[ActivePower results.x(Pg_IND)];
lambda=lambda1;
lamIndex=lamIndex1;
else
tbd=tbd/2;
if tbd<tol
break;
end
end
iter=iter+1;
end
toc
maxReal
improve=(maxReal(1)-maxReal(end))/abs(maxReal(1))
if(length(maxReal) == 1)
success = 0;
end
end