-
Notifications
You must be signed in to change notification settings - Fork 135
/
mnist_regressor.py
59 lines (51 loc) · 2.19 KB
/
mnist_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import utils as ut;
import os
import caffe
import caffe.draw
from scipy import misc
import numpy as np
from caffe.proto import caffe_pb2
from google.protobuf import text_format
solver_fn='mnist_regressor_solver_adam.prototxt'
net_fn='mnist_regressor.prototxt'
try:
net_proto = caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), net_proto)
caffe.draw.draw_net_to_file (net_proto, 'regressor_train_net.png', 'TB',
phase=caffe.TRAIN)
caffe.draw.draw_net_to_file (net_proto, 'regressor_test_net.png', 'TB',
phase=caffe.TEST)
except:
print("Unable to draw network. Perhaps your caffe.draw doesn't support phases?");
if not os.path.exists("snapshots"):
os.makedirs("snapshots")
caffe.set_mode_gpu();
solver = caffe.get_solver(solver_fn);
solver.solve()
# The rest of the file is displaying the output
net=caffe.Net('mnist_regressor.prototxt','snapshots/mnist_regressor_iter_60000.caffemodel',caffe.TEST)
net.forward()
# The network uses sampling to binarize the input values. However, there's no
# simple way to make that sampling deterministic, which means it's difficult to
# compare the results to the regressor. Hence, we re-initialize the inputs in
# python so that they can be deterministic.
np.random.seed(1)
unifa=np.random.uniform(0,2,size=net.blobs['uniform'].data.shape);
net.blobs['uniform'].data[:]=unifa
net.forward(start='dataconcat')
imlist=[];
origlist=[]
for i in range(0,15*4):
imgen=net.blobs['decode1neuron'].data[i,:].reshape((28,27))
imgen=np.tile(imgen[:,:,None],(1,1,3))
iminp=net.blobs['data_right'].data[i,0,:,:]
iminp=iminp[:,:,None]
iminp=np.concatenate([iminp,iminp*.5,1-iminp],axis=2)
imlist.append(np.concatenate((imgen[:,0:13,:],iminp*.5+.5,imgen[:,14:,:]),axis=1));
origlist.append(net.blobs['data'].data[i,0,:,:])
# scale up the output to make sure the pixels are clearly visible.
imlist[-1]=misc.imresize(imlist[-1],[28*10,28*10],'nearest')
origlist[-1]=misc.imresize(origlist[-1],[28*10,28*10],'nearest')
print('saving results...')
misc.imsave('regressor.png',ut.imtile(imlist,width=15,sep=20,brightness=255))
misc.imsave('groundtruth.png',ut.imtile(origlist,width=15,sep=20,brightness=255))